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Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron

model, with external electromagnetic radiation considered, is investigated. It is

discovered that with external electromagnetic radiation in form of a cosine function,

the mode selection of membrane potential occurs among periodic, quasi-periodic, and

chaotic motions as increasing the frequency of external transmembrane current, which is

selected as a sinusoidal function. When the frequency is small or large enough, periodic,

and quasi-periodic motions are captured alternatively. Otherwise, when frequency is

in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior

type. The mechanism of mode transition from quasi-periodic to chaotic motion is

also observed when varying the amplitude of external electromagnetic radiation. The

frequency apparently plays a more important role in determining the system behavior.

Keywords: neuron, chaos, electromagnetic radiation, transition of mode

1. INTRODUCTION

Dynamic behaviors of single neuron or neural network are essential to understanding complex
behaviors in brain or even serious diseases in nervous system. On account of complexity of nervous
system, hundreds of equations should be set up to describe neuronal behavior precisely. However,
main properties like electrical activities in neurons catch the attention of most researchers, and
based on which, several models are established to physically study mode selection of neurons.
For example, four-variable Hodgkin-Huxley (HH) equations are usually used to investigate
the main properties of neurons via membrane potential (Hodgkin and Huxley, 1990). For
further simplification, a three-variable neuron model, called as Hindmarsh-Rose (HR) equation,
is reduced from the four-variable HH model (Hindmarsh and Rose, 1982). Besides ordinary
differential equations, discrete dynamical systems or called maps, can also be considered as valid
phenomenological neuron models to govern evolution of the transmembrane voltage and the
dynamics of ionic conductances (Ibarz et al., 2011).

Among all these equations, Fitzhugh-Nagumo (FHN) neuron model shows its validity on
oscillatory dynamic behavior in a neuron (Fitzhugh, 1961; Nagumo et al., 1962). Themodel presents
properties of Van der Pol oscillator which can also be analyzed by fast- slow system (Krupa et al.,
1997). Many methods are applied for constructing the exact solutions of the FHN equation (Li and
Guo, 2006; Dehghan et al., 2010) to study transmission of nerve impulses. FHN equation is usually
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considered as a non-linear ordinary differential wave equation,
and its soliton solutions are detected in different ways
(Abbasbandy, 2008; Triki and Wazwaz, 2013). As the most
important and complex system in nature, the brain contains
a tremendous number of neurons and gliocytes. Collective
behaviors of a large set of neurons and dynamics properties of
neuron network are of much more importance. Patterns like
spiral waves and targeted waves and their breakdown show the
complexity of brain and related to horrible disease in neuron
system. Sported, stripe, and hexagon patterns are also discovered
in a modified FHN model which are very similar to the situation
in reaction diffusion system.

Among all the factors affecting dynamic behaviors and
pattern formation in neuron model, noise, and magnetic

FIGURE 1 | Sampled time series (A) and its Poincáre section (B) as ω = 0.1256.

FIGURE 2 | Sampled time series (A) and its Poincáre section (B) as ω = 0.4.

flow etc. are the most important and studied by many
researchers. Different dynamical regimes are observed induced
by external noise (Garcaojalvo and Schimanskygeier, 1999). Wu
measures the pattern transition from subexcitable to excitable
media (Ying et al., 2013). Colored noise can enhance the
stochastic resonance in FHN neuronal model (Nozaki and
Yamamoto, 1998). Noise could also be suppressed by a strong
periodic signal (Pankratova et al., 2005). Besides, magnetic
flux shows its high affection on collective electrical activities
and signals propagation among neurons (Lv et al., 2016).
Specifically, mode transition is detected and mismatch of
frequency between electromagnetic radiation and the system
is found (Ma et al., 2017). Magnetic flux on membrane
potential is realized by a mimristor coupling, which leads
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to non-linear quasi-periodic spatial-temporal patterns (Mvogo
et al., 2017).

As a matter of fact, a number of researchers are working
on the effects on many facets of biological phenomena of
electromagnetic radiation (Ma and Tang, 2017), such as central
nervous system (Hossmann and Hermann, 2003), newborn rat
cerebellar granule neurons (Lisi et al., 2005), oxidative damage
to mitochondrial DNA in primary cultured neurons exposed to
1,800 MHz radio frequency radiation (Xu et al., 2010), cultured
hippocampal neurons of rats exposed to microwave radiation
(Xu et al., 2006). As to the neuron network, electromagnetic
radiation can also play an important role in regulating collective
behaviors among a large number of neurons. Usually, chemical
and electric synapse is considered as the main type of connection
between neurons. But in Ma’s view, field coupling also lights the
shadow of understanding synchronization problems in neuronal
network (Ma and Tang, 2017). Dynamical features of neuron
model with electromagnetic radiation considered should be paid
more attention.

In spite of the fact that external magnetic flux is introduced
into neuron network and it triggers complex patterns, the
affection on a single neuron is still worth exploring deeply. Ma
(Ma et al., 2017) develops FHN model and chooses a sinusoidal
function as the external magnetic flux. There also exists a
sinusoidal function as a transmembrane current mapped from
external forcing in original model. The fact means the neuron
system is driven by a pair of plane waves which leads to abundant
non-linear behaviors in system. In order to compare with the
results of Ma, we choose the same improved model, even with
identical parameter values in reference paper (Ma et al., 2017).
Model and numerical methods are explained in section 2. We
provide and analysis the main numerical results when varying
frequency of external transmembrane current ω in section 3,
and when varying the amplitude of external electromagnetic
radiation A in section 4, respectively. The conclusions are drawn
in section 5.

2. MODEL DESCRIPTION

The improved FHN model, with magnetic flux considered, is
displayed as Equation (1).



























du

dt
= −k(u− a)(u− 1.0)− uv+ Ist + k0ρ(ϕ)u

dv

dt
= (ε +

µ1v

u+ µ2
)[−v− ku(u− a− 1.0)]

dϕ

dt
= k1u− k2ϕ + ϕext .

(1)

The additive magnetic flux is induced by changing the
distribution of ionic concentration of lectrolytes. The evolution
of magnetic flux across the membrane is described by the third
equation in Equation (1), which has great effects on membrane

FIGURE 4 | Enlarged view of Figure 2B, A close circle in Poincáre section as

ω = 0.4.

FIGURE 3 | Sampled time series (A) and its Poincáre section (B) as ω = 0.6.
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potential u in first equation in Equation (1) by a induced current
denoted by the last term k0ρ(ϕ)u. The memory conductance
ρ(ϕ) of a memristor controlled by magnetic flux, which is often
described by

ρ(ϕ) = α + 3βϕ2 (2)

The second v is slow variable for current and magnetic flux
across the membrane. The physical meaning of other parameters
are present in the reference (Ma et al., 2017). It is important
that both the external electromagnetic radiation ϕext and the
transmembrane current Ist are chosen as trigonometric functions
like,

ϕext = A cos 2π ft (3)

Ist = I0 sinωt (4)

respectively. The system is driven by these two plane waves. As
to simulation, we use fourth order Runge-Kutta algorithm and
the time step is h = 0.01. We choose the same initial values
(u, v,ϕ) = (0.2, 0.1, 0.8). Values of other parameters are listed
here, a = 0.15, µ1 = 0.2, µ2 = 0.3, ε = 0.002, α = 0.1, β = 0.2,
I0 = 0.6, k0 = −1, k1 = 0.2, k2 = 1.0.

3. MAIN NUMERICAL RESULTS AS
VARYING ANGULAR FREQUENCY ω

3.1. Main Types of Motions of Membrane
Electrical Behaviors
Varying transmembrane current I0 could lead to transformation
of mode of electrical activities. However, in this section we
focus on ω as our control parameter in system. Ma (Ma

FIGURE 5 | Sampled time series (A) and its Poincáre section (B) as ω = 0.618.

FIGURE 6 | Sampled time series (A) and its Poincáre section (B) as ω = 2.0.
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et al., 2017) already discovered different types of dynamic
behavior like periodic and chaotic-like motions and even
bursting phenomenon in the sampled time series for membrane
potentials. As matter of fact, periodic, quasi-periodic, and chaotic
motions are all discovered in this situation. The parameters
related to the external electromagnetic radiation are selected by
A = 0.1 and f = 0.01 in this section.

In order to specify the different types of behavior, Poincáre
section ϕ = 0 is used. Poincáre section can help us not only
estimate the motion types but also decide the value of number
N of Period-N when the motion is periodic (Song et al., 2015a,b,
2016). Sampled time series for membrane potential and their
Poincáre sections are plotted in Figures 1–3 as ω = 0.1256,
ω = 0.4, and ω = 0.6, respectively. According to Poincáre
section, three isolated points are displayed in Figure 1B, which
means the dynamic behavior when ω = 0.1256 is periodic
motion. Closed orbit in Poincáre section is shown in Figure 2B,
corresponding to the quasi-periodic motions asω = 0.4, which is
zoomed in Figure 4more clearly. When ω reaches up to ω = 0.6,
the closed orbit is destroyed and certain structure appears in
Poincáre section, shown in Figure 3B.

Furthermore, if we keep going to increase ω, quasi-periodic,
periodic, and chaotic motions can also be captured, which are
plotted in Figures 5–7. Discrete points, strange structures, and
closed circles are displayed in Poincáre section, respectively.

3.2. Modes Selection to Angular
Frequency ω

It seems that motion of system changes irregularly when we
increase angular frequency ω. In order to investigate mode
selection, mode transition process is studied carefully. Usually,
inter-spike interval (ISI) (Duan et al., 2008; Wang et al., 2014)
is an effective tool to analysis the bifurcation of system, and it
is also shown in reference (Ma et al., 2017). Also, it is easy to
use ISI diagram to describe the multi-mode of electrical activities.
Hierarchy in ISI diagram means the different discharge process.

However, it is difficult to estimate the type of motion in ISI
diagram. We propose another diagram to distinguish different
types of motion. We plot the second variable v appearing its
corresponding Poincáre section under every parameter value.
A few discrete points can be observed under certain parameter
value if the motion is periodic. At least it is effective to distinguish
the periodic motion from quasi-periodic and chaotic motions.
We use nomenclature of semi-Poincáre diagram to call this
method to describe transition of motion types.

We plot the semi-Poincáre diagram with 0 < ω < 3.0, which
is shown in Figure 8. Enlarged view of Figure 8 in different ω

intervals is shown in Figure 9. Discrete points and continuous
lines distribute alternatively. Even slight change of ω can lead to
great change ofmotion type. Poincáre section asω is around 0.4 is
shown in Figure 10. Discrete points and closed circles appear in
Poincáre section alternatively, which means that type of motion
switches back and forth between periodic and quasi-periodic

FIGURE 8 | Semi-Poincáre diagram when varying ω during (0, 3.0).

FIGURE 7 | Sampled time series (A) and its Poincáre section (B) as ω = 4.0.
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FIGURE 9 | Enlarged views of semi-Poincáre diagram in different ω intervals. (A) 0.72 < ω < 0.82, (B) 1.50 < ω < 1.60, (C) 2.20 < ω < 2.30, and (D) 2.9 < ω < 3.0.

FIGURE 10 | Poincáre sections at different ω. Transition of motion type when

changing ω.

motion. But according to Figure 9A the scenario of switching
between the twomotion types is interrupted by chaotic behaviors.
The motion type of system becomes chaotic when ω is >0.778.

and it lasts until ω = 2.208. One of ω interval of chaos
characterized by continues lines is shown in Figure 9B. In other
words, in the interval 0.778 < ω < 2.208, periodic and quasi-
periodic motions disappear and only chaotic motion is captured.
However,when ω > 2.208 the system goes back to the situation
of switching back and forth between periodic and quasi-periodic
motions, shown in Figures 9C,D. But the scenario is still very

different from that in interval ω < 0.778. specifically, compared
to situation of ω < 0.778, quasi-periodic motion dominates the

interval ω > 2.208 and the chance of occurrence of periodic
motions is small. It is highly likely that quasi-periodic motion is
interrupted by periodic motion occasionally.

Hopf bifurcation plays the key role in motion type

selection. Irreducible frequency introduced into system by Hopf

bifurcation leads the system from periodic motion to quasi-

periodic motion or from quasi-periodic to chaos. In order to

specify the statement, we also provide the frequency spectrum
of second variable for the three different motion type when the

parameter ω is closed to each other. We select ω = 0.754,
ω = 0.755, and ω = 0.78 for periodic, quasi-periodic, and
chaotic motion types. One, two, and three irreducible frequencies

are discovered in frequency spectrum diagram (see Figure 11).
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FIGURE 11 | Frequency spectrum of second variable for the three different motion types. (A) ω = 0.754, (B) ω = 0.755, and (C) ω = 0.78.

New irreducible frequency generated via Hopf bifurcation brings
the discrete discrete spectrum to continuous spectrum of chaotic
motion. The route to chaos of this kind by a fewHopf bifurcations
is called Ruelle-Takens route to chaos (Ruelle and Takens, 1971).
A series of supercritical and subcritical Hopf bifurcations lead to
the transition of different motion types alternatively.

4. MAIN RESULTS AS VARYING THE
AMPLITUDE OF EXTERNAL
ELECTROMAGNETIC RADIATION A

External electromagnetic radiation is chosen as a cosine function
ϕext = A cos 2π ft. The amplitude A is also an important
control parameter, which decides the state of system when other
parameters are fixed. We still use semi-Poincáre diagram to
describe the scenario as varying A during 0 < A < 1.0. The
situation of A > 1.0 will not shown in this paper because the the
system stay in equilibrium state, which means all the variables
remain constants.

Three semi-Poincáre diagrams are plotted as ω = 0.618, ω =

0.4, and ω = 0.6, corresponding to periodic, quasi-periodic, and
chaotic motion when A is fixed in 0.1, shown in Figures 12–14,
respectively.

In large span of 0 < A < 1.0, periodic motion is discovered,
but is is interrupted by quasi-periodic motion several times, when

FIGURE 12 | Semi-Poincáre diagram as A through (0, 1.0) when ω = 0.618.

ω = 0.618 (Figure 12).WhenA is fixed at 0.4, it seems that quasi-
periodic motion is more easy to be captured during the interval
0 < A < 1.0 (Figure 13). Similarly, the chance we find chaotic
behavior is much more than periodic and quasi-periodic motions
when ω = 0.6, which can be reflected by Figure 14.
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FIGURE 13 | Semi-Poincáre diagram as A through (0, 1.0) when ω = 0.4.

FIGURE 14 | Semi-Poincáre diagram as A through (0, 1.0) when ω = 0.6.

It is worth noting that Ruelle-Takens route to chaos also
exists when varying the parameter A. Take the scenario
shown in Figure 14 for example, there are only two closed
orbits in Poincáre section when A < 0.0019, however,
three closed orbits appear when A is >0.0019. The new
orbit is growing lager when we increase A. The process of
growth of the new orbit is stopped by a Hopf bifurcation
and system enters the chaotic state when A is >0.0832. The
growth process of orbit in Poincáre section is shown in
Figure 15.

5. CONCLUSIONS AND DISCUSSION

In this paper, we study dynamical behavior of a single neuron
system driven by two plane waves. One of them is provided by
external current denoted by Ist , and another comes from the
external electromagnetic radiation ϕext .

FIGURE 15 | Process of growth of the orbit in Poincáre section when ω = 0.6.

With frequency of electromagnetic radiation ϕext fixed, system
state is chosen from periodic, quasi-periodic, and chaotic motion.
Specifically, system behavior switches back and forth between
periodic and quasi-periodic when 0 < ω < 0.778. In the
interval of 0.778 < ω < 2.208, only chaotic motion is
fond. But when ω is beyond 2.208, the system alternates again
between periodic and quasi-periodic motions and the chance of
finding quasi-periodic motion is much more than 0 < ω <

0.778.
We also study the non-linear behavior of system varying

amplitude of electromagnetic radiation A at three ω values. Very
different scenarios are displayed. Periodic, quasi-periodic, or
chaotic motion type characterize the scenario at differentω value,
respectively.

The route to chaos, induced by Hopf bifurcation, is discovered
varying both frequency ω of electromagnetic radiation ϕext

and amplitude of electromagnetic radiation A. However, it
seems ω plays a much more important role in controlling
the system state. In summary, system behavior is very
sensitive to frequency of external force, which might be
related to the ratio of frequencies of two external plane
waves.
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