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The neuronal synchronous discharging may cause an epileptic seizure. Currently, most

of the studies conducted to investigate the mechanism of epilepsy are based on EEGs

or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging

or the resting-state, and few studies have probed into the dynamic patterns during the

inter-ictal discharging that are much easier to record in clinical applications. Here, we

propose a time-varying network analysis based on adaptive directed transfer function to

uncover the dynamic brain network patterns during the inter-ictal discharging. In addition,

an algorithm based on the time-varying outflow of information derived from the network

analysis is developed to detect the epileptogenic zone. The analysis performed revealed

the time-varying network patterns during different stages of inter-ictal discharging; the

epileptogenic zone was activated prior to the discharge onset then worked as the source

to propagate the activity to other brain regions. Consistence between the epileptogenic

zones detected by our proposed approach and the actual epileptogenic zones proved

that time-varying network analysis could not only reveal the underlying neural mechanism

of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based

on the EEGs in the inter-ictal discharging.

Keywords: epilepsy, inter-ictal discharge, adaptive directed transfer function, electroencephalogram, dynamic

networks, epileptogenic zone

INTRODUCTION

Being a brain disease rather than a disorder, the neuronal synchronous discharging may cause
an epileptic seizure (Fisher et al., 2014). Epileptic seizure is always accompanied by various
clinical manifestations, such as loss of consciousness, movement dysfunction, and etc.(Cheung
et al., 2006; Hommet et al., 2006; Malfait and Lippé, 2011; Blumenfeld, 2012). One disturbing
issue is that the epileptic seizure is unpredictable, which imposes both the epilepsy patients
(EPs) and their families with great burden, such as difficulty in seeking jobs, financial strain,
and low quality of life (Canuet et al., 2009; Shanmukhi et al., 2015); thus the need for more
effective therapies of epilepsy. Currently, the clinical therapies including taking drugs and surgery
have been widely considered to control epileptic seizure (Huang et al., 2017; Mula, 2017).
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In clinical therapy, doctors always ask the patients to first try
the antiepileptic drugs and later surgery is usually considered
for the patients when the drugs become ineffective. Therefore,
finding the accurate location of the epileptogenic zone is of
great importance in the clinical therapy of epilepsy. Generally,
epileptogenic zone is defined as the area that accounts for the
generation of clinical seizures in the cerebral cortex (Nadler and
Spencer, 2014).

Some previous studies already investigated the epileptogenic
zone during both ictal and postictal discharging (Gersch and
Goddard, 1970; Spanaki et al., 1998, 1999; Avery et al.,
1999). For a example, study based on the single-photon
emission computer tomography (SPECT) reported that during
ictal discharging, the epileptogenic zone showed an increased
perfusion (Spanaki et al., 1999). Moreover, another study based
on the inter-ictal and ictal discharging has also compared
the performance of various non-invasive electrophysiological
and imaging techniques (Stefan et al., 1987), and found
that PET showed focal abnormalities in all cases, while
electroencephalogram (EEG) and magnetic resonance imaging
(MRI) revealed the focal abnormalities in most cases. Long-
term EEG recording plays an important role in non-invasive
presurgical (level I) diagnosis, and compared with the routine
EEG examinations, it allows the assessment of constancy and
time sequence of the focal ictal onset and its propagation. In
addition, MRI provides an excellent anatomical presentation of
structural abnormalities with relatively high sensitivity, while
PET-CT has the highest sensitivity in localizing the epileptogenic
zone compared with MRI and EEG. This provides reliable
information on both anatomical localization and extent of
functional abnormalities in various brain regions (Shao et al.,
2014).

Among these techniques, long-term EEG recording show
obvious advantages, such as the high temporal resolution,
low cost, and easy availability. Recently, many studies have
reported some interesting findings based on the intracranial
ictal EEGs (Kramer et al., 2008; Wilke et al., 2010). For
example, the activated brain regions in gamma band during
the ictal discharging showed the greatest overlap with the
seizure onset foci determined by epileptologists (Wilke et al.,
2011), and research based on the ictal intracranial EEG of
patients with bilaterally synchronous epileptiform discharging
implied that brain regions with high outflow corresponded to
the surgical resection regions (Cho et al., 2011). Comparing
to intracranial EEG, the scalp EEG is much more acceptable
for the EPs, as the intracranial recording causes damages to
their brains. In reference to the localization of epileptogenic
zone, a study based on the scalp EEG found that the
location of source image showed high correlation with the
brain region that had been resected surgically (Lu et al.,
2012).

The afore-mentioned studies are mainly based on the EEG
recorded during the ictal discharging, however, the problem
is that ictal discharging is not so easy to be captured. In
contrast, the inter-ictal discharging is relatively easily to be
recorded during the 24-h video-EEG monitoring. Previous
studies showed that the specific regional activity of the ictal

discharging could be observed during the inter-ictal discharging
(Stefan et al., 1987; Wilke et al., 2011); in other words, the
activated brain regions during inter-ictal discharging period
showed the high similarity with that during the epileptic seizure.
Thereby, the inter-ictal discharging can also be used to perform
similar analysis as those conducted during the ictal discharging
(Hufnagel et al., 2000; Mormann et al., 2000; Asano et al., 2003;
Marsh et al., 2010; Wilke et al., 2011; Diessen et al., 2013;
Song et al., 2013; Shao et al., 2014). For example, Wilke et al.
performed a source localization on four inter-ictal discharging
from one EP, and found that the identified sources lied within
or surrounding areas of one of the foci (Wilke et al., 2008).
Furthermore, they compared the activated areas in ictal, inter-
ictal, and inter-ictal spikes periods, and found that the location
of the activated gamma networks identified during inter-ictal
spikes were similar to that of ictal gamma networks which has
the smallest distance from seizure onset zone (Wilke et al.,
2011).

There are several methods utilized in epilepsy research such
as mutual information (Mars and Lopes da Silva, 1987), Granger
causality analysis (Liao et al., 2010; Epstein et al., 2014), among
others. Epstein et al. performed Granger causality analysis on
intracranial EEG to analyze the features of preictal networks,
and found that the Granger causality network analysis may
aid surgical outcome in cases of ambiguous intracranial EEG
onset (Epstein et al., 2014). Jiao et al. employed Granger
causality to investigate the role of medial temporal lobe in
epilepsy (mTLE), and found that the seizure is propagated
from the medial temporal lobe to other regions (Jiao et al.,
2009). Due to the fact that epilepsy seizure and inter-ictal
discharging are caused by neural abnormal discharging (Staley
et al., 2005), although Granger causality analysis can provide
some information about epileptic mechanism in a time window,
it cannot reflect the brain network changes with the ongoing
time. It is well-known that the information can be efficiently
processed in tens of milliseconds in human brain. As for
epilepsy, a gradual evolution of brain networks actually exists
during abnormal inter-ictal discharging, i.e., different network
patterns may be revealed in the different stages of inter-
ictal discharging. Therefore, we assume that the time-varying
network patterns may provide useful information to uncover the
abnormal information processing and propagation when inter-
ictal discharging is observed. Consequently, the time-varying
network analysis (i.e., adaptive directed transfer function) which
can be applied to investigate the dynamic network patterns
during certain task (Li et al., 2016) is vital in establishing
the corresponding time-varying networks during inter-ictal
discharging. Moreover, given the fact that the inter-ictal spiking
activity presented here is similar to ictal activity (Wilke et al.,
2011) and the inter-ictal spiking yet easier to be obtained
than ictal data. This shows that probing the mechanism of
inter-ictal discharging is very important. Therefore, in this
study the time-varying analysis was applied to investigate
the dynamic network patterns of EPs based on the inter-
ictal discharging, and also to probe the feasibility to locate
the corresponding epileptogenic zone using the time-varying
network information.
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MATERIALS AND METHODS

Participants
Three EPs included in this study were diagnosed by the doctors at
the Sichuan Academy of Medical Sciences & Sichuan Provincial
People’s Hospital. This study was carried out in accordance with
the recommendations of Medical Ethics Committee of Sichuan
Academy of Medical Sciences & Sichuan Provincial People’s
Hospital with written informed consent from all the subjects.
Three subjects with diagnosed epileptogenic zone confirmed by
MRI scanning were involved in the experiment. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. The protocol was approved by the Medical Ethics
Committee of Sichuan Academy of Medical Sciences & Sichuan
Provincial People’s Hospital. Before the 24-h EEG monitoring,
epilepsy patients were required not to take the antiepileptic drugs.
The detailed information about these three EPs is shown in
Table 1.

Twenty-Four Hours EEG Recording
The EEG datasets (Datasheet in Supplementary Material) of the
16 electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3,
T4, T5, and T6) derived from the extended international 10–20
system were recorded by using the Australian COMPUMEDICS
Greal series of digital video EEG with a sampling rate of
256 Hz. The electrocardiogram and electromyogram were also
recorded by the other two extended electrodes. During the 24-h
monitoring, a single or dual cameras were synchronously used to
monitor the patients’ behavior. Moreover, during the 24-h EEG
monitoring, the patient would experience at least one complete
awake-sleep-wake cycle.

EEG Data Analysis
The data analysis procedure is depicted in Figure 1 and the
detailed information about the procedure is further discussed in
the following sections.

Time-Varying Network Analysis
EEG was pre-processed by averaging, re-referencing and 0.5–
30 Hz band-pass filtering prior to the time-varying network
analysis. The time-varying network analysis usually requires
several segmentations (i.e., trials in evoked EEG experiment)
to enable the construction of a reliable network in order to
capture the brain architectures and networks (Hu et al., 2012;
Li et al., 2016). In this work, compared to the time-varying
network analysis for the evoked EEG that usually has the definite
stimulus labels, one drawback here is that no exact events were
labeled for the inter-ictal discharging during the 24-h EEG

TABLE 1 | The detailed information about the epilepsy patients.

Patients EP1 EP2 EP3

Age 42 33 36

Gender Male Male Female

Epileptogenic

zone

Left temporal lobe Right amygdala

and hippocampus

Left frontal lobe

monitoring. Hence, labeling inter-ictal discharging is required
for constructing the time-varying networks. Due to the fact that
there are usually many artifacts during EEG recording and the
false recognition rate of the algorithm is high thus in our study
the inter-ictal discharging was labeled one by one manually by
the epileptologists. For each labeled discharging event the time
point corresponding to the peak of inter-ictal discharging is set
as time “0,” then 3-s data before “0” and 3-s data after “0” is
extracted, which leads to the total 6-s length for each discharging
segment. Next, to reduce the calculation load in the following
time-varying network analysis, these segments are further 8-
rate down-sampled (Li et al., 2016), resulting in 32 Hz (i.e., 192
sample points in the 6-s long segment). In order to uncover the
dynamic information processing during inter-ictal discharging,
ADTF was used to construct the time-varying networks (Wilke
et al., 2007, 2009); and statistical analysis were further utilized
to identify the dynamic network patterns during the inter-ictal
discharging.

Time-Varying Multivariate Adaptive Autoregressive

(tv-MVAAR) Model
For each artifact-free segment, the tv-MVAARmodel is defined as

X(t) =

p
∑

i=1

A(i, t)X(t − i)+ E(t) (1)

whereX(t) is the data vector of EEG signal, E(t) is themultivariate
independent white noise,X(i,t) is thematrix of tv-MVAARmodel
coefficients that is estimated by Kalman filter algorithm (Arnold
et al., 1998; Hu et al., 2012), and p is order of the model that is
automatically determined by the Akaike Information Criterion
(AIC) within the range of 2–20 as,

AIC(p) = ln
[

det(χ)
]

+ 2M2p/N (2)

whereM represents the number of the electrodes, p represents the
optimal order of the model, N represents the number of the time
points of each time series and χ represents the corresponding
covariance matrix.

Adaptive Directed Transfer Function
Parameters A(f,t) and H(f,t) in the frequency domain are defined
as follows;

A(f , t) =

p
∑

k=0

Ak(t)e
−j2π f1tk (3)

A(f , t)X(f , t) = E(f , t) (4)

X(f , t) = A−1(f , t)E(f , t) = H(f , t)E(f , t) (5)

where Ak denotes the matrix of the tv-MVAAR model
coefficients, X(f,t) and E(f,t) are the Fourier transformations of
X(t)and X(t) in the frequency domain, respectively.

Moreover, the normalized ADTF describing the directed flow
from the jth to the ith node is defined in Equation (6), and
the final integrated ADTF is defined in Equation (7) within the
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FIGURE 1 | Analysis procedure of inter-ictal discharging.

frequency band of interest (i.e., 0.5–14.5 Hz in this work) as
follows;

γ 2
ij (f , t) =

∣

∣Hij(f , t)
∣

∣

2

n
∑

m=1

∣

∣Him(f , t)
∣

∣

2
(6)

Q2
ij(t) =

f2
∑

k=f1

γ 2
ij (k, t)

f2 − f1
(7)

The normalized total information outflow of the jth node is
further estimated in Equation (8) as;

Q2
j (t) =

n
∑

k=1

Q2
kj
(t)

n− 1
, for k 6= j (8)

where n is the total number of nodes.

Surrogate Data
Since ADTF is highly non-linearly correlated with the time
series from which it is derived, estimators distribution under
the null hypothesis of no connectivity is not well-established.
To solve this problem, phase randomization was applied to
construct the reference signal (Wilke et al., 2008). Here, Fourier
coefficient phases were randomly and independently shuffled to
produce the corresponding reference signals considering that
phase randomization preserves the spectral structure of the
time series. The corresponding reference signal was also used

to measure the time-varying connectivity. This procedure was
repeated 200 times for each segment of each subject to create an
empirical distribution of ADTF values under the null hypothesis
of no causal interaction in each edge. The means and variances
were then used to calculate the Gauss cumulative distribution.
Finally, dynamic networks were calculated with a significance of
0.01 for each EPs.

Epileptogenic Zone Localization
Given the fact that the abnormal discharging usually originates
from the epileptogenic zone, and gradually propagates to other
brain regions, we used the out-degree to measure the origin and
the propagation characteristics of inter-ictal discharging. Based
on the time-varying networks the out-degree of each node across
each sample time point was further calculated by Equation (9) as,

ki (t) =
∑

j∈N

aij (t) , for i 6= j (9)

where N is the set of all nodes in the network. aij(t) is the
connection from node i to node j at time point t, and aij(t)= 1
if the corresponding connection exists, otherwise aij(t)= 0.

After the out-degree of each electrode has been calculated for
each sample time point, we can get an out-degreematrix denoting
the time-varying out-degree of each node across different time
points. The out-degree matrix is further employed to locate
the epileptogenic zone for each patient by determining the first
appearance of each node compared to the background activity
pattern (background means before the epileptogenic zones are
activated and it also has some fundamental activities in the brain
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which maintain normal human activity). For each time point
we first identified whether or not this electrode has a weak out-
degree (i.e., less than three). If it has a weak out-degree then the
corresponding place in the binary out-degree matrix is given a
small weight value (i.e., zero); otherwise, a high weight value (i.e.,
one) is assigned. Based on the binarized out-degree matrix, we
can identify the appearance of the earliest electrode that possesses
a strong out-degree apart from those electrodes with background
outflow (the out-degree pattern at the onset). A threshold of
three was applied to remove the interference from the other
factors (i.e., noises). Below is a detailed overview of the procedure
employed. The corresponding pseudo-codes are included in the
appendix.

Step 1. Calculating the connectivity matrix for each patient;
Step 2. Calculating the out-degree matrix. The out-degree

matrix comprises of the out-degree of each electrode in
the network at each time point;

Step 3. Constructing the binarized out-degree matrix. If the out-
degree is more than three the corresponding value of the
binarized out-degree matrix is set one, otherwise zero.

Step 4. Constructing the binarized out-degree matrix with the
electrode that has the earliest appearance of out-degree
as identified apart from the background activity.

The surrounding brain area near the identified electrode is
identified as the corresponding epileptogenic zone.

RESULTS

Dynamic Network Patterns
Based on the above time-varying network analysis, for each EP,
the corresponding time-varying network patterns of the inter-
ictal discharging are shown in Figure 2.

It is noteworthy that the EEG waveforms presented are stable
at the early stage and approximately at the 3rd second, apart from
the electrodes nearby the epileptogenic zones, other electrodes
also exhibit the characteristic peaks of inter-ictal discharging,
which makes it difficult to localize the epileptogenic zone merely
based on EEG waveforms. Notwithstanding, the time-varying
network patterns of these Eps from different epileptogenic
zones shown in Figure 2 have different network hub nodes
location in the brain areas. Moreover, the partial and local
brain regions close to the epileptogenic zones are activated at
the early stage before the discharging then gradually expand
to other brain regions such as the anterior temporal lobe,
right temporal lobe, and left frontal lobe. The three Eps show
an abnormal inter-ictal discharging at approximately the 3rd
second. Compared the network topology before the third second,
the networks of the three EPs at the 3rd second actually show
much denser patterns. This indicates that more brain areas
are involved in the synchronization discharging at this time
point.

Locating Epileptogenic Zone
Following the procedure for epileptogenic zone localization,
we can estimate the threshold-weighted matrices varied across
time as shown in Figure 2. Moreover, it is clearly seen that

FIGURE 2 | The EEG waveforms, time-varying networks and the binarized

time-varying out-degrees for EP1, EP2, and EP3.

before the actual inter-ictal discharging irrespective of the strong
or weak background activities the electrode node close to the
epileptogenic zone initially exhibits a strong outflow prior to
other electrodes.

Consistently, electrode F7 which is located at the left anterior
temporal lobe of EP1 initially firstly appears to have abnormal
inter-ictal discharging which then propagate to other brain
areas. EP3 also shows a similar outflow pattern with electrode
F3 located at the left frontal lobe initially being activated as
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the crucial sources. As for EP2, besides from the relatively
strong background activities, electrode T4 located in the right
temporal lobe is observed to be newly activated. Based on
the proposed epileptogenic zone localization strategy, the three
electrodes (i.e., F7 for EP1, T4 for EP2, and F3 for EP3) close
to the epileptogenic zones confirmed by the clinical doctors
could be automatically detected based on the time-varying
networks.

DISCUSSION

The abnormal synchronous discharging of the cortical neurons
leads to the ictal or inter-ictal discharging (Staley et al.,
2005), which can be observed in EPs. Various previous
studies have been conducted to investigate the mechanism of
epilepsy based on resting-state fMRI and ictal EEG (mainly
the intracranial EEG) (Luo et al., 2011; Wang et al., 2011;
Zhang et al., 2011; Burns et al., 2013), but few has focused
on the dynamic information processing during the inter-ictal
discharging, nor the epileptogenic zone localization based on
the dynamic network analysis. As the fact that the information
can be efficiently processed within tens of milliseconds in
human brain, the time-varying network analysis can be used
to probe the underlying mechanism of the corresponding
dynamic information processing. Then, based on these dynamic
networks, we can further probe the feasibility to localize the
epileptogenic zone for the EPs. In our present study, 24-
h EEG monitoring was performed for all the EPs at the
hospital, and this was followed by the application of ADTF
and feature discrimination to construct dynamic networks
and locate the epileptogenic zone, respectively. In ADTF
based time-varying analysis it is necessary to label the inter-
ictal discharging for constructing the time-varying networks.
To guarantee the labeling accuracy in this study, the inter-
ictal discharging is manually labeled by the experienced
epileptologists, though this may provide an additional load.
In future work, we will develop or seek an algorithm to
detect the inter-ictal discharging automatically, and to make
it convenient in analysis during the clinical application
situations.

The inter-ictal discharging observed in many electrodes as
shown in Figure 2 demonstrates the difficulty to localize the
epileptogenic zone using the original EEG waveforms. This
phenomenon also reveals other aspects of epilepsy, i.e., the
abnormal discharging of epilepsy may be propagated from
the epileptogenic zone to other brain areas, which forms
specific networks for information propagation and processing.
Moreover, different time-varying networks for the three EPs
having the different epileptogenic zones are actually revealed.
By combing the specific epileptogenic zone information,
the time-varying networks of the three EPs have a similar
evolution pattern. Specifically, at the early stage before the
inter-ictal discharging, the brain actually exhibits different
background network patterns, where EP1 and EP3 have relatively
weaker background networks with smaller outflows, while EP2
shows a relatively stronger background networks with larger

outflows. Despite having different background networks when
investigating the newly appeared outflows, consistent outflow
patterns could reveal that the newly appeared outflow is
propagated from the network node close to the epileptogenic
zone.

Due to the fact that the inter-ictal spikes and seizure
discharging both result from neuronal abnormal discharging
(Staley et al., 2005), our findings were similar with those of
previous research (Burns et al., 2013), where they found that from
the time of seizure onset to the middle or the end of seizure, the
state of focus could switch from an isolated state to a connected
state. Our results revealed that foci was actually changed from
inactive to active approximately before discharging or during
discharging. Based on the inter-ictal discharging EEGs, mainly
within the time window of 460 ms, it has also been observed
that in the left temporal lobe epilepsy group, the ipsilateral
medial temporal pole serves as a key network hub node at the
discharging moment (Coito et al., 2015). In our study for these
three EPs, we found a similar pattern in that the network node
close to the epileptogenic zone has important hub properties with
large outflows. In another research based on Granger causality
analysis the seizure was found to be propagated from medial
temporal lobe to lateral temporal lobe, frontal lobe and so on (Jiao
et al., 2009). Compared to the conventional Granger causality
analysis, dynamic brain networks during inter-ictal discharging
clearly revealed that the epileptogenic zone was activated prior
to the onset of discharging and this worked as a source to
propagate the activity to other brain regions. The time-varying
network patterns specifically revealed by ADTF analysis were
further utilized in the detection of the possible epileptogenic
zone.

In this study we found that the propagation of brain activity
from the local regions to the whole brain for all EPs. Moreover,
the network node close to the epileptogenic zone is initially
involved in the large outflows before the actual inter-ictal
discharging and this may indicate the activation of epileptogenic
zone to prepare for the incoming inter-ictal discharging.
Therefore, it is worth noting that this phenomenon could serve as
a biomarker for locating the epileptogenic zone. We established
a procedure to automatically determine the epileptogenic zone
based on the initial appearance of epileptogenic zone as the
source node before actual inter-ictal discharging. The proposed
approach determines F7, T4, and F3 as the possible epileptogenic
zones for the three patients, which is close to clinical reports
confirmed by epileptologists.

In conclusion, we employed the inter-ictal discharging data
to construct the time-varying networks to account for the
network mechanism of epilepsy and also proposed a method
to localize epileptogenic zone based on a topological pattern of
networks. Compared with previous studies based on the data
of ictal period, the inter-ictal period data is much easier to be
obtained clinically and interference from the other factors is
weaker. In addition, in comparison with the postictal analysis,
the inter-ictal network is more similar to the ictal network
hence analysis based on inter-ictal period data may infer the
neural mechanism close to that of the ictal period (Wilke et al.,
2011).
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A limitation of this research is that only three EPs were
involved. In spite of the fact that preliminary findings can be
revealed by this study, more EPs will be included in our future
work to further verify the findings and the established approach
for epileptogenic zone localization.
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APPENDIX

Pseudo-Codes of Our Algorithm
Step 1. Calculating connectivity matrix C for each patient;

Step 2. For i= 1 toM, (M represents the whole time point)
For j= 1 to N, (N represents the number of electrodes)
Out-degree matrixO(i, j)= sum (C(:, j, i) for electrode
j at time point i);
If O(i, j) < threshold T (i.e., T = 3) Then

Binarized out-degree matrix BO(i, j)= 0;
Else

Binarized out-degree matrix BO(i, j)= 1;
EndIf

EndFor
EndFor

Step 3. For i= 2 to M
For j= 1 to N
Difference E= BO(i, j) - BO(1, j);
If E== 1 Then

The brain area close to jth electrode is assumed as
the epileptogenic zone;
Stop;

EndIf
EndFor

EndFor
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