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Musculoskeletal tissues respond to optimal mechanical signals (e.g., strains) through

anabolic adaptations, while mechanical signals above and below optimal levels cause

tissue catabolism. If an individual’s physical behavior could be altered to generate optimal

mechanical signaling to musculoskeletal tissues, then targeted strengthening and/or

repair would be possible. We propose new bioinspired technologies to provide real-time

biofeedback of relevant mechanical signals to guide training and rehabilitation. In this

reviewwe provide a description of howwearable devicesmay be used in conjunction with

computational rigid-body and continuum models of musculoskeletal tissues to produce

real-time estimates of localized tissue stresses and strains. It is proposed that these

bioinspired technologies will facilitate a new approach to physical training that promotes

tissue strengthening and/or repair through optimal tissue loading.
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INTRODUCTION

Musculoskeletal diseases, such as osteoarthritis and tendinopathy, impose substantial burden on
individuals and health care systems. As a community of scientists and clinicians, we have been
largely ineffective in managing musculoskeletal diseases, as current prevalence, incidence, and
socioeconomic burden are at alarming levels and projected to increase sharply in coming decades
(Hunter et al., 2014). In particular, we have a limited understanding of how physical behavior, i.e.,
whole-body mechanics, influences tissue state (Forwood and Burr, 1993), and this could underpin
our failure to cure, or curb, these prevalent, harmful, and costly diseases. A case in point is the study
of the effects of physical activity on cartilage morphology. Studies of animals (Kiviranta et al., 1987,
1988, 1992; Newton et al., 1997) and humans (Jones et al., 2000, 2003; Roos and Dahlberg, 2005)
have reported increased physical activity to be associated with positive structural and biochemical
adaptations in weight-bearing joints, while other studies have reported no effects of physical activity
on bulk measures of cartilage morphology (Eckstein et al., 2002, 2006).

The failure to effectively treat musculoskeletal disease is frustrating for scientists and clinicians
alike. We possess a wealth epidemiologic data detailing risk factors for many musculoskeletal
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diseases, e.g., increased age, female sex, body mass, prior joint
trauma, obesity, abnormal physical activity levels, and joint
structural deformity (Felson et al., 1997, 2000, 2013; Cooper et al.,
2000; Coggon et al., 2001; Lohmander et al., 2004, 2007; Roemer
et al., 2009; Andriacchi et al., 2015). At tissue- and sub-tissue
levels, studies have explored the effect of loading on structure
and biology (Radin and Paul, 1971; Simon et al., 1972; Radin
et al., 1973, 1984; Rubin and Lanyon, 1985; Forwood and Turner,
1995; Wang et al., 2013, 2015; Joo Kim et al., 2016). However,
integrating experimental results with whole-body-, tissue-, and
cell-level computational models, and using these models to
modulate physical behavior to affectmusculoskeletal tissue health
remains challenging (Erdemir et al., 2015). In a recent narrative
review, Ng et al. (2017) proposed physical therapy to enhance
and promote tissue regeneration, linking external mechanical
stimuli to tissue mechanobiology. In line with Ng et al. (2017),
we describe an approach to deterministically quantify the link
between physical behavior and tissue mechanobiology, inspired
by integration of biomedical technologies (i.e., wearable devices,
contemporary motion capture, and medical imaging) coupled to
computational models of joints and musculoskeletal tissues.

Wearable body sensors and systems for “Quantified-Self ” are
set to transform how people interact with their environment and
may facilitate personalized training and rehabilitation programs
in the future. Biofeedback is a psychophysical process to augment
awareness of afferent signals from sensory receptors in the human
body. In the case of musculoskeletal tissues, biofeedback can
be used to increase awareness and modify physical behavior
(Sigrist et al., 2013). However, current rehabilitation and
training protocols which incorporate biofeedback to modulate
physical behavior target external biomechanics, such as the
knee adduction moments (Barrios et al., 2010; Shull et al.,
2011, 2013a,b; Wheeler et al., 2011) or gait spatiotemporal
parameters (Wrigley et al., 2009; Erhart-Hledik et al., 2017).
Eternal biomechanics are readily measured or calculated, and
thus viable for use in biofeedback paradigms. Unfortunately,
external biomechanics have tenuous relationships with internal
biomechanics, such as articular contact loads (Walter et al., 2010;
Winby et al., 2013; Saxby et al., 2016b).

Musculoskeletal tissue stresses and strains are potentially
superior to external biomechanics for use in biofeedback
paradigms because they are physically coupled to the processes
of mechanotransduction, whereby mechanical signals are
registered as biologic stimuli, and result in cell- and tissue-level
adaptations controlled by biologic regulatory mechanisms.
However, musculoskeletal tissue stresses and strains have
not been used in biofeedback technologies, because their
computation is non-trivial, and depends on a complex interplay
of multiple factors, including external biomechanics, neural
control, tissue morphology and micro-architecture, and
material properties (Figure 1). Importantly, recent advances
in neuromusculoskeletal modeling have enabled real-time
prediction of whole-body kinematics and external loading
(Pizzolato et al., 2017a), as well as musculoskeletal tissue loading,
such as muscle-tendon unit and articular contact forces during
walking gait (Pizzolato et al., 2017b). Real-time musculoskeletal
modeling can now be coupled to models of internal tissue

mechanics and mechanobiology, and used to provide feedback
to target training for tissue strengthening and repair.

In this narrative review we present an overview of (1)
the known mechanical stimuli for promoting positive tissue
adaptation inmusculoskeletal tissues, (2) how local tissue stresses
and strains can be estimated using computational methods, (3) an
approach to estimating musculoskeletal tissue stresses/strains in
real-time, and (4) challenges and future directions for research in
this area.

MECHANOBIOLOGY AND THE OPTIMAL
MECHANICAL ENVIRONMENT FOR
MUSCULOSKELETAL TISSUES

Mechanobiology is the study of the effect of mechanical
stimuli on tissue biology. It is well-established that mechanical
loading plays an essential role in (1) musculoskeletal tissue
development throughout human maturation (Carter, 1987;
Carter and Wong, 1988a,b, 1990; Wong and Carter, 1990; Carter
et al., 1998, 2004; Beaupre et al., 2000), (2) maintenance of
mature structures (Frost, 1988, 1990a,b,c,d), and (3) healing
following injury, e.g., bone fracture (Pivonka and Dunstan,
2012). In particular, musculoskeletal tissues, such as articular
cartilage, tendon, and bone, respond to strains by modulating
tissue composition and organization. Generally, strains depend
on the nature of applied loading, i.e., magnitude, location,
orientation, duration, and frequency, as well as structural state of
the object, i.e., morphology and material properties (Figure 1).
Important to our study of musculoskeletal tissues, identical
loads applied to different tissues (e.g., cartilage vs. bone vs.
tendon), or same tissues but of different structural features (e.g.,
healthy vs. compromised, developing vs. mature), will produce
different strains and eventually different biologic responses.
Thus, to develop therapies targeting positive musculoskeletal
tissue adaptations we must quantify relevant states. Equally
important, if we wish evaluate therapeutic effectiveness we must
also quantify changes to tissue states in response to those
interventions.

Estimating the State of Musculoskeletal
Tissue
Musculoskeletal tissue state encompasses tissue morphology and
function, both of which may be non-invasively assessed using
medical imaging. Morphology, which encompasses all spatial
descriptions of an object, can be measured using different
medical imagingmodalities, such as computed tomography (CT),
magnetic resonance (MR), and ultrasound (US).

Computed tomography is well-suited to the study of bone and
provides high-resolution images that can be automatically-
or semi-automatically segmented to render volumetric
representations (Dufresne, 1998). Peripheral quantitative CT can
be used to image cortical and trabecular bone microstructure
(Lespessailles et al., 2017), which are important structural
features to include in analysis of bone remodeling (Hambli,
2011). However, CT exposes tissues to ionizing radiation and
may not be suitable for certain clinical or developing populations.
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FIGURE 1 | Schematic of complex dynamic interplay between external rigid body biomechanics, internal tissue biomechanics, tissue mechanobiology, and tissue

state.

Magnetic resonance imaging is a powerful modality that
does not produce ionizing radiation, and can be used to
image a wide range of musculoskeletal tissues (Hunter et al.,
2015). However, individuals with implanted medical devices
(e.g., cardiac stimulators) or ferrous prosthetics cannot safely
undergo MR imaging. Unlike CT, MR images require manual
segmentation to produce three-dimensional reconstructions of
musculoskeletal tissues. Currently, manual segmentation is time
consuming, but advances in image auto-segmentation (Mimics,
Materialize NV, Leuven, Belgium) will hopefully reduce labor
demands. Once MR images can be rapidly segmented, this will
make MR imaging a routine process to assess musculoskeletal
tissue morphology.

Ultrasound is an inexpensive, non-invasive, and non-
radiatingmodality to imagemusculoskeletal tissues. Importantly,
US can accurately measure muscle morphology (Barber et al.,
2009), track muscle fascicles during contractions (Cronin
et al., 2011; Gillett et al., 2013), and measure in vivo tendon
morphology at rest and under load in healthy (Obst et al.,
2014a,b) and pathologic tendon (Nuri et al., 2017). In addition
to muscle-tendon applications, US has been used to measure
bone landmark coordinates (Peters et al., 2010; Passmore and
Sangeux, 2016) and make in vivo clinical measurements of
bone alignment (Passmore et al., 2016). However, limited
signal penetration into the body means that many deep
anatomic structures cannot be imaged using US. Furthermore,
deformation of soft tissues out of the imaging plane impairs
measurement fidelity. To summarize, CT, MR, and US are
imaging modalities capable of measuring musculoskeletal tissue
morphology, however, morphology is only one component of
tissue state, and alone is an insufficient indicator of tissue
function and integrity.

Tissue function is related to tissue mechanical properties, such
as stiffness and strength. As many pathologic tissue changes
are accompanied by changes in tissue elasticity (Ophir et al.,
1991), measures of tissue mechanical properties may serve as
surrogate measures of tissue health and integrity. Henceforth,
we will refer to medical imaging modalities used to assess
musculoskeletal tissue mechanical properties as “functional
imaging.” Elastography is a class of functional imaging, and is
the study of elastic properties of materials. Elastography uses
principles from the physics of wave propagation to quantify
tissue mechanical properties (Ophir et al., 1991). In general,
an internally- or externally- generated stimulus causes tissue
deformation, which is measured and related to tissue elastic
modulus (Yamakoshi et al., 1990). Relaxography is another
class of functional imaging, whereby MR is used to indirectly
assess tissue integrity by measuring time constants, e.g., T2, T

∗

2 ,
and T1ρ , associated with the slow motion of water molecules.
Relaxography has emerged as a potent method to study and
detect early signs of articular cartilage degeneration (Baum
et al., 2013). As cartilage degenerates, its extracellular matrix is
disrupted and proteoglycan content is reduced, which results
in increased water content and motility. Relaxographic imaging
is sensitive to early degenerative changes, as T2 relaxation
times associated with healthy cartilages (∼25–45ms) are lower
than those associated with degenerated cartilages (Dunn et al.,
2004). Overall, there are several imaging modalities capable of
assessing musculoskeletal tissue state, thus enabling creation of
personalized musculoskeletal tissue models as well as quantifying
intervention outcomes. However, it is first necessary to identify
the optimal mechanical environments of each musculoskeletal
tissue, which will serve as targets for bioinspired rehabilitation
and training.
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Just as hyper-physiologic loading can cause musculoskeletal
tissue damage (Bonnevie et al., 2015; Christiansen et al., 2015),
load deprivation due to low-gravity (Lang et al., 2006), or spinal-
cord injury (Vanwanseele et al., 2002, 2003) causes tissue atrophy
and weakening. More subtle changes in tissue loading can also
affect tissue properties. For example a lower than normal knee
contact force following orthopedic surgery has been associated
with future onset of knee osteoarthritis (Wellsandt et al., 2016).
Specifically, reductions of 10–20% of a body weight in the
medial contact forces 6-months after anterior cruciate ligament
reconstruction were associated with onset of medial knee
osteoarthritis 5-years post-operation (Wellsandt et al., 2016).
Similarly, animal experiments of unloading the weight-bearing
limbs following knee ligament transection found subsequent
muscle atrophy and loss of trabeculae (Anderson et al., 2016).
Likewise, the human proximal tibia experiences substantial bone
mineral density loss over the first year following anterior cruciate
ligament reconstruction (Mundermann et al., 2015), which may
be related to lower magnitude ambulatory tibiofemoral contact
forces (Saxby et al., 2016a; Wellsandt et al., 2016). Overall,
these results re-inforce the concept that inappropriate loading,
due to over- and/or under-loading, precede articular tissue
degeneration. It therefore follows that each tissue must have an
optimal mechanical stimulus or “sweet spot” which maximizes
anabolic tissue adaptation, where loads are neither too high to
cause tissue damage, or too low to result in tissue degeneration
(Figure 2).

Tendon Optimal Mechanical Environment
An illustrative example of a “sweet spot” in tissue regulation
is drawn from in vitro studies of Achilles tendon. The Achilles
tendon is a viscoelastic structure that links calf muscles, i.e.,
gastrocnemii and soleus, with the calcaneus bone of the foot,
thus spanning the ankle joint. The Achilles tendon is crucial

to common ambulatory tasks, such as walking, running, and
jumping, through its role in biomechanical power generation and
movement efficiency. When conditioned in a bioreactor, excised
sections of Achilles tendons have shown optimal biomechanical
response when subjected to ∼6% cyclic tensile strains (Wang
et al., 2013, 2015). Cyclic 6% tensile strains, 0.25Hz loading
cycle, 8 h per day, maintained tendon homeostasis (Wang et al.,
2013) and, importantly, regenerated injured tendon (Wang
et al., 2015). Consistent with the idea of over- and under-
loading as mechanisms for tissue degeneration, tendon tensile
strains below 3% or above 9% disrupted extracellular matrix
(Wang et al., 2013), while tenocytes optimally responded to 4–
6% strains (Joo Kim et al., 2016). These results reinforce the
need to target specific strain ranges to maintain and repair
tissue.

Cartilage Optimal Mechanical Environment
Articular cartilage caps the terminal regions of long bones
involved in synovial joints, and provides a smooth ultra-low
friction bearing surface for articulation. Articular cartilage is
considered biphasic, consisting of a solid phase composed
primarily of organized collagenous extracellular matrix
interposed with chondrocytes, highly charged macromolecules,
and immersed in an ionized interstitial fluid phase. Interaction
between solid and fluid phases causes the mechanical behavior
of cartilage, i.e., anisotropy, strength, and viscoelasticity (Mow
et al., 1980; Armstrong and Mow, 1982). Indeed, the network
of collagens and macromolecules of the extracellular matrix
provide enormous resistance to internal fluid motility, primarily
through friction. Consequently, during rapid loading of cartilage,
as occurs during sport and activities of daily living, cartilage
behaves as a nearly incompressible isotropic material. Internal
resistance to fluid flow is an essential mechanism by which
cartilage resists externally applied compression. However, as

FIGURE 2 | Schematic of mechanobiologic interplay between tissue strains that induce damage and remodeling. Within the anabolic “sweet spot” (i.e., red shaded

area), tissues experience hypertrophy and improved mechanical properties. Within catabolic regions (i.e., two blue shaded areas), which are brought about due to

over- or under-loading, tissues atrophy or degenerate, and this results in increased compliance and loss of strength. Adapted from Wang et al. (2013).
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cartilage is avascular (Buckwalter, 2002; Buckwalter and Brown,
2004), large resistance to internal fluid flow prevents effective
transport of materials and cells to injury sites. When cartilage
deteriorates due to age, injury, or disease, it becomes more
compliant (Setton et al., 1999). Consequently, collagen networks
in the extracellular matrix experience larger, and potentially
injurious, strains.

Limited interstitial motility combined with the avascular
nature of cartilage, results in minimal regenerative capabilities
(Newman, 1998; Buckwalter, 2002; Buckwalter and Brown,
2004). Understandably, research has focused on engineering
cartilage implants and effective scaffolding to promote seamless
uptake of implanted constructs into native cartilage. A recent
review of literature found in vitro compressive strains of >20%
applied at 0.5–1Hz, were optimal for promoting cartilage
cultivation (Natenstedt et al., 2015). A 20% strain is in
the middle of the physiologic range experienced by cartilage
(Grodzinsky et al., 2000), and 0.5–1Hz loading rates are similar
to the natural knee loading frequency during human gait.
Thus, ∼20% and 0.5–1Hz cartilage strain and loading rate,
respectively, provide logical targets to condition cartilage to
prevent future degeneration, and may be effective to attenuate,
stop, and even reverse degeneration in cases of established
disease.

Bone Optimal Mechanical Environment
In vitro studies provide a rich source of direct measurements
of strains that stimulate bone remodeling, as well as strains
that injury or fracture bone. As many strain measures in
the literature were acquired from experiments that did not
incorporate bone dynamics, they should be considered time-
independent mechanical targets, that may stimulate bone
remodeling (Lanyon et al., 1975; O’connor et al., 1982; Rubin
and Lanyon, 1985; Ehrlich and Lanyon, 2002). Different bone
components, i.e., cancellous and cortical bone, may have different
optimal strain ranges required to elicit adaptive remodeling.
However, a range of ∼200–1,000 µε (1µε = 1 microstrain;
1 µε = 0.0001% strain) represents everyday strains. During
vigorous physical activities, such as sprinting, bone strains
may reach peak values of ∼2,000–3,000 µε (Burr et al., 1996)
and strain rates of ∼10,000–50,000 µεs−1 (Lanyon et al.,
1975). Even during vigorous physical activities, bone strains
and strain rates do not necessarily damage tissue, as injurious
strains are ∼25,000 µε in tension or compression directed
longitudinally (Reilly and Burstein, 1974). Bone durability is
first due to its innate capacity to withstand large stresses at
low strain rates, i.e., ∼80–170, ∼100–300, and ∼150–240 MPa
in tensile, compressive, and bending modes, respectively (Reilly
and Burstein, 1974). Second, bone is a viscoelastic material
and its stiffness increases when subject to high strain rates,
for example during running and jumping. Bone strains during
strenuous physical activities have been reported to be ∼10% of
ultimate failure, well below bone fracture threshold and therefore
considered safe healthy for individuals (Burr et al., 1996). Low
impact and activities such as walking do not appear to be
oesteogenic.

ESTIMATING THE MECHANICAL
ENVIRONMENT OF MUSCULOSKELETAL
TISSUES

Musculoskeletal tissue state varies between individuals, and is
affected by disease processes. To personalize therapy, we must
account for subject-specificity, such that training programs can
be tailored to the individual. A further technical challenge is that
we need to estimate musculoskeletal tissue mechanics in real-
time, providing an appropriate form of biofeedback to enable
individuals to volitionally modulate tissue mechanics during
rehabilitation, recreation, or daily activities. To achieve this goal
we must merge whole-body representations of human physical
behavior with models of musculoskeletal tissue mechanics and
mechanobiology within efficient computational frameworks.

Currently, there is no feasible method to directly measure
in vivo loading applied to, and stresses/strains within,
musculoskeletal tissues in native human joints. Articular contact
forces can be measured in cadavers through a combination
of robotic control and mathematical modeling (Wang et al.,
2014) or by inserting pressure sensitive film between articulating
surfaces (Ihn et al., 1993). However, a valid method of applying
physiologic muscle, body, and inertial loads to cadavers has not
been reported, thus casting doubt whether these measurements
are representative of in vivo loading. Contact forces can also
be measured by instrumenting prostheses used in arthroplasty,
as has been done at knee (D’lima et al., 2005, 2006; Heinlein
et al., 2007, 2009; Fregly et al., 2012), hip (Rydell, 1966; English
and Kilvington, 1979; Bergmann et al., 2010), and shoulder
(Bergmann et al., 2007) joints. Contact loads measured by
instrumented prostheses provide critical information to implant
designers regarding the nature of the mechanical demands placed
upon these devices. Unfortunately, instrumented prosthetic
implants are only appropriate for measuring contact loads
in arthroplasty patients, who are typically elderly individuals
with substantially degenerated joints and peri-articular muscle
atrophy. Furthermore, arthroplasty, by definition, does not
preserve the native joint and restricts the activity types that
could be studied in these patients, e.g., it is unethical to ask an
elderly knee arthroplasty patient to perform vigorous athletic
movements. Consequently, contact loads sustained by implants
are unlikely to be representative of contact loads in native joints
of young physically active populations.

In addition to articular contact forces, muscle-tendon unit
forces have also been directly measured in both animals
(Walmsley et al., 1978; Hodgson, 1983; Herzog et al., 1992) and
humans (Gregor et al., 1987; Komi et al., 1987; Fukashiro et al.,
1995) by surgically implanting mechanical gauges. Proficient
surgical implantation results in minimal inflammatory response,
and instruments may left in situ in animals for days or
even weeks. However, extrapolating in vivo animal muscle-
tendon force measurements to humans is questionable and
certainly of limited clinical relevance. In humans, surgical
implantation of strain gauges into tendon may affect an
individual’s physical behavior, thus limiting ecologic validity
of the measurements. Furthermore, muscle-tendon forces are
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subject-, task-, and state-specific, thus limiting applicability of
measurements from an individual performing a specific task
to another individual, movement or control task, or the same
individual at a later date, i.e., following an intervention, suffering
an injury, or onset of disease. Given the serious limitations of
direct measurement of musculoskeletal tissue loads, researchers
have used computational neuromusculoskeletal to predict
musculoskeletal tissue loading.

Neuromusculoskeletal Models to Estimate
Musculoskeletal Tissue Loading
Neuromusculoskeletal models are bioinspired mathematical
representations of specific neurologic, physiologic, and anatomic
characteristics of an individual (Hatze, 1977; Buchanan et al.,
2004, 2005; Lloyd et al., 2005). Neuromusculoskeletal models
may be used to estimate muscle (Lloyd and Besier, 2003; Erdemir
et al., 2007), ligament (Shelburne and Pandy, 1997; Pandy and
Sasaki, 1998; Lloyd et al., 2005; Shelburne et al., 2005), and
articular contact forces (Shelburne et al., 2005; Winby et al.,
2009; Gerus et al., 2013; Manal and Buchanan, 2013; Erdemir
et al., 2015; Walter et al., 2015; Saxby et al., 2016b; Smith et al.,
2016; Konrath et al., 2017), and have been deployed across a
wide range of scientific, industrial, and clinical applications,
such as investigating fundamental properties of human motor
control (Haeufle et al., 2014; Sartori et al., 2015), evaluating
ergonomic demands of automotive operation (Rasmussen et al.,
2009), and informing medical device designs by predicting in
vivo loading conditions (Marra et al., 2015). Typically, structural
characteristics used in a model are based on measurements
from a small number of cadavers, and subsequently used as a
generic template for each analysis. Bone dimensions and mass-
inertia properties in a generic template are linearly scaled to
match subject’s dimensions (Delp et al., 1990), thus providing
a basic level of model personalization. Using generic templates
facilitates rapid and routine use of neuromusculoskeletal models,
but scaled generic models are often poor representations
of an individual’s musculoskeletal anatomy, which may lead
to inaccurate results, spurious conclusions, and potentially
detrimental clinical decisions. For example, linear scaling of a
generic model template may result in incorrect representation of
muscle moment arms (Arnold et al., 2000; Scheys et al., 2008) and
consequently erroneous joint contact force estimates (Lenaerts
et al., 2009; Gerus et al., 2013; Wesseling et al., 2016).

Several aspects of neuromusculoskeletal models can be
personalized to the individual to improve simulation results.
Bone morphology and joint mechanics have been shown to
influence kinematics and kinetics estimates (Brito da Luz et al.,
2016; Kainz et al., 2016), and knee contact forces have been shown
to be sensitive to tibiofemoral alignment (Lerner et al., 2015).
Skeletal geometry also affects muscle-tendon paths and insertion
points, which in turn define muscle-tendon lines of action,
influencing both muscle-tendon lengths and moment arms.
Overall, better representation of an individual’s musculoskeletal
anatomy has been shown to produce more realistic results,
e.g., improved representation of muscle-tendon moment arms,

improved knee (Gerus et al., 2013) and hip (Modenese et al.,
2013) contact forces estimates.

Muscle activation patterns are known to vary between
individuals and controls tasks (Tax et al., 1990; Buchanan and
Lloyd, 1995), and are affected by training (Menegaldo and
Oliveira, 2011) and pathology (Besier et al., 2009). Incorporating
experimental measures of muscle activation patterns into
neuromusculoskeletal models adds an important dimension
of personalization. Electromyography (EMG)-informed
neuromusculoskeletal models (Manal et al., 2002; Lloyd
and Besier, 2003; Manal and Buchanan, 2013; Sartori et al., 2014;
Pizzolato et al., 2015) are a class of neuromusculoskeletal models
sensitive to variations in motor control. Specifically, EMG-
informed neuromusculoskeletal models use experimentally
measured muscle excitations and movement patterns to account
for complex interplay between external biomechanics and
muscle recruitment to estimate musculoskeletal tissue loadings,
i.e., joint, muscular, ligamentous, and articular contact loads,
that may serve as boundary conditions for continuummechanics
analysis.

Finite Element Method to Estimate
Musculoskeletal Tissues Mechanical
Environment
The finite element method (FEM) is a well-established
computational method used in many branches of engineering.
In a FEM model, the real system is discretized into a field of
elements of known geometries and material properties, from
which constitutive equations may be developed. The model
system dynamics are then equilibrated by imposing a set of
boundary conditions, e.g., musculoskeletal tissue loads informed
by a neuromusculoskeletal model. Halloran et al. (2010) applied
this combined neuromusculoskeletal and FEM modeling to foot
and ankle strains, while Besier et al. (2009) verified predicted
patellofemoral stresses/strains using measurements of cartilage
deformation acquired in a vertical bore MR unit. Recently, others
have explored tibiofemoral cartilage stresses/strains during gait
(Shim et al., 2016; Smith et al., 2016) and acetabulum stress
distributions in relation to bone remodeling (Fernandez et al.,
2014). These studies have shown the potential of the FEM
models, but the models employed were not fully personalized.

Generating personalized FEM models of tissue requires
both morphology and material properties. As previously
described, different imaging modalities can be used to directly
acquire tissue-specific morphology, but non-invasive methods
to estimate material properties are scarce. Musculoskeletal
tissues have a heterogeneous multiphasic structure, resulting
in anisotropies and non-linear time-varying behavior (Freutel
et al., 2014), thus making the estimation of material properties
challenging. Relaxography (Labadie et al., 1994) is a powerful
tool to assess tissue function, but it only provides measures
which correlate with, but do not quantify, tissue material
properties (Lammentausta et al., 2006). Elastography (Ophir
et al., 1991) can provide direct measurement of musculoskeletal
tissue stiffness by analyzing the response of tissue to external
stimuli. In MR elastography, low frequency vibrations are
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externally introduced to the body by means of electromechanical
devices, while multiple images are recorded to analyse tissue
response at different time points and directions (Glaser et al.,
2012). Ultrasound elastography works by the same principle as
MR elastography, but the external stimuli can be provided by the
US transducer itself. Ultrasound-based shear-wave elastography
has recently been applied to musculoskeletal tissues (Eby et al.,
2013) to quantify stiffness, but is limited to superficial tissues
and subject to errors due to probe positioning (Brandenburg
et al., 2014). Reverse FEM could also be used to estimate
tissue material properties, whereby tissue is subject to multiple
and explicitly known applied loading conditions that alter
morphology. A numerical optimization then estimates a set of
material properties best fitting the measured morphology change
(Hansen et al., 2017).

Informing tissue material properties in FEM models through
non-invasive imaging would provide a level of personalization
well beyond current standard approaches, which typically apply
literature values established through experiments performed
on cadavers. Indeed, tissue material properties are specific to
individuals and are affected by aging, training, injury, and
disease (Arokoski et al., 2000; Buckwalter, 2002; Buckwalter
and Brown, 2004). Different tissue stress and strain patterns
will arise from FEM simulations that use different tissue
material properties, even when composed of identical tissue
morphology and subjected to identical boundary conditions.
Finally, simulations of musculoskeletal tissue mechanics
may use physiologic and personalized boundary conditions
informed by neuromusculoskeletal models (Besier et al., 2005,
2009; Fernandez et al., 2014). Overall, when FEM models
of musculoskeletal tissues are informed by measurements
of subject-specific morphology, material properties, and
boundary conditions, they are powerful tools to understand
musculoskeletal tissue mechanics.

Finite Element Method to Estimate
Musculoskeletal Tissue Remodeling
Considerable research focus has been applied to studying
relationships between applied tissue loading and morphology,
with a fundamental assumption that tissue healthmay be assessed
through structural analysis (e.g., thicker cartilage is indicative
of healthy cartilage; Koo and Andriacchi, 2007). Rigid-body
computational models have been used to determine external
joint or articular loads, which in turn have been compared to
measures of articular tissue structure using linear statistics (Koo
and Andriacchi, 2007; Koo et al., 2011; Scanlan et al., 2013; Van
Rossom et al., 2017). However, primary focus on applied loading
may not be appropriate, as other biomechanical signals, such
as extracellular fluid motion in bone (Zadpoor, 2013; Villette
and Phillips, 2016) or bone strain energy (Kerner et al., 1999),
are physically closer to cellular mechanisms of remodeling and
have been shown to influence tissue adaptation. Simulations of
trabecular remodeling have been performed whereby structural
modifications were driven by local mechanical criteria, e.g.,
minimizing density of material anisotropy with respect to
principle stresses (Fyhrie and Carter, 1986) or non-uniformity

in local stresses (Adachi et al., 1997; Tsubota et al., 2002). Such
simulations were able predict trabecular distributions consistent
with experimental observations (Fyhrie and Carter, 1990), and
results were highly sensitive to loading condition complexity.
When complex loading patterns were applied to FEM models
with embedded bone remodeling algorithms, predicted bone
material property distributions were consistent with ex vivo
imaging (Geraldes et al., 2016). Similarly, features such as bone
cortical thickness and regional femoral trabecular density were
better predicted when complex physiologic loads were applied
compared to simple axially oriented compressive loads (Geraldes
et al., 2016). When complex muscle loading patterns were
included in FEM simulations of femoral bone remodeling in
the context of prosthetic hip implants, simulations predicted
bone retention patterns in regions of muscle attachment,
which is not predicted by FEM models using simple idealized
boundary conditions (Bitsakos et al., 2005). These results suggest
incorporation of complex biomechanical loads into FEM models
is required to predict correct spatial distribution and peculiar
features of musculoskeletal tissue structure.

The complex biomechanical loads sustained by the human
body are generated by non-linear muscle dynamics and their
interaction with convoluted three-dimensional musculoskeletal
architecture. Including muscle dynamics into FEM models
directly affects spatial distribution of musculoskeletal tissue
strains, and hence influences predictions of tissue remodeling
(Duda et al., 1998). When pairing together computational rigid-
body neuromusculoskeletal and FEM models, the degrees of
freedom associated with the respective models must be consistent
(Phillips et al., 2015). For example, the popular musculoskeletal
modeling software OpenSim (Delp et al., 2007) enables users to
define complex joint motions that are both arbitrarily bounded
and computationally efficient (Seth et al., 2010). The OpenSim
model may then be used to solve external joint and muscle loads,
which can, in principle, be applied to FEM models. However, the
FEM model must be constrained in an analogous manner to the
OpenSim model to ensure model degree of freedom consistency.
This is not a peculiar consideration of OpenSim models, rather,
all hierarchical modeling frameworks which combine boundary
conditions from a rigid-body simulation to a FEM model should
respect this demand for consistency. In the context of bone
remodeling simulations, Phillips et al. (2015) presented a method
to ensure model degree of freedom consistency, but noted that
the constraints of model displacement may limit scope of the
analysis.

Optimal mechanical environments for musculoskeletal tissue
adaptation have been provided from ex vivo, in vitro, and in
silico studies. This knowledge, combined with an appreciation
for modeling complexity required to estimate musculoskeletal
tissue stresses and strains, leaves us well posited to move forward
and apply these models in clinical contexts such as training or
rehabilitation. If we can gain control of an individual’s physical
behavior through biofeedback paradigms, and target the optimal
in vivomechanical environment of their musculoskeletal tissues,
we may be able to prevent tissue deterioration or restore health.
We represent our vision in Figure 3, and its realization would be
a breakthrough for rehabilitation science andmedicine. However,
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FIGURE 3 | Framework to estimate in vivo musculoskeletal tissue stresses and strains. Medical imaging is used to create personalized musculoskeletal geometry and

FEM models of the tissue of interest. Biosensors (e.g., EMG, inertial measurement units, and/or motion capture) are used to drive a neuromusculoskeletal model,

which provides boundary conditions necessary for the FEM model to estimate musculoskeletal tissue stresses and strains. Tissue stresses and strains can be

fed-back, in real-time, to enable the person to modify their behavior to affect tissue mechanical environment. Finally, tissue and physical behavior adaptations update

the computational system indicated by orange dashed feedback arrows.

to realize this aim, current computation processes that are
performed offline must be performed in real-time.

REAL-TIME ESTIMATION AND
BIOFEEDBACK OF MUSCULOSKELETAL
TISSUE STRESS AND STRAIN

Behavioral movement changes, in the form of modulation of
body kinematics and kinetics, have been used in rehabilitation
to assist motor learning and improve function following injury
or disease (Sigrist et al., 2013). Much research has focused on
biofeedback technologies to improve movement and function
in knee osteoarthritis patients (Barrios et al., 2010; Shull
et al., 2013a,b; Van Den Noort et al., 2015). In these patients,
larger magnitude walking knee adduction moments have been
associated with structural progression of knee osteoarthritis (i.e.,
joint space narrowing;Miyazaki et al., 2002) and knee pain (Amin
et al., 2004), making reduction of the magnitude of the knee
adduction moment a logical target for physical therapy.

Numerous studies have combined biofeedback technologies
with gait modification strategies to modify joint kinematics or
external loads with the aim of improving health outcomes or
reducing movement variability. For example, real-time visual
biofeedback of upper-body posture (Hunt et al., 2011) and
dynamic knee alignment (Barrios et al., 2010) have been

used to reduce walking knee adduction moments in healthy
individuals and knee osteoarthritis patients, respectively. Knee
braces instrumented with auditory feedback have been used
to reduce knee loading rates during walking (Riskowski et al.,
2009), while instrumented footwear has been used to reduce
lateral foot pressures through vibrotactile feedback (Dowling
et al., 2010). Notably, Shull et al. (2013b) provided haptic
feedback, delivered through body worn vibrating motors, to
inform participants of their changes in foot progression and
trunk sway during treadmill walking. This resulted in patients
with knee osteoarthritis reducing their peak knee adduction
moment magnitudes. However, the main limitation of modifying
external kinematics and kinetics is their tenuous relationships
with internal loads (Walter et al., 2010, 2015; Winby et al., 2013;
Saxby et al., 2016b), which implies weaker still relationships to
articular tissue stresses and strains. The reason for these poor
relationships is external biomechanics cannot account for the
direct effect of muscles on musculoskeletal tissue loading (Walter
et al., 2010; Winby et al., 2013; Saxby et al., 2016b).

As previously discussed, neuromusculoskeletal models can
provide FEM with appropriate boundary conditions to estimate
musculoskeletal tissue stresses and strains (Besier et al., 2005,
2009; Fernandez et al., 2014). This may be done in an offline
analysis, but real-time estimation of musculoskeletal tissue
stresses and strains requires interfacing with, and enabling data
flow from, external devices to modeling software to complete
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necessary computations within given time constraints. For
neuromusculoskeletal models, this means solving kinematics,
kinetics, and muscletendon forces in real-time. Muscle forces
have been calculated in real-time using a static optimization
method (van den Bogert et al., 2013), where an algorithm
determined the minimized weighted sum of muscle forces
that matched external joint moments (Van Der Helm, 1994).
However, the real-time approach presented by (van den
Bogert et al., 2013) was based on a generic anatomic
model that could not be personalized. Model personalization,
noted earlier in this review, is essential when coupling
neuromusculoskeletal and FEMmodels of musculoskeletal tissue
mechanics. Furthermore, many neuromusculoskeletal models
rely on mechanical optimization to solve the muscle redundancy
problem (Crowninshield, 1979; Crowninshield and Brand, 1981),
however, mechanical optimization methods struggle to predict
many empirical features of muscle coordination, such as
patterns of muscle activation (Herzog and Binding, 1992), co-
contraction (Herzog and Binding, 1993), and force sharing
(Binding et al., 2000). To our knowledge, the first use of
a real-time EMG-informed neuromusculoskeletal model was
by Manal et al. (2002), and first applied to musculoskeletal
tissue loading in Achilles tendon rehabilitation by Manal
et al. (2012). These papers advanced the field and should be
acknowledged as pioneering, but were limited in application to
quasi-static movements and a single joint with few degrees of
freedom. Recently, Pizzolato et al. (2017b) developed software,
based on OpenSim (Delp et al., 2007), to calculate full-body
kinematics and kinetics (Pizzolato et al., 2017a), as well as
musculoskeletal tissue loading (Pizzolato et al., 2015, 2017b), in
real-time. Their method is fully extensible to other joints and
musculoskeletal tissues, but is currently limited to expensive
and immobile laboratory-based stereophotogrammetry systems
(Pizzolato et al., 2017b).

Wearable sensors that accurately estimate human kinematics
are a promising alternative to laboratory-based measurement
systems. Linear accelerometers have been used for many years
to quantify movement patterns relative to the gravitational
field and ambulatory temporal-spatial parameters (Kavanagh
and Menz, 2008), but their estimates of joint kinematics are
limited by signal drift caused by integration errors (Djuric-Jovicic
et al., 2011). Improvements in microelectromechanical systems
have enabled embedding tri-axial accelerometer, gyroscope, and
magnetometer into a single sensor. These integrated sensors are
known as inertial measurement units and are able to estimate
spatial orientation (Sabatini, 2006; Madgwick et al., 2011)
and, when used in combination with anatomic models, joint
angles. Strain sensors are another class of promising wearable
sensors that can be used to estimate joint angles (Nakamoto
et al., 2016). Strain sensors are low profile, flexible, and can
be easily embedded into garments or mounted on the skin
(Amjadi et al., 2016). To date, strain sensors have been used in
biomechanics primarily to classify movement (Mattmann et al.,
2007) or estimate single joints angles (Nakamoto et al., 2016).
However, continuous technologic improvements in smart textiles
(Honarvar and Latifi, 2017) may soon lead to advanced garments
capable of estimating full-body kinematics.

Measuring or estimating reaction forces between body and
ground is required to correctly estimate load applied to specific
musculoskeletal structures, such as joints and ligaments. In
laboratory conditions, ground reaction forces are acquired via
ground mounted force plates, but alternative solutions are
required for applications in the real-world. Pressure-sensitive
insoles can be used to estimate the normal component of
the ground reaction force, but they neglect shear components
(Chesnin et al., 2000). Conversely, shoes instrumented with tri-
axial force sensors have shown agreement with force plates for all
components of the ground reaction force vector (Liedtke et al.,
2007). Alternative to measurements, deep learning algorithms
have been shown to correctly estimate ground reaction forces
during walking (Oh et al., 2013). However, these data-driven
models require big data as training sets. Mechanical approaches
can be used to solve dynamics of motion and estimate ground
reaction forces without body-worn force sensors. For example,
the zero-point moment is an algorithm developed for humanoid
robots (Xiang et al., 2009) that has also been successfully applied
human biomechanics (Fluit et al., 2014; Dijkstra and Gutierrez-
Farewik, 2015). However, to correctly estimate ground reaction
forces, full-body kinematics and subject-specific musculoskeletal
models are required (Fluit et al., 2014).

Overall, advances in wearable sensors, i.e., smaller, lighter,
low-power, and integrated sensor systems, will enable novel
real-world applications (Brodie et al., 2008). Currently, intrinsic
limitations and measurement inaccuracies associated with these
devices prevent their use in advanced biomechanical analysis.
Combining wearable sensors with sophisticated biomechanical
models may help to minimize the limitations associated with
wearable sensors. Realistic musculoskeletal models, such as
those offered by OpenSim (Delp et al., 2007), associated with
probabilistic frameworks that adequately model wearable sensor
inaccuracies (Latella et al., 2016) and computationally efficient
real-time software architectures (Pizzolato et al., 2017a,b), have
the potential to accurately estimate human motion in real-world
setting free from the laboratory.

As previously stated, boundary conditions for subsequent
FEM model simulations may be computed in real-time using
neuromusculoskeletal models. However, even if appropriate
boundary conditions are provided, real-time solutions to
continuum mechanics problems is an ongoing computational
challenge. When implementing entire musculoskeletal structures
in FEM models (e.g., complete bones), computational demand
may be substantially reduced by spatially averaging many
microstructural features, such as trabecular and cortical bone
architecture. However, spatial averaging neglects analysis of
tissue anisotropy and micro-architecture, which are known to
influence tissue function (Stein et al., 2010). Generally, FEM
models are computationally demanding and not solvable in
real-time. Thus, FEM models must be reduced to surrogates
by a process known as “Kriging” (Matheron, 1963), whereby
the continuum model is first solved offline for all possible, or
physiologic, configurations (Wu et al., 2014; Eskinazi and Fregly,
2016), and simulation results are then be stored for future real-
time use. However, it is computationally expensive to establish
robust surrogates of musculoskeletal tissue continuum models,
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given the large data throughput imposed by performing many
multi-scale simulations (Erdemir et al., 2015). One potential
strategy we are pursuing is use of high-performance computing,
whereby a large number of simulations are managed and solved
by a remote computing cluster.

CHALLENGES AND FUTURE DIRECTIONS

Our proposed framework to modify an individual’s physical
behavior to optimize musculoskeletal tissue mechanobiology
(Figure 3) is feasible and currently being developed. In Table 1

we have summarized several challenges and possible future
directions discussed in the text. To move these bioinspired
technologies to clinical settings we need to direct our efforts
toward: (1) rapid generation and seamless integration of
personalized neuromusculoskeletal and FEM models, (2) use of
wearable sensors, and (3) improvement of biofeedbackmodalities
for stress and strain modulation.

Currently, creating personalized anatomic models from
medical imaging is expensive (i.e., involves costly image
acquisition and numerous man-hours to process raw medical
imaging into high-fidelity computational models). However,
improvements in image processing software, such as automatic
segmentation and statistical shape modeling (Zhang et al.,
2014; Zhang and Besier, 2017) may greatly accelerate model
generation. Statistical shape modeling is promising as it may
limit the need to acquire expensive medical imaging, relying
instead upon a musculoskeletal atlas database to characterize

an individual’s anatomy from sparse or meta-data (Zhang and
Besier, 2017). However, it is unclear whether current publically
available medical imaging databases are sufficient to represent the
variability in musculoskeletal anatomy in clinical populations,
or those with traumas or implants. This is a limitation that will
eventually be addressed by data sharing amongst research teams,
which is an effort we thoroughly support.

Another limitation is that motion capture systems typically
used in research gait laboratories are seldom used into clinical
settings, because of their complexity, space requirements,
and high purchase and operational costs. For bioinspired
technologies to be broadly adopted, we need to free ourselves of
traditional motion capture systems and look to wearable sensors
to measure movement, external loads, and muscle excitation. A
promising and relatively inexpensive example of wearable sensors
that could help us on this mission are inertial measurement
units, which provide a wealth of data that may be used to
determine whole-body motion. Currently, inertial measurement
units are limited by issues such as insufficient shielding from
electromagnetic interference (i.e., while walking on treadmills
or near informatics cabling) and registration of body-worn
sensor positions to anatomicmodels.Wireless EMG systems have
been used effectively in research and clinical settings for many
years, and are now being integrated with inertial measurement
units and other sensors as standalone devices or embedded
into garments. Future research should aim to first establish
if these wearable sensor systems can match the performance
of traditional motion capture systems, and then minimize

TABLE 1 | Summary of the various challenges faced in modeling tissue mechanobiology and using biofeedback to modulate in vivo tissue strains in real-time.

Area Challenge Possible solution

Mechanobiology Validating in vitro and in silico estimates of optimal

remodeling strains

Targeted mechanobiology experiments in bioreactor

Neuromusculoskeletal

models

Rapid generation of personalized models Rapid autosegmentation of medical imaging

Statistical shape modeling based on large medical imaging databased

FEM models In vivo, non-invasive, accurate determination of

material properties

Advancements in elastography and relaxography methods

Numerical optimization via reverse FEM

Real-time evaluation Surrogate models

High performance computing

Generation of robust surrogates of continuum

models

Open challenge

Wearable biosensors Measuring body motion, loading, muscle activation

out of the laboratory

Wearable biosensors embedded in garments

Reducing the number of required sensors

Accurate kinematics estimation Inertial measurement units or strain sensors coupled with accurate anatomic models

and probabilistic frameworks

Accurate kinetics estimation Deep learning algorithms and training databases

Zero-point moment algorithms coupled with optimization, deep learning, or pressure

sensors to solve for double stance

Instrumented shoes

Biofeedback Establishing effective biofeedback variable Processing tissue strain using mechanoreceptors transfer functions

Clinical translation Seamless technology simple to use Target specific tissues to reducing the number of sensors and details of models

Analyse the effect of model simplifications on tissue strain prediction
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the number of sensors required to drive neuromusculoskeletal
models.

Very little is currently known about the ability of individuals
to volitionally modulate musculoskeletal tissue stresses and
strains in response to real-time feedback. To our knowledge,
musculoskeletal tissue stresses and strains have never been
estimated in real-time, let alone used to modify physical
behavior. To date, only two research groups (Manal et al., 2012;
Pizzolato et al., 2017b) have provided real-time biofeedback of
musculoskeletal tissue loads, but their work has been limited to
muscle-tendon and rigid articular contact forces, and did not
model tissue stresses and strains.

We know from previous studies people can use visual
biofeedback to manipulate external biomechanical variables,
muscle excitations, and tibiofemoral contact forces (Manal et al.,
2012; Pizzolato et al., 2017b). Future research should strive
to identify the biofeedback modality optimal for modulating
musculoskeletal tissue stresses and strains through changes
in human movement and muscle activation. Further, it may
be possible to draw inspiration from a variety of native
mechanoreceptors in the human body to provide enhanced visual
biofeedback of stresses and strains. We imagine a technology
whereby estimates of musculoskeletal tissue loading (i.e., forces
or stresses and strains) could be transformed according to golgi
organelle and muscle spindle transfer functions to provide more
intuitive biofeedback.

By optimizing the mechanical environment it may be possible
to regulate musculoskeletal tissue mechanobiology, potentially
preventing disease, or restoring degraded tissue to health.

Consequently, modeling and controlling physical behavior
of individuals has enormous implications for development
and management of chronic musculoskeletal diseases such
as osteoarthritis or tendinopathies. We have presented a
framework to move from in vitro and ex vivo studies of
tissue mechanobiology to personalized in silico real-time
models of musculoskeletal tissue loading. Integrating and
translating these bioinspired technologies to clinical settings
will prove challenging and resource intensive. Skepticism
from clinicians accustomed to generic recommendations
based on linear statistics is anticipated and will need to be
overcome by demonstrating the efficacy and clinical utility
of the proposed new approach. However, there awaits a wide
spectrum of important clinical conditions to which these
bioinspired technologies could be applied with the goal of
reducing the socio-economic burden of musculoskeletal
diseases.
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