
ORIGINAL RESEARCH
published: 18 October 2017

doi: 10.3389/fncom.2017.00095

Frontiers in Computational Neuroscience | www.frontiersin.org 1 October 2017 | Volume 11 | Article 95

Edited by:

Petr Lansky,

Academy of Sciences of the Czech

Republic (ASCR), Czechia

Reviewed by:

Federico Wadehn,

ETH Zurich, Switzerland

Joanna Maria Tyrcha,

Stockholm University, Sweden

*Correspondence:

Bert de Vries

bert.de.vries@tue.nl

Received: 04 August 2017

Accepted: 03 October 2017

Published: 18 October 2017

Citation:

de Vries B and Friston KJ (2017) A

Factor Graph Description of Deep

Temporal Active Inference.

Front. Comput. Neurosci. 11:95.

doi: 10.3389/fncom.2017.00095

A Factor Graph Description of Deep
Temporal Active Inference
Bert de Vries 1, 2* and Karl J. Friston 3

1Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands, 2GN Hearing Benelux

BV, Eindhoven, Netherlands, 3Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London,

London, United Kingdom

Active inference is a corollary of the Free Energy Principle that prescribes how

self-organizing biological agents interact with their environment. The study of active

inference processes relies on the definition of a generative probabilistic model and a

description of how a free energy functional is minimized by neuronal message passing

under that model. This paper presents a tutorial introduction to specifying active inference

processes by Forney-style factor graphs (FFG). The FFG framework provides both an

insightful representation of the probabilistic model and a biologically plausible inference

scheme that, in principle, can be automatically executed in a computer simulation. As an

illustrative example, we present an FFG for a deep temporal active inference process. The

graph clearly shows how policy selection by expected free energy minimization results

from free energy minimization per se, in an appropriate generative policy model.

Keywords: active inference, free-energy principle, factor graphs, belief propagation, message passing, multi-scale

dynamical systems

1. INTRODUCTION

Active inference is a corollary of the Free Energy Principle (FEP). The FEP argues from first
principles that living systems retain their identities (i.e., stay alive) through the single mechanism
of minimizing the variational free energy under a model of their environment (which is equivalent
to maximizing the Bayesian evidence for that model) (Friston et al., 2006; Friston, 2012).
Principally, implementation of active inference by a (biological or artificial) agent relies on only
two procedures:

1. Model specification: The specification of a probabilistic generative model for the agent’s sensory
observations. Biologically, this starts with the genotype of the organism, as encoded by the DNA.
For a scientist or engineer who wants to simulate an active inference process, this task involves
the actual specification of the probabilistic model under study.

2. Free energy minimization: Once the model has been specified, the agent processes sensory
observations exclusively through variational free energy minimization (VFEM). Free energy
minimization is the agent’s tool to approximately maximize the (Bayesian) evidence for its
model of the environment, since explicit evidence maximization is computationally intractable.
Crucially, the sameVFEMprocess is used to infer all latent variables, including those that pertain
to perceptive processes, action selection, attention mechanisms, memory creation and model
pruning. In order to execute VFEM, the agent also needs access to a “proposal” distribution
(usually a mean field version or factorization of the generative model) but in practice this
distribution is relatively easy to specify once the generative model has been defined.

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2017.00095
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2017.00095&domain=pdf&date_stamp=2017-10-18
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bert.de.vries@tue.nl
https://doi.org/10.3389/fncom.2017.00095
https://www.frontiersin.org/articles/10.3389/fncom.2017.00095/full
http://loop.frontiersin.org/people/465742/overview
http://loop.frontiersin.org/people/20407/overview

de Vries and Friston Factor Graphs for Active Inference

The second task, free energy minimization, is in principle an
automatable process since the cost functional to be minimized
is fully specified by the generative and proposal models (in
conjunction with sensory observations). In biological systems,
model specification (the first task) occurs through evolutionary
refinement by natural selection, which is also a manifestation
of free energy minimization at a large time scale (Harper, 2009;
Campbell, 2016). As a result, active inference by the FEP is a fully
automated (i.e., self-organized) process in biological systems.

For scientists who aim to simulate active inference processes,
it would be of great help to have access to a “VFEM software
toolbox” that automates the inference process for a wide range
of probabilistic models. If such a toolbox were available, the
work flow of the scientist would consist of proposing new
candidate models and evaluating the performance of these
models by calling the appropriate functions in the VFEM
toolbox. In absence of such a VFEM toolbox, the scientist
would likely be forced to derive the VFEM model-specific
update equations by hand, which—for large models—quickly
becomes an almost insurmountable obstacle. Thus, the speed
and quality of synthetic active inference rests on the lubrication
of the inference tasks that accompany the analysis of candidate
models.

The impact of automated inference tools extends beyond fast
simulations to support the study of biological active inference
processes per se. Active inference by itself is a model for an
automated scientific inquiry process, where all tasks (trial design,
trial execution, performance assessment and adaptation) are
executed as inference tasks on a probabilistic model. From an
engineer’s viewpoint, it is an enticing design strategy to develop
active inference-based artificial agents that learn purposeful
behavior (e.g., an audio or video processing task) from situated
interactions with the environment (e.g., Van de Laar and
De Vries, 2016).

The potentially large impact of automating probabilistic
inference by a software toolbox is also recognized in the
machine learning community. Under the header of “probabilistic
programming,” various initiatives to develop toolboxes for
automated inference are currently underway (Lunn et al., 2000;
Minka et al., 2014; Salvatier et al., 2016; Tran et al., 2016;
Carpenter et al., 2017). In particular recent work on black-
box variational inference (BBVI) is interesting in the context of
automating inference simulations (Ranganath et al., 2014; Taylor,
2016; Tran et al., 2016). When studying the brain however, we
are not just interested in automating inference, but also in a
biologically plausible realization of these inference processes.
This feature is not a hard criterion in the current research lines
on BBVI.

Rather than relying on automated-inference toolboxes, there
have been attempts to develop a biologically viable process
theory for active inference processes (Bastos et al., 2012; Friston
et al., 2017a). These theories are accompanied by freely available
software simulations in the “SPM toolbox,” (Friston, 2014). The
SPM toolbox does support a wide range of demonstrations
but does not support a scripting language for specifying novel
candidate models with automated-inference support. Recent
work has focused on graphical model descriptions of active

inference processes (Friston et al., 2017c). The current paper
provides a tutorial introduction to one variant of these graphical
models.

In this paper we present Forney-style Factor Graphs (FFG) as a
tool that supports both a visual representation of freely definable
generative models and inference automation by biologically
plausible message passing algorithms (Forney, 2001). Forney-
style factor graphs are a type of graphical model that shares
qualities with similar frameworks such as Bayesian networks and
Markov random fields (Koller and Friedman, 2009). FFG graphs
afford a visually insightful representation of the generativemodel,
which is especially beneficial for complex models that underlie
hierarchical active inference processes (preview Figure 7 for an
example). In contrast to Bayesian networks and BBVI tools, FFGs
also provide a precise view and description of a message passing-
based inference process. As such, inference in an FFG furnishes
a normative description of how biological neuronal inference
processes might be executed (at a computational abstraction
level).

FFGs were originally developed as a graphical framework
for automating inference-based (de-)coding processes on graphs.
About a decade ago, a series of papers appeared that revealed
how many classic signal processing algorithms can be regarded
as message passing algorithms on FFGs (e.g., Loeliger, 2004;
Dauwels et al., 2005a,b; Dauwels, 2007; Loeliger et al., 2007).
More recently, FFGs have found applications in diverse subject
areas such as control theory (Hoffmann and Rostalski, 2017),
linear algebra (Al-Bashabsheh et al., 2011), quantum mechanics
(Loeliger and Vontobel, 2017), audio processing algorithm
design (Van de Laar and De Vries, 2016) and turbo equalization
(Guo and Ping, 2008).

In summary, taking a place between black-box and model-
specific simulation frameworks, the FFG formalism provides a
visually insightful and biologically conceivable graphical process
theory for describing and simulating complex active inference
processes.

The goal of this paper is to introduce the FFG formalism
to the systems neuroscience community. Our presentation will
include development of an FFG for a deep temporal active
inference (DTAI) process (Friston et al., 2017b), as this is
arguably the most advanced current model for active inference.
We will also develop a local-in-time-and-place message passing
schedule for automated inference in DTAI models. section 2
starts with a tutorial introduction to probabilistic modeling with
FFGs. section 3 proceeds with concrete graph examples for
linear Gaussian dynamical systems, which are building blocks for
more realistic hierarchical models of sensory observations. We
follow in section 4 with FFG graphs for multi-scale hierarchical
dynamical (MSHD) systems. In section 5 we show that a
deep temporal active inference process is an instance of an
MSHD process with a specific policy model. In particular, we
address the peculiarity of having to minimize both free energy
and expected free energy, where the latter quantity is needed
to set the prior for the policies (action sequences) that are
entertained by the agent. The FFG framework clearly visualizes
how expected free energy minimization is nested as an inference
subtask inside the full generative model. In other words, the

Frontiers in Computational Neuroscience | www.frontiersin.org 2 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

free energy principle fully accounts for (even mandates) the
minimization of expected free energy in an active inference
process.

2. PROBABILISTIC MODELING WITH
FACTOR GRAPHS

Consider a joint probability distribution p(x, y, z). Using sum
and product rules we can express the conditional distribution
p(z|x) as

p(z|x) =

∫

p(x, y, z) dy
∫∫

p(x, y, z) dy dz
.

Since this expression is also true if x, y and z are vector
variables, it is always possible to integrate any subset
of nuisance variables out of the system and condition
on any subset of observed variables. Thus, the problem
of Bayesian inference is mostly a computational issue
since the integral (or sum) in the denominator is often
intractable. For instance, on a discrete alphabet, if y and
z together contain 20 dimensions and each dimension is
defined on 10 values, then the denominator contains 1020

terms.

2.1. Forney-Style Factor Graphs
The computational load of inference can be severely
reduced if the model factorizes. Consider the
model

f (x1, x2, . . . , x7) = fa(x1) fb(x2) fc(x1, x2, x3) fd(x4) fe(x3, x4, x5)

ff (x5, x6, x7) fg(x7) (1)

and the corresponding Forney-style Factor Graph (FFG) in
Figure 1A. In an FFG, each factor is represented by a node and
each variable by an edge. An edge attaches to a node if the
edge variable is an argument of the node function. Variables that
appear in only one factor (e.g., x6) are represented by a half-edge.
In this paper, we will assume that both the global function f and
factors f• represent probability distributions.

Note that a variable name may appear in maximally two
factors in an FFG, since an edge has only two end points. This
would create a problem for the model

f (x1, x2, x3, x4) = fa(x1, x2) fb(x2, x3) fc(x2, x4) , (2)

since x2 appears in three factors. This issue can be solved by
extending the model to

g(x1, x2, x
′
2, x
′′
2 , x3, x4) = fa(x1, x2) fb(x

′
2, x3) fc(x

′′
2 , x4) fd(x2, x

′
2, x
′′
2) ,
(3)

where fd(x2, x
′
2, x
′′
2) , δ(x2 − x′2) δ(x2 − x′′2). The node fd is called

an equality (or branching) node and the corresponding FFG for
g is shown in Figure 1B. Note that each variable in g appears in
maximally two factors through the introduction of two auxiliary
variables x′2 and x′′2 . Since f is a marginal of g, i.e.,

f (x1, x2, x3, x4) =

∫

g(x1, x2, x
′
2, x
′′
2 , x3, x4) dx

′
2 dx
′′
2 ,

any inference problem on f can be executed by a corresponding
inference problem on g. Equality nodes make it possible to draw
an appropriate FFG for any factorized probability distribution,
regardless of the number of factors that share a particular
variable.

2.2. Inference by Message Passing in a
Factor Graph
For the model given by Equation (1), assume that we are
interested in the marginal

f̄ (x3) =

∫

· · ·

∫

f (x1, x2, . . . , x7) dx1 dx2 dx4 dx5 dx6 dx7 . (4)

Due to the factorization, we can decompose this sum by the
distributive law as

f̄ (x3) =

(∫∫

fa(x1) fb(x2) fc(x1, x2, x3) dx1 dx2

)

︸ ︷︷ ︸

−→
µ X3 (x3)

×













∫∫

fe(x3, x4, x5) ·

−→
µ X4 (x4)
︷ ︸︸ ︷

fd(x4) ·







∫∫

ff (x5, x6, x7)

←−
µ X7 (x7)
︷ ︸︸ ︷

fg(x7) dx6 dx7







︸ ︷︷ ︸

←−
µ X5 (x5)

dx4 dx5













︸ ︷︷ ︸

←−
µ X3 (x3)

(5)

which contains (far) fewer computations than the full 6-
dimensional integral of Equation (4).

In order to distinguish between a forward message
−→
µ X3 (x3) and a backward message ←−µ X3 (x3), it can be
useful to draw the graph with directed arrows as in
Figure 2. Principally though, an FFG is an undirected
graph and the direction of arrows has no computational
consequences.

The message −→µ X3 (x3) is obtained by multiplying all
factors inside the red box (in Figure 2), followed by
marginalization over all variables whose edges are fully inside the
box, i.e.,

−→
µ X3 (x3) =

∫∫

fa(x1) fb(x2) fc(x1, x2, x3) dx1 dx2 . (6)

Frontiers in Computational Neuroscience | www.frontiersin.org 3 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

FIGURE 1 | (A) A Forney-style factor graph representation of Equation (1). (B) A Forney-style factor graph for Equation (3).

FIGURE 2 | Inference by sum-product message passing for model Equation (1).

The result of this closing-the-box procedure is a function of
the variables whose edges cross the border of the box, which
in this case is x3. This function −→µ X3 (x3) is called a sum-
product message and rather than drawing boxes in the FFG, it
is customary to draw a message by a small arrow next to the edge.
If the global function f is a joint probability distribution, then
message −→µ X3 (x3) represents a probability distribution over x3
that encodes the beliefs about x3 that is contained inside the red
box. Similarly, closing the blue box around nodes fd through fg
leads to message←−µ X3 (x3), which hold the beliefs about x3 that
is contained in the subgraph to the right of the x3-edge. The
marginal for x3 is obtained by multiplying forward and backward
messages, i.e., f̄ (x3) =

−→
µ X3 (x3)

←−
µ X3 (x3). This multiplication

fuses information about x3 from the sub-graphs to the left and
right sides of the x3-edge.

The closing-the-box procedure can be nested until each box
contains one node with (possibly multiple) incoming messages
and one outgoing message, e.g., see the nesting in Figure 2 to
compute←−µ X3 (x3). Thus, themarginal f̄ (x3) can be inferred in the
FFG by passing sum-product messages from the terminal nodes
toward x3. In this view, each node just processes locally incoming
messages to produce an outgoing message. The sum-product
update rule for a node is simply the product of all incoming

messages with the factor, followed by marginalization over the
variables on the incoming edges, see Figure 3A. This is a message
passing-based rewrite of the closing-the-box rule. For instance,
the sum-product update rule for←−µ X3 (x3) can be written as (see
also Figure 2)

←−
µ X3 (x3) =

∫∫

fe(x3, x4, x5)
−→
µ X4 (x4)

←−
µ X5 (x5) dx4 dx5 . (7)

It is easy to verify that applying the closing-the-box rule to a
terminal node yields the factor itself as the sum-product message,
e.g., ←−µ X7 (x7) = fg(x7). The incoming message from a half-
edge (e.g., x6) is always equal to 1. This can simply be checked
by realizing that adding a terminal node fh(x6) = 1 to the
graph would not change the global function. In other words, the
incoming message from a half-edge is uninformative.

In order to compute all marginals (for all edges) in a graph,
we start with incoming messages at the terminals and half-edges,
and proceed until each edge has both forward and backward
messages. The sum-product theorem states that, if the graph
is a tree, then multiplication of the forward and backward
messages on an edge yields the exact (Bayesian) marginal for
the corresponding variable (Kschischang et al., 2001). If the

Frontiers in Computational Neuroscience | www.frontiersin.org 4 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

FIGURE 3 | (A) The sum-product update rule of Equation (7). (B) The variational update rule, see Equation (12).

graph contains cycles, then this result cannot be guaranteed. In
practice, good approximate inference results are often obtained
in cyclic graphs by iterative message passing updating, as if the
cyclic graph were unrolled as a deep tree (Vasudeva Raju and
Pitkow, 2016). The literature also uses the term belief propagation
to describe inference approximation by iterative sum-product
message passing on general graphs (the term was originally
introduced by Pearl, 1982).

Application of the closing-the-box procedure around a set
of nodes yields a new “composite” node that hides the internal
structure of the box without effect on the interfaces with the
rest of the graph. This is a very attractive property of FFGs that
provides a hierarchical view on network structures. For instance,
in Figure 2, closing the red box around fa, fb and fc yields a
new node fabc(x3) with factor (and outgoing message) given
by Equation (6). Application of the closing-the-box procedure
around an entire graph yields a number (not a function of a
variable). This number equals the Bayesian evidence for that
graph.

There is an interesting interpretation of message passing that
sits well with the surprise minimization view of the free-energy
principle. The outgoing message of a node is (proportional
to) the posterior probability distribution for the outgoing edge
variable, after all information in the box has been processed by
marginalization. It is easy to convert a probability distribution
p(x) for variable x to the surprise (or self-information) I(x) ,

− log p(x) for that variable. Thus, taking a surprise point of view,
node processing is an effort to explain away incoming surprise
and pass on the remaining surprise in outgoing messages. When
there is no surprise left, there is nothing to communicate
and messages become uninformative. In other words, message
passing is a distributed surprise minimization process.

2.3. Variational Message Passing
Inference by sum-product message passing works great in many
factor graphs and we will go through an illustrative example
(Kalman filtering) in section 3.2. Still, sum-product message
passing is not always appropriate. For instance, the sum over all
settings for discretely valued variables may have too many terms
to be computable in the time available. If the hidden variables
are continuously valued, then the sum-product update rule may
not lead to an analytical expression. Moreover, on loopy graphs
the product of forward and backward messages does not lead
to the true (Bayesian) marginal. These or similar computational
issues are shared by any (biological or artificial) agent that
attempts to execute exact Bayesian inference. The free energy

principle asserts that real brains cope with these computational
issues by instead minimizing a free energy functional, which
effectively transforms an intractable inference problem to a
tractable (approximately correct) optimization problem.

Consider a model p(z, o), where o collects all observations
and z contains all hidden variables in the system, including
states s, controls u and parameters θ1. The goal of Bayesian
inference is to compute the latent variable posterior p(z|o) and
the model evidence p(o). Rather than computing p(z|o) precisely,
we consider an approximate solution q(z) that is known as the
proposal (or recognition) distribution. The (Gibbs) free-energy
(FE) functional is defined as

F[q] ,

∫

q(z) log
q(z)

p(z, o)
dz . (8)

Making use of p(z, o) = p(z|o) p(o), it is easy to decompose F as

F[q] = − log p(o)
︸ ︷︷ ︸

surprise

+D
(

q(z)‖p(z|o)
)

︸ ︷︷ ︸

divergence

, (9)

where D
(

q(x)‖p(x)
)

,
∑

x q(x) log
q(x)
p(x)

is known as the

Kullback-Leibler (KL) divergence between distributions q and p.
When p and q are exactly the same functions, the KL divergence
equals zero and in all other cases the KL divergence is greater
than zero. Therefore, the FE is an upper bound to the surprise
(or equivalently, a lower bound to the logarithm of model
evidence log p(o)). Minimization of F with respect to q leads to
an approximate posterior q∗(z) ≈ p(z|o) and an approximate
(negative log) evidence estimate F[q∗] ≈ − log p(o).

A common approach to free energy minimization starts with
an assumed factorization of the proposal distribution as

q(z) =

m
∏

i=1

qi(zi) (10)

where z = (z1, . . . , zm) is a partitioning of the hidden variables
into disjoint sets. This factorization is known as the mean field
assumption. In that case, the minimizing solutions obey the
following relation (for all i) (Bishop, 2006):

1Technically, a proper model definition would include conditioning on the

model specification M, i.o.w. p(z, o|M) is more accurate, but we will ignore the

conditioning onM, which is assumed to be present in every expression.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

log q∗i (zi) ∝ Eq∗j 6=i

[

log p(z1, . . . , zm, o)
]

,

∫

· · ·

∫

q∗1(z1) . . . q
∗
i−1(zi−1) q

∗
i+1(zi+1) . . . q

∗(zm)

· log p(z1, . . . , zm, o) dz1 . . . dzi−1 dzi+1 . . . dzm .
(11)

Variational inference proceeds by iteratively executing Equation
(11), where current best estimates for q∗j (zj) are substituted where

needed (see e.g., Bishop, 2006). In case the generative model
factorizes, Equation (11) provides the basis for a message passing
realization of variational inference.

Consider Figure 3B with factor f (x1, . . . , xn, y). Variational
message passing (VMP) for edge Y proceeds by a two-step recipe:
first, given incoming (marginal) messages qi(xi) for i = 1, . . . , n,
an outgoing (variational) message−→ν (y) is computed by

−→
ν (y) ∝ exp

(

Eqi

[

log f (x1, . . . , xm, y)
])

, (12)

and similarly for backward message ←−ν (y). This is followed by
updating the marginal q(y) ∝ −→ν (y) · ←−ν (y) and sending the
marginal back to the two nodes that connect to Y . Next, the
messages and marginal for another edge are updated, e.g., for
one of the Xi-labeled edges, see Dauwels (2007) for a detailed
description of VMP on FFGs.

Equation (8) is not the only possible free energy functional.
Minka (2005) discusses a large family of information divergence-
based loss functions that lead to alternative message passing
algorithms. In fact, sum-product message passing can also be
derived fromminimizing the so-called Bethe free energy (Yedidia
et al., 2005). There is no principal reason against combining
different message update rules for different edges in a graph,
e.g., sum-product message passing can easily be combined with
variational message passing (Riegler et al., 2013).

In summary, Forney-style factor graphs provide both a
visually insightful representation and a powerful computational
process theory for minimizing free energy functionals of
probabilistic models by message passing.

3. LINEAR DYNAMICAL SYSTEMS AND
KALMAN FILTERING

Forney-style factor graphs are particularly useful to automate
inference by message passing in dynamical systems. In this
section we describe the FFG and message passing inference for a
simple linear Gaussian dynamical system, which is an important
building block for more complex structures.

3.1. Model Specification
A Linear Gaussian Dynamical System (LGDS) is described by

generative model
︷ ︸︸ ︷

p(s0, o1, s1, . . . , on, sn) =

prior
︷︸︸︷

p(s0)

n
∏

t=1

state transition
model

︷ ︸︸ ︷

p(st|st−1)

observation
model

︷ ︸︸ ︷

p(ot|st) (13a)

p(st|st−1) = N (st|Bst−1,ϑs) (13b)

p(ot|st) = N (ot|Ast ,ϑo) (13c)

where N (x|µ,ϑ) indicates a (possibly multivariate) Gaussian
distribution over x with mean µ and variance (matrix) ϑ . This
model describes how observations ot for t = 1, . . . , n are
generated by a dynamical system with unobserved states st and
parameters θ = {A,B,ϑs,ϑo}. The FFG for this system is
displayed in Figure 4A. Note that the graph only shows one time
step and dashed line segments to the left and right of the segment
indicate that the graph extends in the same way to both sides.

3.2. Kalman Filtering by Message Passing
Consider the inference task of updating the hidden state estimate
at time step t, based on a given state estimate at t − 1 and
a new observation ot . The name Kalman filtering relates to
an efficient recursive algorithm to solve this inference problem
(Kalman, 1960). Kalman filtering represents a cornerstone of
state-space modeling-based engineering fields such as signal
processing and control theory as well as serves as a basic dynamic
model for human perception. Since the joint distribution
of observed and latent variables in a LGDS is multivariate
Gaussian, the (Kalman) state estimate st given observations o1:t is
necessarily also described by a Gaussian distribution.Much of the
dynamic systems literature is devoted to extending the Kalman
filter to deal with more relaxed model assumptions including
non-linearities, non-Gaussian disturbances and hierarchical
structures. Figure 4B shows the FFG and a sum-product message
passing sequence for the Kalman filter. Note that the edge for
ot is now terminated by a (small) black node to indicate that
ot is observed. If ot were unobserved, the corresponding half-
edge would pass an uninformative message←−µ (ot) = 1 into the
graph. If ot is observed, say ot = ôt , then the black node sends
a delta message←−µ (ot) = δ(ot − ôt) into the graph. The graph
can be viewed as a tree below the “root node” st . The update
for st is contained in message 7, which can be computed by a
message passing sequence that starts at the terminals of the tree
(i.e., at st−1,ϑs,ϑo, ot) and moves up the tree toward message 7
(see Figure 4B).

Let us work out the sum-product update rules for a few
messages. Message 3 is the outgoing message of an addition node
with factor f (x, y, z) = δ(x + y − z), see also Table 1, row 1. The
outgoing message in the direction of z is given by

−→
µ Z(z) =

∫

δ(x+ y− z)−→µ X(x)
−→
µ Y (y) dx dy

=

∫

−→
µ X(z)

−→
µ Y (z − x) dx , (14)

i.e., −→µ Z(z) is the convolution of messages −→µ X(x) and
−→
µ Y (y).

For Gaussian incoming messages −→µ X(x) = N (x |mx, νx) and
−→
µ Y (y) = N (y |my, νy), Equation (14) evaluates to −→µ Z(z) =
N (z |mx +my , νx + νy). This makes sense, since the means and
variances add for the sum of two (uncorrelated) variables.

Next, we consider the outgoing message 7 of an equality node
f (x, y, z) = δ(x− y)δ(x− z), see also Table 1, row 5 and message
7 in Figure 4B. The outgoing sum-product message is given by

Frontiers in Computational Neuroscience | www.frontiersin.org 6 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

FIGURE 4 | (A) A Forney-style factor graph for one time step of a linear Gaussian dynamical system. (B) A 7-step sum-product message passing sequence for

Kalman filtering. (C) Three additional messages (8–10) afford learning the state transition gain β from observations.

−→
µ Z(z) =

∫

δ(x− y)δ(x− z)−→µ X(x)
−→
µ Y (y) dx dy

= −→µ X(z)

∫

δ(z − y)−→µ Y (y) dy

= −→µ X(z)
−→
µ Y (z) . (15)

Hence, the outgoing message of an equality node involves
multiplication of the incoming messages. For Gaussian input
messages, this implies that the outgoing message is also a
Gaussian message with added precision-weighted means and
added precisions of incoming messages. Apparently, the equality
node in Figure 4B serves to implement Bayes rule. Incoming
message 3 can be interpreted as a prior-based state prediction
message and message 6 as a likelihood message that processes
ot . Message 7 fuses information from the prior predictive and
likelihood messages by Bayes rule. For a full description of
Kalman filtering by sum-product message passing, see Loeliger
et al. (2007).

For a large range of simple node functions, it is possible
to derive analytical sum-product update rules. Table 1 shows a
small sample of these rules for common factors. In a computer
simulation context, if these rules are stored in a lookup table,
then inference can be automatically executed in freely definable
graphs. It can also be useful to tabulate the messages for
certain composite nodes, e.g., by closing a box around the
equality node and the likelihood factor A in Figure 4A. Rather
than passing messages inside the composite node, it may be
computationally advantageous to compute the messages (going
out of the composite node) by a custom algorithm. Using this
method, Loeliger et al. (2007) and Loeliger et al. (2016) present
message update rules for composite nodes that facilitate Kalman
filtering with improved numerical stability and computational
load.

3.3. Dynamical Systems with Control
Signals
We now consider an extension of the LGDS model where the
state transition model can be controlled by another agent. This

feature will be important when we consider hierarchical systems.
To keep it simple, we assume that the state transition model is
given by

p(β) = N (β |mβ ,ϑβ) (16a)

p(st | st−1) = N (st |βst−1,ϑs) (16b)

where β is a scalar gain, see Figure 4C. From the viewpoint of
the original LGDS (without prior for β), β can be interpreted
as a external control signal that affects the state transition
model and the prior p(β) can be viewed as a model for the
controller. The controller node may comprise a large network
that is contained in a composite node p(β) in Figure 4C. Assume
that we are interested in learning an appropriate controller from
observations. This would involve extending the Kalman filtering
message sequence by messages 8–10 in Figure 4C. Message
10 comprises new information about β that is obtained from
observation ot . In Appendix A, we derive a Gaussian variational
message for message 10.

4. HIERARCHICAL DYNAMICAL SYSTEMS

Natural signals are hierarchically organized. For instance, speech
signals contain patterns over multiple time scales including
sentences (∼1 s), phonemes (∼10−1 s), glottal pulses (∼10−2 s)
and formants (∼10−3 s) (Turner and Sahani, 2008). As a
consequence, active inference processes in the brain rely on
multi-scale hierarchical dynamical (MSHD) models. In this
section we consider an FFG description of an MSHD model that
was originally presented to demonstrate a deep temporal model
for reading (Friston et al., 2017b)2. Our purpose here is solely to
describe how the FFG framework provides insights to both the
model definition and inference issues.

2In order to facilitate cross-reading, we follow the notational choices of Friston

et al. (2017b) where applicable.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

TABLE 1 | Sum-product update rules some standard nodes with Gaussian

messages, see Korl (2005, ch. 4) and Loeliger et al. (2007) for more elaborate

tables.

#No Node Factor update rule

1

f (x, y, z) = δ(x + y − z)

mz = mx +my

ϑz = ϑx + ϑy

Addition

2

f (x, y, z) = δ(x + y − z)

my = mz −mx

ϑy = ϑz + ϑx

Subtraction

3

f (x, y, a) = δ(y − ax)

my = amx

ϑy = a2ϑx

Multiplication (forward)

4

f (x, y, a) = δ(y − ax), a 6= 0

mx = a−1my

ϑx = a−2ϑy

Multiplication (backward)

5

f (x, y, z) = δ(x − y)δ(x − z)

mz = ϑz (ϑ
−1
x mx + ϑ

−1
y my)

ϑz = ϑxϑy (ϑx + ϑy)
−1

Equality

6

f (x) =N (m,ϑ)

mx = m

ϑx = ϑ

Gaussian

4.1. Model Specification
Consider the three-layer MSHD system in Figure 5. The FFG
displays one time step for the top (third) layer with generative
model

p(ot+1|st+1)
︸ ︷︷ ︸

At+1

p(st+1|st , ut)
︸ ︷︷ ︸

Bt+1

p(st)
︸︷︷︸

Dt

p(ut)
︸︷︷︸

Gt

. (17)

In this equation, At represents the likelihood model, Bt refers to
the state transition model, Gt stands for the prior on the control
signal ut and Dt serves as the state prior. If ot+1 is observed
(indicated in the figure by the solid rectangle that terminates
the ot+1 edge), then the state st+1 gets updated by a likelihood

message emanating from ot+1. Additionally, during time step t,
the top layer receives a second likelihood message from lower
levels (over the red edge with label st).

In order to enhance the visual interpretation of the state
space models in Figure 5, we have grouped the state transition
B and additive state noise model N (0,ϑs) of Figure 4 into a
single composite state transition node Bt (and similarly for the
likelihood and observation noise models). Note that the entire
circuit comprising first and second layers can also be viewed as a
composite likelihood node for the top layer.

In this example, the middle layer takes two time steps of a
state-space model during one time step for the top layer. In
general, lower levels may take multiple time steps during a single
step for the top layer. In Figure 5, the middle layer is outlined by
a shaded box.

The generative model for the second layer is given by

priors
︷ ︸︸ ︷

p(s
(t)
0 | st)

︸ ︷︷ ︸

D(t)

p(u
(t)
0 , u

(t)
1 | st)

︸ ︷︷ ︸

G(t)

state-space model
︷ ︸︸ ︷

2
∏

k=1

p(o
(t)
k
| s

(t)
k
)

︸ ︷︷ ︸

A
(t)
k

p(s
(t)
k
| s

(t)
k−1

, u
(t)
k−1

)
︸ ︷︷ ︸

B
(t)
k

(18)

The superscript (t) indicates the context, namely, the time step
t of the superior layer. Crucially, both the prior of the initial
state and control signals are now dependent on the current
state st of the superior layer. Since the middle layer takes two

steps, there are two control signals u
(t)
0 and u

(t)
1 . It is common

parlance to denote a sequence of (future) control signals by

a policy π (t) ,

(

u
(t)
0 , u

(t)
1

)

, In other words, rather than the

control prior p(u
(t)
0 , u

(t)
1 | st), we could have written a policy prior

p(π (t) | st). Note that both the top and middle layers are by
themselves regular dynamical systems as described in section 3.
The additional information in the hierarchical model lies in the
specification of how the (initial state and policy) priors of a layer
depend on the current state of the superior layer.

In similar fashion, at each time step, we allow the state of
the middle layer to generate both an “in-layer” observation and
observations at lower layers. In Figure 5, we have again assumed
two time steps for the first (bottom) layer during execution of one
step of the second layer. To be precise, the dynamics of the first
layer are given by

initial state and policy priors
︷ ︸︸ ︷

1
∏

k=0

p(s
(t,k)
0 | s

(t)
k
)

︸ ︷︷ ︸

D(t,k)

p(u
(t,k)
0 , u

(t,k)
1 | s

(t)
k
)

︸ ︷︷ ︸

G(t,k)

state-space model
︷ ︸︸ ︷

2
∏

n=1

p(o(t,k)n | s(t,k)n)
︸ ︷︷ ︸

A
(t,k)
n

p(s(t,k)n | s
(t,k)
n−1, u

(t,k)
n−1)

︸ ︷︷ ︸

B
(t,k)
n

.

(19)
The context for the first layer states is uniquely described by the
tuple (t, k), where t and k are the current time steps for the top
and middle layers, respectively.

The full generative model for one step of the top layer is
specified by the multiplication of Equations (17–19).

While this set of equations comprises an exact specification
of the generative model, the notational overhead for keeping
track of context in superscripts in hierarchical models is rather

Frontiers in Computational Neuroscience | www.frontiersin.org 8 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

FIGURE 5 | A Forney-style factor graph of a three-layer multi-scale hierarchical dynamical system.

cumbersome. This is another reason why the graphical FFG
notation for hierarchical models is preferred.

4.2. Inference
We now turn attention to inference in the MSHD model. The
inference objective at time step t is to update the beliefs about
all hidden variables in the graph, based on all observations

(ot+1, o
(t)
1 , o

(t)
2 , o

(t,0)
1 , o

(t,0)
2 , o

(t,1)
1 , o

(t,1)
2) (all solid black rectangles).

The update process is steered by the goal to minimize free energy
in the graph and can be executed through message passing.
Various message passing sequence schedules and update rules
are possible, but all schemes rely on top-down prediction passes
followed by bottom-up correction steps. A possible message
passing schedule for the middle layer is shown in Figure 6.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

FIGURE 6 | Message passing sequence in a multi-scale hierarchical dynamical system.

Note that the graph for the middle layer contains loops. This
is a problem since the product of a backward and forward sum-
product message is no longer guaranteed to be equal to the
marginal distribution. In practice, multiple iterations of updates
over each edge may be necessary to converge to a good-enough
approximate inference process.

Forney-style factor graphs make it easy to visualize how
such iterative updating schedules work. In Figure 6, we have
partitioned the graph for the middle layer into two simple
(i.e., non-loopy) subgraphs. Inside these subgraphs, which are
labeled layer-2a and layer-2b, correct marginals can be obtained
by one forward-backward pass. The inference procedure begins
by partitioning the full graph into simple subgraphs. Each
simple subgraph processes incoming evidence autonomously.
Subgraphs first update the marginals of hidden variables
whenever new evidence is presented through incoming messages
at their terminals, and follow up by updating outgoing messages.

Let us consider this procedure for themiddle layer in Figure 6.
We assume that the top layer sends a message (labeled 1) that
contains a belief for the top layer state st . Layer 2a will now update
the marginals for its hidden states and pass on the effects of the
new evidence to its terminals. We can ignore backward messages
since there is no incoming evidence yet from layer 2b. Layer 2a

will propagate the effect of message 1 to layer 2b by a forward
pass that results in messages 3, 5, and 6.

Layer 2b has now new evidence coming in from layer 2a and
no new evidence from lower layers. Similarly to layer 2a, layer
2b will process the incoming messages by a forward (prediction)
pass that results in outgoing messages 7, 11, 13, and 16.

Layer 2b will now wait until corrective evidence is passed
into its bottom terminals through messages 17–20. Next, the
internal marginals are updated in Layer 2b through messages 21-
26 and any remaining free energy is passed up to layer 2a through
messages 27–29. In turn, layer 2a updates its internal states by
messages 30–31 and unexplained evidence is passed up to layer 1
through message 32.

Thus, at the full graph level, inference proceeds by a forward
layer-by-layer prediction pass, followed by a corrective backward
pass based on evidence that is collected at each layer. Note that
after layer 2b has updated the marginals for its internal states
based on incoming evidence from layer 1, it could in principle
update outgoing messages toward both layer 2a and back to layer
1. In other words, it is possible to iterate updates between two
sub-layers (say, layers 1 and 2a) before sending the results to
other parts of the graph. There exists little theory about what
is the best scheduling strategy here. It is an unexplored but

Frontiers in Computational Neuroscience | www.frontiersin.org 10 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

intriguing thought to treat this “inference scheduling” issue itself
as the solution to a policy inference process that is subject to the
free-energy principle.

5. DEEP TEMPORAL ACTIVE INFERENCE

In this section we extend the multi-scale hierarchical dynamical
system to describe the deep temporal active inference (DTAI)
process as discussed in Friston et al. (2017b), who illustrate a
three-layer active inference process by a reading example. The
task of the top layer is to infer which sentence (out of a finite set)
is being read. Each sentence is formed by a sequence of words
and each word consists of a sequence of letters. The middle and
bottom layers infer which word and letter are currently being
read, respectively. The middle and bottom layers also get to select
(muscle) actions to control where the eye will look next to read
a word or letter. Both perception (decoding letters, words and
sentences) and actions are inferred by free energy minimization.
Friston et al. (2017b) shows that this recipe leads to actions that
seek to maximize information gain as the eye keeps moving
to letter (and word) locations where it expects to resolve the
most uncertainty about the current word (and sentence). Next,
we present an FFG description of such deep temporal active
inference processes.

5.1. Model Specification
In the dynamic systems that we have described, state transitions
can be modified by control signals. In MSHD systems, these
control signals are a function of the state of the superior layer.We
will follow the control theory nomenclature where a sequence of
(future) control signals is called a policy. For example, the policy
model in layer 2 of the MSHD system of section 4 is specified by

p(π (t) | st), where π (t) , (u
(t)
0 , u

(t)
1) is the policy at step t.

How should we choose policy models? In a reinforcement
learning setting, it is common to specify a “reward” function and
select policies that aim to maximize expected future rewards. In
contrast, active inference systems, including its policy models,
submit to the free energy principle and consequently make no
use of externally defined reward functions. Rather, the only
information that an active inference process uses is the self-
knowledge that it will minimize free energy in the future.
Consequently, the sole self-consistent policy selection process is
to choose controls that minimize expected future free energy.
Thus, a deep temporal active inference model is an instance of
an MSHD system with expected free energy as its policy model.

Figure 7 displays a three-layer active inference process with

an expected free energy policy model. The policy model for the

second layer is enclosed by a dark-shaded rectangle. In Figure 8,

the second layer is partitioned into three simple (non-loopy)

subgraphs. The top subgraph (layer 2a in red) represents the
priors for desired states and observations. The middle subgraph
(in green) is a copy of the (blue) state space model that is used
by the policy model to simulate the future of the state-space
model. The control signals for the bottom subgraph (layer 2c) are
inferred through free energy minimization in layers 2a and 2b.
This leads to controls that minimize expected free energy. The

“generative” policy model is formally specified by

2
∏

k=1

observation and state priors
︷ ︸︸ ︷

p(ō
(t)
k
|st)

︸ ︷︷ ︸

C
(t)
k

p(s̄
(t)
k−1
|st)

︸ ︷︷ ︸

D
(t)
k−1

dynamical system
︷ ︸︸ ︷

p(ō
(t)
k
|s̄
(t)
k
)

︸ ︷︷ ︸

A
(t)
k

p(s̄
(t)
k
|s̄
(t)
k−1

, u
(t)
k−1

)
︸ ︷︷ ︸

B
(t)
k

(20)

Note that this model does not specify expected free energy
directly. Rather, this is a generative model for controls (policies),
where a forward inference pass by free energy minimization leads
to an expected free energy prior for the policy (see section 5.2).
This generative policy model needs to have access to a copy of
the dynamic system model in order to simulate the future. In
the formal generative model specification, we use the bar-over-
variable-name notation for states and observations in the policy
model to distinguish these variables from their “mirror” variables
in the regular dynamic system.

Equations (18, 20) together specify a generative model for the
middle layer of the deep temporal active inference model. The
generative model for the full DTAI system is simply the product
of the models for all layers.

5.2. Inference in the Deep Temporal Active
Inference Model
Figure 8 depicts a partitioning of the middle layer of a deep
temporal active inference model into three non-loopy subgraphs.
As discussed, in non-loopy graphs, proper Bayesian marginals
for hidden variables can be obtained by multiplying the forward
and backward messages for each edge. We now discuss a possible
inference schedule for the middle layer.

First, the state of the superior layer is used in layer 2a to infer
priors for the states and observations by messages 1–11. These
priors specify which future state trajectories and observation
patterns are desired or rewarding and as such replace the need
for external reward functions.

The initial state message 3 is now used by layer 2b to run
the dynamical system forward in messages 12–18. In order to

compute message 13 (the state transition), the node B
(t)
1 needs

both message 12 and an incoming control message 46 from u
(t)
0 .

The control message is initially set to an uninformative message
that weighs each control option equally. Alternative priors on
admissible controls are also possible. This forward pass leads to
predictions for future states and observations.

Next, the outgoing messages from layer 2a are processed by
layer 2b as if they were observations for layer 2b. Layer 2b
processes these priors by a backward pass (messages 19–23) that
leads to updated marginals for the hidden states in layer 2b.

Having inferred the “desired” future hidden states for the
dynamic system, layer 2b will now infer appropriate control
signals in messages 25–26. These control signals aim to steer
the state-transitions in layer 2c to rewarding state trajectories as
encoded by the priors in layer 2a.

Messages 24–26 are now processed by layer 2c in a forward
pass by messages 27–34 to infer predictions for both in-layer and
lower-layer observations. Actual observational evidence is passed
into layer 2c by messages 35–38 and further processed in layer

Frontiers in Computational Neuroscience | www.frontiersin.org 11 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

FIGURE 7 | A Forney-style factor graph of the deep temporal active inference model as discussed in Friston et al. (2017c).

2c by a corrective backward pass through messages 39–44. The
backward and forward messages in layer 2c combine to update
the marginals of the hidden states.

After the states in layer 2c have been corrected by
observational evidence, layer 2c passes the updated information

upwards to the initial state and control edges by messages
45–47.

In order to not clutter the figure even more, we have refrained
from drawing the messages that push the corrections back
through layers 2b, 2a and then upwards to higher layers.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

FIGURE 8 | A message passing schedule on the FFG graph for a deep temporal active inference model as discussed in Friston et al. (2017c).

Messages 25 and 26 relate to control signals that minimize the
expected free energy in the dynamic system. Messages 46 and 47
encode corrections for these control signals after having observed
the evidence. The forward and backward message pairs (25, 46)
and (26, 47) multiply to correct the marginals for the controls
signals (and similarly 24 and 45 combine to update the marginal
for the initial state).

With updated marginals for the initial state and control
signals, we can run layer 2b forward again to get corrected

predictions for the states s̄
(t)
k

and ō
(t)
k
.

Next, layer 2a processes these updated predictions in two
ways. The corrections may be partially absorbed by updating the

priors for C
(t)
k

andD
(t)
k
. This is a learning step. The remaining free

energy is passed on to the superior layer by a backward message
for state st .

Learning of priors serves a similar purpose to learning of the

reward function in inverse reinforcement learning algorithms
(Ng and Russell, 2000). Crucially, active inference needs no

special recipes for learning rewards nor for selecting useful

policies. All relevant tasks are accomplished by minimizing free

energy in a generative probabilistic model.
In summary, deep temporal active inference can be modeled

as a multi-scale hierarchical dynamic system with a particular

policy model. Each layer can be partitioned into three non-

loopy sub-layers. The FFG formalism provides both an insightful

representation and computational mechanisms to execute active

Frontiers in Computational Neuroscience | www.frontiersin.org 13 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

inference processes by message passing inside and between the
(sub-)layers.

6. DISCUSSION

It is interesting to appreciate the symmetry in an active inference
layer. Consider the middle layer in Figure 7 again. The blue
subgraph is the unfolded state-space model terminated by actual

observations o
(t)
1 and o

(t)
2 . The green subgraph is a copy of the

same state-space model, but now terminated by priors C(t) and
D(t). The backward message stream transfers evidence from both
in-layer and lower-layer observations into the priorsC(t) andD(t).
Left-over free energy gets pushed up to higher layers.

If the higher levels would operate at the same time scale
as the lower layers, then the backward messages would quickly
become uninformative and processing in the high-order layers
would not be effective in absorbing surprise. Instead, high-order
layers process accumulated surprise over multiple time steps of
lower layers. At these larger time scales, the incoming backward
messages are informative again and processing of these messages
leads to more surprise minimization (relative to processing at
the same time scale as the lower layers). Thus, effective surprise
minimization of highly structured signals leads naturally to
multi-scale hierarchical models.

Updating the hidden states in the network proceeds
by forward prediction steps that push down expected (or
predicted) free energy and upward correction steps that
push up unexplained free energy. The Forney-style factor
graph framework breaks down the complete algorithm into
small (automatable) local-in-time-and-place message passing
steps. Note that the update rules for forward and backward
messages are based on the same general (sum-product and
variational) update rules. Therefore, the interpretation of surprise
minimization as a prediction-correction process is interesting but
not relevant to the network itself. Message passing serves only to
minimize surprise.

In this paper, we have barely touched upon the learning issues.
Learning of purposeful behavior rests upon updating priors for
the parameters (A, B, etc.) of the generative model. In a Bayesian
context, parameter updating is conceptually no different from
state updating in a dynamical system. As is evident from the
Kalman update equations (in particular the sum-product update
rule of the equality node), the amount of adaptation of latent
variables in dynamic systems depends in subtle ways on the ratio
between the precision of the prior-based state prediction and the
precision of corrective evidence (likelihood).

These precision variables are (like all variables) represented
by edges in FFGs and beliefs over precisions change dynamically
through message passing over these edges. In real neural circuits,
multiple parallel operating active inference columns may directly
affect the dynamic beliefs over precisions in other columns
through message passing over lateral connections (Kanai et al.,
2015). In an FFG graph, these complex circuits will look like
matrices with both horizontal and vertical connections. In order
to advance the scientific study of these complex neural structures,
it will be necessary to simulate the behavior of these networks in

computer simulations. Black-box variational inference toolboxes
may not provide any insights in the underlying neuronal surprise
minimizationmechanisms, while at the same time these networks
may be too complex to allow manual derivation of neuronal
message passing signals.

In this paper, we have pushed the Forney-style factor graph
framework as an alternative candidate formalism to study the
behavior of complex neural circuits. FFGs provide an insightful
visual representation of factorized probabilistic models. Simple
closing-the-box rules lead both to higher visual abstraction
levels by creating composite nodes and to message passing-
based surprise minimization. Surprise minimization in FFGs is,
in principle, automatable in freely definable graphs. Practically,
the development of a quality FFG simulation toolbox is not an
easy task. A toolbox for simulating inference processes in a wide
range of dynamic FFG models is currently under development in
our team at TU Eindhoven.We hope to release simulation results
of the presented graphs and a first public version of this toolbox
somewhere in 2018.

7. CONCLUSIONS

We have presented a graphical process theory for studying
message passing-based surprise minimization in neural circuits.
Forney-style factor graphs enjoy already a solid reputation in
the coding branches of the information theory community. We
think that these graphical models are also eminently suited to
support the study of active inference processing in complex
neural circuits. To argue our case, we have described a graph
for a deep temporal active inference model. The concept of
closing-the-box and composite nodes makes it very clear how
deep temporal active inference is a special case of a multi-
scale hierarchical dynamic system. In particular, the FFG graph
shows nicely how expected free energy minimization results from
a forward inference pass through a generative policy model.
We are quite aware that the current paper leaves many open
questions, but we hope that this paper generates an interest in the
neuroscience community to take a deeper look at factor graphs as
describing tools for complex generative neural models.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

KF is funded by a Wellcome Trust Principal Research Fellowship
(Ref: 088130/Z/09/Z).

ACKNOWLEDGMENTS

BdV thanks the BIASlab research team members (http://biaslab.
org) and colleagues at GN Advanced Science for inspiring
discussions, and in particular Ismail Senoz for help with
Appendix A. We thank the reviewers for their insightful
feedback.

Frontiers in Computational Neuroscience | www.frontiersin.org 14 October 2017 | Volume 11 | Article 95

http://biaslab.org
http://biaslab.org
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

REFERENCES

Al-Bashabsheh, A., Mao, Y., and Vontobel, P. O. (2011). “Normal factor graphs:

a diagrammatic approach to linear algebra,” in 2011 IEEE International

Symposium on Information Theory Proceedings (St. Petersburg), 2178–2182.

doi: 10.1109/ISIT.2011.6033944

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., and

Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron

76, 695–711. doi: 10.1016/j.neuron.2012.10.038

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York, NY:

Springer-Verlag Inc.

Campbell, J. O. (2016). Universal darwinism as a process of bayesian inference.

Front. Syst. Neurosci. 10:49. doi: 10.3389/fnsys.2016.00049

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt,

M., et al. (2017). Stan: a probabilistic programming language. J. Stat. Softw. 76,

1–32. doi: 10.18637/jss.v076.i01

Dauwels, J. (2007). “On variational message passing on factor graphs,” in

IEEE International Symposium on Information Theory (Nice), 2546–2550.

doi: 10.1109/ISIT.2007.4557602

Dauwels, J., Korl, S., and Loeliger, H.-A. (2005a). “Expectation maximization

as message passing,” in International Symposium on Information Theory

(Adelaide, SA), 583–586. doi: 10.1109/ISIT.2005.1523402

Dauwels, J., Korl, S., and Loeliger, H. A. (2005b). “Steepest descent as

message passing,” in IEEE Information Theory Workshop, 2005 (Rotorua).

doi: 10.1109/ITW.2005.1531853

Forney, G. D. J. (2001). Codes on graphs: normal realizations. IEEE Trans. Inform.

Theory 47, 520–548. doi: 10.1109/18.910573

Friston, K. J., Kilner, J., and Harrison, L. (2006). A free energy principle for the

brain. J. Physiol. Paris 100, 70–87. doi: 10.1016/j.jphysparis.2006.10.001

Friston, K. J., Lin, M., Frith, C. D., Pezzulo, G., Hobson, J. A., and Ondobaka,

S. (2017a). Active inference, artificial curiosity and insight. Psychol. Rev 29,

2633–2683. doi: 10.1162/NECO_a_00999

Friston, K. J., Rosch, R., Parr, T., Price, C., and Bowman, H. (2017b). Deep

temporal models and active inference. Neurosci. Biobehav. Rev 77, 388–402.

doi: 10.1016/j.neubiorev.2017.04.009

Friston, K. J. (2012). A free energy principle for biological systems. Entropy 14,

2100–2121. doi: 10.3390/e14112100

Friston, K. J., Parr, T., and de Vries, B. (2017c). The graphical brain: belief

propagation and active inference. Netw. Neurosci. 1–78. doi: 10.1162/NETN_

a_00018

Friston, K. J. (2014). SPM12 Toolbox. Available online at:

http://www.fil.ion.ucl.ac.uk/spm/software/

Guo, Q., and Ping, L. (2008). LMMSE turbo equalization based on factor graphs.

IEEE J. Select. Areas Commun. 26, 311–319. doi: 10.1109/JSAC.2008.080208

Harper, M. (2009). The replicator equation as an inference dynamic. arXiv:

0911.1763.

Hoffmann, C., and Rostalski, P. (2017). “Linear optimal control on factor graphs -

a message passing perspective,” in proceedings of the 20thWorld Congress of the

International Federation of Automatic Control (Toulouse).

Kalman, R. (1960). A new approach to linear filtering and prediction problems.

Trans. ASME J. Basic Eng. 82, 35–45. doi: 10.1115/1.3662552

Kanai, R., Komura, Y., Shipp, S., and Friston, K. (2015). Cerebral hierarchies:

predictive processing, precision and the pulvinar. Philos. Trans. R. Soc. Lond. B

Biol. Sci. 370:20140169. doi: 10.1098/rstb.2014.0169

Koller, D., and Friedman, N. (2009). Probabilistic Graphical Models: Principles and

Techniques. Cambridge, MA: MIT Press.

Korl, S. (2005). A Factor Graph Approach to Signal Modelling, System Identification

and Filtering. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich.

Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (2001). Factor graphs

and the sum-product algorithm. IEEE Trans. Inform. Theory 47, 498–519.

doi: 10.1109/18.910572

Loeliger, H.-A. (2004). An introduction to factor graphs. IEEE Signal Process. Mag.

21, 28–41. doi: 10.1109/MSP.2004.1267047

Loeliger, H.-A., Bruderer, L., Malmberg, H., Wadehn, F., and Zalmai, N. (2016).

“On sparsity by NUV-EM, Gaussian message passing, and Kalman smoothing,”

in Proceedings of Information Theory and Applications Workshop (ITA) (La

Jolla, CA).

Loeliger, H.-A., Dauwels, J., Hu, J., Korl, S., Ping, L., and Kschischang, F. R. (2007).

The factor graph approach to model-based signal processing. Proc. IEEE 95,

1295–1322. doi: 10.1109/JPROC.2007.896497

Loeliger, H. A., and Vontobel, P. O. (2017). Factor graphs for quantum

probabilities. IEEE Trans. Inform. Theory 99:1. doi: 10.1109/TIT.2017.27

16422

Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS - A

Bayesian modelling framework: concepts, structure, and extensibility. Stat.

Comput. 10, 325–337. doi: 10.1023/A:1008929526011

Minka, T. (2005). Divergence Measures and Message Passing. Technical Report.

Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., et al. (2014).

Infer.NET 2.6. Microsoft Research Cambridge. Available online at: http://

research.microsoft.com/infernet

Ng, A. Y., and Russell, S. (2000). “Algorithms for inverse reinforcement learning,”

in Proceedings of the 17th International Conference on Machine Learning

(Stanford, CA: Morgan Kaufmann), 663–670.

Pearl, J. (1982). “Reverend Bayes on inference engines: a distributed hierarchical

approach,” in Proceedings of the Second AAAI Conference on Artificial

Intelligence (Pittsburgh, PA: AAAI Press), 133–136.

Ranganath, R., Gerrish, S., and Blei, D. M. (2014). “Black box variational inference”

in Proceedings of the International Conference on Artificial Intelligence and

Statistics (AISTATS-2014), (Reykjavik).

Riegler, E., Kirkelund, G. E., Manchon, C. N., Badiu, M.-A., and Fleury,

B. H. (2013). Merging belief propagation and the mean field approximation:

a free energy approach. IEEE Trans. Inform. Theory 59, 588–602.

doi: 10.1109/TIT.2012.2218573

Salvatier, J., Wiecki, T. V., and Fonnesbeck, C. (2016). Probabilistic programming

in Python using PyMC3. PeerJ Comput. Sci. 2:e55. doi: 10.7717/peerj-cs.55

Taylor, R. (2016). PyFlux: An Open Source Time Series Library for Python. Available

online at: http://www.pyflux.com

Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang, D., and Blei, D. M.

(2016). Edward: a library for probabilistic modeling, inference, and criticism.

arXiv preprint arXiv:1610.09787.

Turner, R. E., and Sahani, M. (2008). “Modeling natural sounds with modulation

cascade processes,” in Advances in Neural Information Processing Systems

(NIPS) (Vancouver, BC).

Van de Laar, T., and De Vries, B. (2016). A probabilistic modeling approach to

hearing loss compensation. IEEE/ACM Trans. Audio Speech Lang. Process. 24,

2200–2213. doi: 10.1109/TASLP.2016.2599275

Vasudeva Raju, R., and Pitkow, X. (2016). “Inference by reparameterization in

neural population codes,” in Advances in Neural Information Processing Systems

29, eds D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett

(Barcelona: Curran Associates, Inc.), 2029–2037.

Yedidia, J. S., Freeman, W., and Weiss, Y. (2005). Constructing free-

energy approximations and generalized belief propagation algorithms.

IEEE Trans. Inform. Theory 51, 2282–2312. doi: 10.1109/TIT.2005.

850085

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 de Vries and Friston. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 15 October 2017 | Volume 11 | Article 95

https://doi.org/10.1109/ISIT.2011.6033944
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.3389/fnsys.2016.00049
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1109/ISIT.2007.4557602
https://doi.org/10.1109/ISIT.2005.1523402
https://doi.org/10.1109/ITW.2005.1531853
https://doi.org/10.1109/18.910573
https://doi.org/10.1016/j.jphysparis.2006.10.001
https://doi.org/10.1162/NECO_a_00999
https://doi.org/10.1016/j.neubiorev.2017.04.009
https://doi.org/10.3390/e14112100
https://doi.org/10.1162/NETN_a_00018
https://doi.org/10.1109/JSAC.2008.080208
https://doi.org/10.1115/1.3662552
https://doi.org/10.1098/rstb.2014.0169
https://doi.org/10.1109/18.910572
https://doi.org/10.1109/MSP.2004.1267047
https://doi.org/10.1109/JPROC.2007.896497
https://doi.org/10.1109/TIT.2017.2716422
https://doi.org/10.1023/A:1008929526011
http://research.microsoft.com/infernet
http://research.microsoft.com/infernet
https://doi.org/10.1109/TIT.2012.2218573
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1109/TASLP.2016.2599275
https://doi.org/10.1109/TIT.2005.850085
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

de Vries and Friston Factor Graphs for Active Inference

APPENDIX A

In Figure A1, we have redrawn Figure 4C with emphasis
on the relevant nodes and messages. We will derive a
Gaussian variational message←−ν β that passes information from
observations backwards through the state-space model toward
the controller node p(β). We first make a composite node
g(x, y,β) that encompasses the multiplier and additive state noise
with given variance ϑs. Closing the box yields

g(x, y,β) =

∫

δ(z − βx)N (y | z,ϑs) dz

= N (y |βx,ϑs) .

Assume incoming messages q(x) = N (x |mx,ϑx) and q(y) =
N (y |my,ϑy) toward the composite node g. The backward
variational message for β follows from Equation (12):

log←−ν β ∝ Eqx ,qy

[

log g(x, y,β)
]

= Eqx ,qy

[

logN (y |βx,ϑs)
]

∝ Eqx ,qy

[

−
(y− βx)2

2ϑs

]

∝ −
1

2ϑs

(

Eqy

[

y2
]

− 2β Eqx [x]Eqy

[

y
]

+ β2
Eqx

[

x2
])

= −
1

2ϑs

((

m2
y + ϑy

)

− 2β mxmy + β2
(

m2
x + ϑx

)
)

∝ −
m2

x + ϑx

2ϑs

(

β −
mxmy

m2
x + ϑx

)2

.

Hence it follows that

←−
ν β = N

(

β

∣
∣
∣
∣

mxmy

m2
x + ϑx

,
ϑs

m2
x + ϑx

)

.

Figure A1 | FFG for LGDS with controller p(β). This drawing is based on

Figure 4C with emphasis on the relevant messages for calculating the

backward variational message for β.

Frontiers in Computational Neuroscience | www.frontiersin.org 16 October 2017 | Volume 11 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	A Factor Graph Description of Deep Temporal Active Inference
	1. Introduction
	2. Probabilistic Modeling with Factor Graphs
	2.1. Forney-Style Factor Graphs
	2.2. Inference by Message Passing in a Factor Graph
	2.3. Variational Message Passing

	3. Linear Dynamical Systems and Kalman Filtering
	3.1. Model Specification
	3.2. Kalman Filtering by Message Passing
	3.3. Dynamical Systems with Control Signals

	4. Hierarchical Dynamical Systems
	4.1. Model Specification
	4.2. Inference

	5. Deep Temporal Active Inference
	5.1. Model Specification
	5.2. Inference in the Deep Temporal Active Inference Model

	6. Discussion
	7. Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix A

