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Balance control models are used to describe balance behavior in health and disease.

We identified the unique contribution and relative importance of each parameter of a

commonly used balance control model, the Independent Channel (IC) model, to identify

which parameters are crucial to describe balance behavior. The balance behavior was

expressed by transfer functions (TFs), representing the relationship between sensory

perturbations and body sway as a function of frequency, in terms of amplitude (i.e.,

magnitude) and timing (i.e., phase). The model included an inverted pendulum controlled

by a neuromuscular system, described by several parameters. Local sensitivity of each

parameter was determined for both the magnitude and phase using partial derivatives.

Both the intrinsic stiffness and proportional gain shape the magnitude at low frequencies

(0.1–1Hz). The derivative gain shapes the peak and slope of the magnitude between

0.5 and 0.9Hz. The sensory weight influences the overall magnitude, and does not

have any effect on the phase. The effect of the time delay becomes apparent in the

phase above 0.6Hz. The force feedback parameters and intrinsic stiffness have a small

effect compared with the other parameters. All parameters shape the TF magnitude

and phase and therefore play a role in the balance behavior. The sensory weight, time

delay, derivative gain, and the proportional gain have a unique effect on the TFs, while

the force feedback parameters and intrinsic stiffness contribute less. More insight in the

unique contribution and relative importance of all parameters shows which parameters

are crucial and critical to identify underlying differences in balance behavior between

different patient groups.

Keywords: balance control model, human balance control, parameters, sensitivity analysis, frequency domain

INTRODUCTION

During human stance, the central nervous system (CNS) continuously has to compensate for
deviations from an upright body orientation and the pull of gravity. The CNS estimates the body
orientation based on sensory information from vision, the graviceptive (i.e., vestibular) system, and
proprioception. The estimated body orientation is used by the CNS to send motor commands to
the muscles to generate corrective muscle activity. This corrective muscle activity, together with
intrinsic visco-elastic properties of the muscles and tendons, generate corrective joint torques to
keep the body in an upright position (Peterka, 2003). This cycle of continuous sensory feedback
of body orientation, corrective muscle activity, and corrective joint torques implies that balance
control is effectively a closed-loop system.

In a closed-loop system it is difficult to separate cause and effect, as these are interrelated
(Engelhart et al., 2014). For example, in balance control it is difficult to recognize how joint torques
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influence joint angles or vice versa. In order to “open” the loop,
a unique independent input should be applied in the form of
external perturbations (van der Kooij et al., 2005; Boonstra et al.,
2013). The joint torque or body sway responses are correlated
to the external perturbations to estimate the dynamic balance
behavior. The dynamic balance behavior can be expressed in
Frequency Response Functions describing the relation between
perturbation and response in magnitude and relative timing
(phase) for each excited frequency.

To estimate how each subsystem (i.e., sensory systems, CNS,
muscles, and body) contributes to dynamic balance behavior,
balance control models have been developed. Models are
important tools to relate experimental data to physiologically
relevant parameters that indicate the contribution of each
subsystem to the dynamic behavior (Schouten et al., 2008;
Mergner, 2010; Kiemel et al., 2011). Peterka proposed a simple
and descriptive linear balance control model, the Independent
Channel (IC) model, that consists of a single-link inverted
pendulum, a neural controller with proportional, and derivative
gains, a time delay and sensory feedback (Peterka, 2002) to
adequately describe balance control in the face of sensory
perturbations, like support surface rotations or visual surround
rotations. Due to its simplicity, the model is frequently used and
applied to obtain pathophysiological changes in certain (patient)
groups, such as elderly (Pasma et al., 2015; Wiesmeier et al.,
2015), vestibular loss patients (Peterka, 2002;Mergner et al., 2009;
Peterka et al., 2011), and Parkinson’s disease patients (Boonstra
et al., 2014).

However, as balance control models contain multiple
parameters and parameters interact, the relative contribution
of each parameter to balance control is not directly evident
(Engelhart et al., 2014). For example, reduced body sway could
be due to both an increased stiffness of the system or to
sensory reweighting (Peterka, 2002). To provide insight into the
relative contribution of different balance control parameters, we
adopted a method to investigate the sensitivity of individual
model parameters to the overall dynamic balance behavior.
The method is applied to the well-known and frequently used
inverted pendulum balance control model of Peterka (2002) to
get more insight in the sensitivity of the model parameters. We
evaluated the sensitivity of each model parameter to determine
how each parameter shapes the dynamic balance behavior (i.e.,
magnitude and phase as function of frequency). More insight in
the unique contribution and relative importance of all parameters
helps to understand the applicability and clinical utility of the
model for identifying the important parameters that characterize
balance control during stance, and to identify which parameters
are crucial and critical to detect underlying changes in balance
behavior with age and diseases.

MATERIALS AND METHODS

The IC model (Peterka, 2002) comprises of sensory and
motor components to describe dynamic balance behavior
under external sensory perturbations (see Figure 1). The model
parameters and the default values are presented in Table 1.

The default values of the model parameters were based on the
values found in experimental studies (van der Kooij and Peterka,
2011). Compared to Peterka (2002), activation dynamics were
added to the model. As the activation dynamics interact with the
time delay, a lower value for the time delay (0.097 s) was used
compared with other studies, as found in previous studies which
included the activation dynamics (van der Kooij and Peterka,
2011; Pasma et al., 2015). It should be noted that the neural
controller integral gain (KI) was deleted from the model, since
this gain was shown to be redundant in a model with a torque-
related sensory channel, i.e., force feedback (Peterka, 2003), as
also will be addressed in the Discussion section.

Model Transfer Functions
The resulting overall dynamic balance behavior was described
with transfer functions (TFs) in the Laplace domain. The TFs
provide a quantitative measure of how the perturbations affect
the response (i.e., body sway) in regards of magnitude and
relative timing (phase) as a function of frequency. The body sway
responses to two common perturbations (i.e., support surface
rotation and visual surround rotation) represented by the TFs
from support surface rotation to body sway (HSS) and from visual
surround rotation to body sway (HVS):

HSS (s) =
BS (s)

SS (s)
=

P · BS+WP · NC · BD

1− F · NC + P · BD+ NC · BD
(1)

HVS (s) =
BS (s)

VS (s)
=

WV · NC · BD

1− F · NC + P · BD+ NC · BD
(2)

The individual model subsystems included in the TFs are
described in more detail in Figure 1 and Appendix A. The
model TFs were evaluated between 0.1 and 3Hz, as these are the
frequencies that dominate human balance behavior (Soames and
Atha, 1982).

Sensitivity Analysis
A sensitivity analysis of the model parameters on the TFs was
performed. A sensitivity analysis indicates how uncertainty in
the TFs can be apportioned to different sources of uncertainty in
the model parameters (Saltelli et al., 2008). We applied a widely
used approach of sensitivity analysis, namely “local” sensitivity
analysis, which generally is derivative based (numerical or
analytical). Local sensitivity analysis depends on the operating
point (Saltelli et al., 2008) and only investigates the impact on
the TFs based on changes only very close to the nominal values.
As patients may be at a different operating point, we investigated
the effect of changing the default values, and therefore changing
the operating point, on the local sensitivity.

Local Sensitivity
Local sensitivity analysis is a “one-at-a-time” technique, as only
the effect of a single parameter of the system is analyzed at a time,
while the rest of the parameters remain fixed at the chosen value
(i.e., the operating point). The sensitivity of each parameter (p) of
the balance control model was determined by taking the partial
derivative of both TFs (see Equations 1 and 2) using the Matlab
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FIGURE 1 | Inverted pendulum balance control model. The human body is represented by an inverted pendulum (IP) with corresponding body dynamics (BD), which

is controlled by the neuromuscular system consisting of the neural controller (NC) incorporating a PD controller with neural signal transport delay and muscle activation

dynamics, and the intrinsic muscle properties (P). The NC receives a weighted combination of body orientation information from the sensory systems (W) (i.e.,

graviceptive, visual, and proprioceptive system) and force feedback information (F ) from the force sensors. The total corrective ankle torque consists of the output of

the NC processed through muscle activation dynamics plus the torque arising from the intrinsic muscle properties (P). The proprioceptive and visual sensory systems

can be perturbed by support surface (SS) and visual surround (VS) rotations, respectively.

TABLE 1 | Balance control parameters of the Independent Channel model with

the chosen default values, based on experimental data.

Symbol Parameter Default

value

J Moment of inertia [kg m2] (Fonteyn

et al., 2010)

66 Based on

anthropometry

m Body mass [kg] (Fonteyn et al., 2010) 75

h Centre-of-mass height [m] (Fonteyn

et al., 2010)

0.83

g Gravitational constant [m/s2] 9.81 Known

K Intrinsic muscle stiffness [Nm/rad] 40.5

B Intrinsic muscle damping [Nms/rad] 68.8

ω0 Activation dynamics—natural

frequency [rad/s] (Mugge et al., 2010)

16.8

β Activation dynamics—relative

damping [-] (Mugge et al., 2010)

0.99

τD Time delay [s] 0.097 Model fitting

WP Sensory proprioceptive weight [-] 0.8

WV Sensory visual weight [-] 0.8

KP Proportional gain [Nm/rad] 943.9

KD Derivative gain [Nms/rad] 313.5

KF Force feedback—gain [rad/Nm] 0.0018

τF Force feedback—time constant [s] 17.4

The last column indicates how this parameter is typically obtained in experimental

studies. The sensory weight depends on the perturbation, i.e., support surface or visual

surround rotation, and represents the proprioceptive weight (WP ), or visual weight (WV ),

respectively.

symbolic toolbox (Version 2014b, Mathworks, Natick, MA):

Si
(

p, f
)

=
∂H

(

p, f
)

∂pi
(3)

where Si is the sensitivity of parameter pi for a specific parameter

set p and frequency range f, and
∂H(p,f )

∂pi
the partial derivative of

the TF H.
The sensitivity is a function of frequency consisting of

complex numbers, as the TF is also a function of frequency
with complex numbers. Therefore, it was investigated in both
the magnitude and phase of the TF which frequency region each
model parameter has its largest effect on the dynamic balance
behavior, i.e., for which frequencies the partial derivative is the
largest.

To show the unique contribution of the parameters per
frequency, we multiplied the partial derivatives with a scaling
factor (SF) such that for each parameter the relative maximal
change of the TF magnitude equals 0.7 (an arbitrary number;
Equation 4).

SFi =
0.7

max
(

compHSi(p,f )
|H(p,f )|

) (4)

where SFi is the scaling factor of parameter pi, compHSi
(

p, f
)

represents the component of Si(p,f ) with respect to TF H of
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the sensitivity of parameter pi for a specific parameter set p and
frequency range f and |H(p,f)| the magnitude of TF H.

This scaling factor was used in Equation (5) to calculate the
resulting transfer function by adding or subtracting the scaled
sensitivity.

H+
(

p, f
)

= H
(

p, f
)

+ SFi · Si
(

p, f
)

(5)

H−
(

p, f
)

= H
(

p, f
)

− SFi · Si
(

p, f
)

where Si is the sensitivity of parameter pi for a specific parameter
set p and frequency range f and SFi the scaling factor of parameter
pi. The component of H+(p,f ) and H−(p,f ) with respect to TF
H represents the magnitude of H+(p,f ) and H−(p,f ), while the
angle of H+(p,f ) and H−(p,f ) represents the phase angle of
H+(p,f ) and H−(p,f ) (see Figure 2).

To compare the sensitivity of each parameter, a normalized
sensitivity was calculated, as the sensitivity depends on the units
of the parameters and the transfer function, for which the changes
were expressed as proportions (Norton, 2015; Equation 6). The
normalized partial derivatives are comparable across parameters
despite the different units of the parameters.

Sn,i
(

p, f
)

=
pi

∣

∣H
(

p, f
)∣

∣

Si
(

p, f
)

(6)

where Si is the sensitivity of parameter pi for a specific parameter
set p and frequency range f and

∣

∣H
(

p, f
)
∣

∣ the magnitude of TFH.
The normalized partial derivatives are expressed by a magnitude,
representing the component of Sn,i with respect toH, and a phase
angle representing the angle difference betweenH plus Sn,i andH
(see Figure 2).

To indicate the relative importance of each parameter, an
importance measure (IMP) was calculated (Equation 7).

IMPi =

∫ 3

0.1
compHSn,i

(

p, f
)

d
(

log
(

f
))

(7)

where compHSn,i is the component of the normalized sensitivity
of parameter pi for a specific parameter set p and frequency range
f with respect to TF H. A high value indicates a high parameter
sensitivity; a small change in the parameter value results in a large
change in the TF magnitude.

Operating Points
Local sensitivity analysis estimates the partial derivatives at a
particular point in the model parameter space. However, it is
likely that the model parameters varied within a range from
person to person due to age and disease. The effect of the
model parameters on the balance behavior is nonlinear, which
results in a change of the sensitivity at different operating
points of the model. Therefore, we investigated the effect on the
partial derivatives of all parameters by systematically changing
parameters.

Previous studies showed that the time delay and the sensory
weights are important parameters changing with age and diseases
(Peterka, 2002; Cenciarini et al., 2010; Pasma et al., 2015;
Wiesmeier et al., 2015; Engelhart et al., 2016). To investigate

the effect of these parameter changes on the sensitivity of all
parameters on the TF, we changed the time delay and sensory
weight systematically from −30% till +30%, resulting in seven
partial derivatives per parameter and investigated the effect on
the normalized partial derivatives of all parameters.

RESULTS

Sensitivity of Balance Control Parameters:
from Support Surface Rotation to Body
Sway
Figures 3, 4 illustrate the sensitivity of the model parameters
on the TF magnitude and phase, respectively, in the chosen
operating point reported in Table 1. The anthropometric
parameters body mass (m) and Center of Mass height (h)
influence the shape of the TF magnitude between 0.1 and 1Hz
in a similar fashion; between 0.1 and 0.6Hz increasing these
parameters leads to a larger magnitude, while decreasing these
parameters leads to a smaller magnitude. At frequencies between
0.6 and 1Hz, this effect is reversed. Both parameters influence
the TF magnitude mostly on the low frequencies. The moment
of inertia (J) influences the shape of the TF magnitude mostly
above 0.6Hz; increasing its value decreases the magnitude and
vice versa. In other words, a decrease in m, h, and J effectually
increases the resonance peak of the magnitude.

The proportional gain (KP) shapes the TF magnitude mainly
in the lower frequencies (0.1–1Hz); increasing KP makes the
resonance peak of the magnitude more pronounced. KP mostly
influences the resonance peak. The derivative gain (KD) shapes
the magnitude over the whole frequency range; increasing KD

results in a lower magnitude at the lower frequencies (0.1–0.6Hz)
and a higher magnitude at the higher frequencies (0.6–3Hz).

The intrinsic stiffness (K) has a similar effect as KP. However,
K shapes the TF magnitude over the whole frequency range,
whereas KP influences the TF magnitude until 1Hz. Intrinsic
damping (B) mainly affects the resonance peak of the magnitude
between 0.3 and 0.8Hz.

Both muscle activation parameters (ω0 and β), as well as the
force feedback parameters (KF and τF) shape the TF magnitude
in a similar fashion. ω0 and τF influence the shape of the
magnitude in reverse directions compared with β andKF , leading
to an increase of the resonance peak of the magnitude with
decreasing ω0 and τF and increasing β and KF . In contrast with
the force feedback parameters, the muscle activation parameters
also influence the higher frequencies.

The sensory weight (WP) has a pronounced effect on the
whole frequency range of the TF magnitude; increasing WP

results in an increase of the TF magnitude on all frequencies.
The time delay (τD) predominantly affects the frequencies around
the resonance peak (i.e., 0.6Hz); increasing τD increases the
resonance peak at this frequency point, which is in accordance
with the destabilizing effect of a time delay in a feedback loop.

As shown in Figure 4, the shape of the TF phase is influenced
between 0.1 and 1Hz in a similar fashion by the anthropometric
parameters m and h; increasing these parameters leads to an
increased phase lag between 0.1 and 1Hz and vice versa. J has

Frontiers in Computational Neuroscience | www.frontiersin.org 4 October 2017 | Volume 11 | Article 99

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pasma et al. Sensitivity Analysis of a Balance Control Model

FIGURE 2 | Representation of adding (green) or subtracting (red) the (normalized or scaled) partial derivatives from the transfer function H at one frequency resulting in

a change in magnitude (A) and change in phase (B).

effect on the TF phase at the frequencies around the resonance
peak (i.e., 0.6Hz); increasing J leads to an increased phase lag and
vice versa.

KD has also an effect on the TF phase at the frequencies

around the resonance peak (i.e., 0.6Hz); increasing KD leads to a

decreased phase lag between 0.3 and 1Hz and vice versa. KP and

K have a similar effect on the phase; increasing these parameters

leads to a decreased phase lag between 0.1 and 0.6Hz and vice

versa. However, the effect of KP reverses at between 0.6 and

0.7Hz, whereas the effect of K is equal till 0.8Hz.

B, ω0 and β all influence the TF phase between 0.5 and 3Hz.
Increasing ω0 and B decreases the phase lag, whereas decreasing
ω0 and B has the opposite effects. For β these effects are
reversed compared withω0 and B. The force feedback parameters
KF and τF have opposite effects on the TF phase; increasing
KF leads to a decreased phase lag and vice versa at lower
frequencies. This effect is reversed above 0.6Hz. In contrast with
the muscle activation parameters, the force feedback parameters
also influences the TF phase on the low frequencies.

WP hardly affects the shape of the TF phase. In contrast,
τD clearly influences the TF phase. The dominant effect can
be observed at the frequencies around the resonance peak (i.e.,
0.6Hz); increasing τD becomes apparent for the TF phase above
these frequencies resulting in an increased phase lag.

Table 2 presents the importance measures of each parameter.
The importance measures of K, B, KF , and τF are low (<0.5)
compared with the other parameters. This means that these
parameters have to change more to get a comparable change as
the other parameters. J, WP, and KD show the highest important
measures; the TFmagnitude is most sensitive for changes in these
parameters.

Sensitivity of Balance Control Parameters:
From Visual Surround Rotation to Body
Sway
For almost all parameters, the results of the local sensitivity
analysis of the TF from visual surround rotation to body sway
are comparable to the sensitivity analysis of the TF from support
surface rotation to body sway. However, the parameters K and
B did influence the TF in a different way as shown in Figure 5.
Increasing or decreasing K has a more pronounced effect onHVS

in the lower frequency ranges, compared to HSS; increasing K
leads to larger decreases in HVS compared to HSS for frequencies
up to 0.6Hz. Contrary, B has a less pronounced effect on the
higher frequencies (>2Hz) of the HVS compared to the HSS:
increases in B do not have an effect on the HVS compared for
frequencies larger than 2Hz, whereas B did influence HSS in this
region.
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FIGURE 3 | Sensitivity of each parameter of the model’s transfer function from support surface rotation to body sway (HSS) on the TF magnitude represented by

adding or subtracting the partial derivatives from the TF magnitude; green indicates the effect of a parameter increase and red a parameter decrease. The partial

derivatives are multiplied by a scaling factor such that the relative maximum change of the magnitude is 0.7.
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FIGURE 4 | Sensitivity of each parameter of the model’s transfer function from support surface rotation to body sway (HSS) on the TF phase represented by adding or

subtracting the partial derivatives from the TF phase; green indicates the effect of a parameter increase and red a parameter decrease. The partial derivatives are

multiplied by a scaling factor such that the relative maximum change of the magnitude is 0.7.
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The sensory weight WV influences the TF magnitude on all
frequencies, which is comparable to WP. However, the effect is
equal over all frequencies. In contrast with WP, WV does not
influence the TF phase.

The importance measures (Table 2) are comparable with the
importance measures as found in the sensitivity analysis of TF

TABLE 2 | Relative importance of parameters.

Parameter HSS HVS

Moment of inertia (J) 1.30 1.30

Body mass (m) 1.19 1.19

Centre-of-mass height (h) 1.19 1.19

Intrinsic muscle stiffness (K) 0.06 0.08

Intrinsic muscle damping (B) 0.39 0.26

Activation dynamics—natural frequency (ω0) 1.20 0.99

Activation dynamics—relative damping (β) 1.26 1.04

Time delay (τD) 0.75 0.59

Sensory proprioceptive weight (WP ) 1.58 –

Sensory visual weight (WV ) – 1.48

Proportional gain (KP ) 1.19 1.18

Derivative gain (KD) 1.88 1.70

Force feedback—gain (KF ) 0.08 0.08

Force feedback—time constant (τF ) 0.08 0.08

The importance measure represents the relative importance of each parameter.

Importance measures are presented for both TFs, namely HSS and HVS.

from support surface rotation to body sway. The importance
measures of most of the parameters are clearly lower, indicating
that HVS is less sensitive to changes of most of the parameters
compared with HSS. Furthermore, HVS is sensitive to changes in
WV , but less sensitive compared to HSS to changes inWP.

Effect of Operating Point
Figures 6–9 show the effect of systematically changing the
sensory weight and time delay on the normalized sensitivity of all
parameters. Figures 6, 7 clearly show that changing the sensory
weight mainly effects the sensitivity of KP, KD, B, ω0, β , τD,
and WP on the TF magnitude on the high frequencies. A higher
WP results in less sensitivity on the high frequencies. Also, the
sensitivity on TF phase is mainly influenced on high frequencies.

Figures 8, 9 clearly show the influence of changing the time
delay on the normalized sensitivity of all parameters; increasing
the time delay results in a higher sensitivity of all parameters
around the resonance peak for both the TF magnitude and
TF phase. Furthermore, the frequency of the highest sensitivity
changes.

DISCUSSION

In this study we performed a local sensitivity analysis based on
partial derivatives of a commonly used balance control model
(i.e., the ICmodel) to investigate the unique contribution and the
relative importance of the parameters incorporated in the model.
The results showed that all parameters shape the TF magnitude

FIGURE 5 | Sensitivity of the sensory weight (WV ), intrinsic stiffness (K), and intrinsic damping (B) of the model’s transfer function from visual surround rotation to

body sway (HVS) on the magnitude and phase represented by adding or subtracting the partial derivatives from the TF magnitude or phase; green indicates the effect

of a parameter increase and red a parameter decrease. The partial derivatives are multiplied by a scaling factor such that the relative maximum change of the

magnitude is 0.7.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 October 2017 | Volume 11 | Article 99

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pasma et al. Sensitivity Analysis of a Balance Control Model

FIGURE 6 | Change in the normalized sensitivity of each parameter of the model’s transfer function from support surface rotation to body sway (HSS) on the TF

magnitude with systematically changing the sensory weight.
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FIGURE 7 | Change in the normalized sensitivity of each parameter of the model’s transfer function from support surface rotation to body sway (HSS) on the TF phase

with systematically changing the sensory weight.
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FIGURE 8 | Change in the normalized sensitivity of each parameter of the model’s transfer function from support surface rotation to body sway (HSS) on the TF

magnitude with systematically changing the time delay.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 October 2017 | Volume 11 | Article 99

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pasma et al. Sensitivity Analysis of a Balance Control Model

FIGURE 9 | Change in the normalized sensitivity of each parameter of the model’s transfer function from support surface rotation to body sway (HSS) on the TF phase

with systematically changing the time delay.
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and phase and therefore play a role in the balance behavior.
However, the importance of the parameters varies. The sensory
weight, the time delay, the derivative gain, and the proportional
gain are of relatively high importance and show a unique
contribution to the TF, suggesting that the used balance control
model is suitable for the identification of these parameters with
experimental data, which is confirmed by other studies showing
changes in these parameters with age and disease (Peterka, 2002;
Cenciarini et al., 2010; Pasma et al., 2015; Wiesmeier et al., 2015).

Sensitivity Analysis of a Balance Control
Model
Balance control models consist of several parameters which
could interact. Therefore, it is difficult to recognize the unique
contribution and relative importance of each parameter to
balance control. The results of the sensitivity analysis help with
optimizing the balance control models and show the unique
contribution of each parameter. In case parameters have similar
contributions to the TF, this indicates that these parameters
interact and therefore are difficult to distinguish, such as the
intrinsic stiffness and proportional gain. The model can be
simplified by eliminating some of these parameters or by giving
some parameters a constant value obtained from different
experiments.

The sensitivity analysis also shows the relative importance
of each parameter represented by the importance measures.
The TF is less sensitive to changes in parameters with low
importance measures, which indicates that these parameters are
less important to describe changes in dynamic balance behavior,
such as the force feedback parameters and the intrinsic stiffness.
Therefore, these parameters can be kept constant or can even
be removed from the model. However, this might influence the
sensitivity of the other parameters by changing the operating
point. On the other hand, parameters with a high importance
measure indicate high sensitivity and it is recommended to focus
on these parameters.

Many Parameters Influence the Transfer
Function in a Similar Fashion
The results showed that many parameters act in the same
frequency range and shape the TF in a similar fashion. For
example, both the proportional gain (KP) and intrinsic stiffness
(K) similarly shape the magnitude of the TF in the lower
frequencies (0.1–1Hz). This is a very well-known effect, which
makes it very difficult to disentangle the effect of the intrinsic and
reflexive (i.e., proportional gain) stiffness. However, for upright
stance, it has been shown many times that the contribution of
the intrinsic stiffness is low (i.e., about 10%), compared to the
reflexive stiffness (Peterka, 2002; Vlutters et al., 2015). This is also
shown by the low importance measure for the intrinsic stiffness
compared with the importance measure of the proportional gain.
Therefore, lumping these two parameters would not give rise to
large errors in estimations of ankle stiffness and in descriptions
of the dynamic balance behavior. However, as consequence no
distinction could be made between the intrinsic stiffness and
proportional gain. Therefore, possible differences in intrinsic

stiffness and proportional gain between patient groups would not
be detectable.

The force feedback (KF , τF) is effective in the low and mid
frequencies (0.2–0.8Hz), with an inverse relationship between
the influence of each of the two parameters on the TF. This
indicates that there is some interaction between the parameters
and overparameterization, which can be solved by combining
those parameters into one parameter or removing one of the
parameters. As mentioned previously, the integral gain (KI) and
the force feedback gain also have similar influence on the TF at
low frequencies as shown by previous studies (Peterka, 2003).
This can also be shown with a sensitivity analysis to support the
decision to removeKI from the model, which will nicely illustrate
the practical use of sensitivity analysis.

The sensory weight (WP) influenced the magnitude of the TF
across the whole frequency range; an increase in WP increased
the magnitude and vice versa, while the phase of the TF remained
unaffected. This confirms previous studies, which showed that
when participants increase their sensory weighting, this can
be easily extracted from the TF, by searching for increases or
decreases in the magnitude of the TF over the whole frequency
range (Peterka, 2002; Pasma et al., 2012). However, the effect
of the other parameters on the TF still needs to be taken into
account.

On the other hand, the visual weight WV and the
proprioceptive weight WP have a different effect on the TFs.
This can be explained by Equations (1, 2). With support surface
rotations not only the proprioceptive weight, but also the
intrinsic dynamics interact. This is represented by the inclusion
of both the intrinsic dynamics and sensory weight factors in
the numerator of Equation 1. Therefore, WP does not act as a
constant gain likeWV does.

Influence of Operating Point
It should be noted though that the results of sensitivity analysis
vary with the operating point chosen. The operating point (i.e.,
the set of values for model parameters) chosen in this study
(Table 1) is obtained from studies in healthy subjects (Peterka,
2002; van der Kooij and Peterka, 2011). Therefore, it remains
to be elucidated whether different values of model parameters
in subjects with altered neuromuscular dynamics (e.g., elderly)
affect the TF in a similar way as in healthy young subjects, as
it is reasonable to assume that they have a different operating
point, due to e.g., increased proprioceptive weight (Pasma et al.,
2015;Wiesmeier et al., 2015) or time delay (Engelhart et al., 2016)
or increased derivative and proportional gain (Cenciarini et al.,
2010).

Changing the operating point with respect to the sensory
weight only lowers the sensitivity in the higher frequency regions
of both the TF magnitude and TF phase, i.e., a lower importance
measure, with increasing proprioceptive weight. Changing the
operating point with respect to the sensory weight does not
influence the frequency regions the parameters act on.

Changing the operating point with respect to the time
delay does influence the frequency regions the parameters act
on. The frequency of the maximal partial derivative changes,
i.e., the resonance peak changes. Furthermore, the maximal
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change itself increases with increasing time delay, representing
a higher sensitivity and therefore a higher importance measure.
In other words, the TFs become more sensitive to changes of all
parameters in case of a higher time delay.

Future studies that combine sensitivity analysis and
experimental research are needed to gain insight into the
role of altered neuromuscular dynamics or reweighting strategies
on parameter estimates of balance control models.

Practical Applications
Sensitivity analysis can be used to predict how changes in
model parameters, induced by pathophysiological conditions,
may affect balance control. Based on existing knowledge
about pathophysiological changes in patient groups, sensitivity
analysis can be used to formulate explicit hypotheses with
respect to changes in the TF that these pathophysiological
mechanisms induce. For example, as we know that elderly with
polyneuropathy have less reliable proprioceptive information,
this might result in less use of the proprioceptive information, i.e.,
a decrease in the sensory weight of proprioceptive information
WP. Therefore, we can expect a decrease of the TF over the whole
frequency range. Furthermore, we can hypothesize an increase
of sensitivity of the other parameters on the high frequencies.
Hence, sensitivity analyses in experimental data may lead tomore
hypothesis-driven instead of explorative research and ultimately
to a better interpretation for observed changes in balance control
in people with balance disorders. However, one always has to
keep in mind that several parameters could have the same effect
on the TF.

Sensitivity analysis also might play an important role in
designing new experiments and perturbation signals. From the
sensitivity analysis, it is possible to gain more insight in which
regions of the TF are influenced by which parameter. Based
on the research question and hypothesis, one can identify the
parameters of interest and therefore the regions of interest,
i.e., the frequencies which are influenced by the parameters of
interest. By designing a perturbation signal with more power
on the frequencies of interest, the value of the corresponding
parameters might be estimated more reliably.

Limitations
In the current study we used the IC model to describe balance
control, which is a linearized and simplified balance control
model and therefore frequently used in literature to describe
balance control in healthy and clinical populations. The used
model and methods assume that the behavior of the participants
is linear and does not change over time. Furthermore, it assumes

that the body moves as a single inverted pendulum and is
stabilized primarily by the ankle torques. These assumptions are
justified during small movements.

However, the IC model cannot be used in case of large
movements and to investigate (a) adaptive behavior, (b) multi-
segmental balance control, and (c) cognitive effects, as the model
might miss some essential details. In that case, other models
might be more interesting to use to describe balance control,
like nonlinear models, intermittent control models, PDA control
models, and multi-segmental models (Mergner, 2007; Insperger
et al., 2013; Gawthrop et al., 2014; Hwang et al., 2016). The
sensitivity analysis used in this study may also applicable to
these kind of models and will provide more insight in the
relative importance and contribution of model parameters and
the applicability of the models.

CONCLUSION

The local sensitivity analysis performed in this study contributes
to the better understanding of the balance control model. It
gives more insight in the unique contribution of all parameters
on the shape of the TF and shows the relative importance of
all parameters. The force feedback parameters and the intrinsic
parameters are relatively less important, while the sensory weight,
the time delay, the derivative gain, and the proportional gain
are more important and uniquely contribute to the TF. This
suggests that the used balance control model is suitable for the
identification of the sensory weight, time delay and reflexive
dynamics with experimental data, which potentially makes it able
to identify differences between individuals and among different
patient groups. The comparison of reliably identified parameters
can give insight into the mechanisms that contribute to changes
with age and with disease processes.
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APPENDIX A-HUMAN BALANCE
CONTROL MODEL

In the model, the human body is represented by an inverted
pendulum rotating about the ankle joint. Input of the system is
the support surface or visual surround rotations and the output
is the body sway (see Figure 1). The derivation of the model
subsystems is described below.

Human Body Dynamics
The human body dynamics (BD) are described by a single link
inverted pendulum, incorporating the ankle joint, as in:

BD (s) =
1

Js2 −mgh
(A1)

where J is the body’s moment of inertia about the ankle joint axis
and m the body mass; g is the gravitational constant and h is the
height of the Center of Mass above the ankle joint, and s is the
Laplace variable.

Sensory Systems
The visual, proprioceptive and graviceptive (i.e., vestibular)
sensory systems provide information regarding body
orientation with respect to their individual internal
reference. In this Independent Channel (IC) model
(Peterka, 2002) the contribution of the sensory systems can
be represented by relative weights, with one weight per
sensory channel (i.e., WV, WP, WG). The sensory weights
are summed up to 1, providing all the sensory information
required to detect body orientation in space and estimate
deviations from an upright posture (Cenciarini and Peterka,
2006).

Force Feedback
A torque-related sensory channel is included in the model
to better explain low-frequency dynamics (Peterka, 2003).
This positive force feedback (F), which is added to the
visual, proprioceptive and graviceptive sensory signals, can be
described by:

F (s) =
KF

τFs+ 1
(A2)

where KF and τF are the force feedback’s gain and time constant,
respectively.

Neuromuscular System
The neuromuscular system processes the motion- and force-
related feedback to generate corrective torques in the ankle joint
and stabilize posture. The neuromuscular system consists of two
main components; the intrinsic and reflexive dynamics.

Intrinsic Dynamics
The intrinsic dynamics (P) describe the tonic muscle activation,
related to the intrinsic properties of muscles and tendons, i.e.,
visco-elasticity, and act without a time delay, containing a
stiffness (K) and a damping component (B) as in:

P (s) = K + Bs (A3)

Reflexive Dynamics
The reflexive dynamics represent the reflexive muscle activation,
i.e., feedback control of the system, and comprise the neural
controller along with the (muscle) activation dynamics.
The neural controller, by incorporating proportional and
derivative components (i.e., PD control), processes the afferent
sensory signals, and subsequently generates appropriate motor
commands to activate the muscle systems. The reflexive
feedback acts with a time delay, due to neural signal processing
and transduction. The total transfer function of the reflexive
dynamics (NC), combining the neural signal transport delay
with the PD controller and the muscle activation dynamics is the
following.

NC (s) = eτDs · (KP + KDs) ·
ω0

2

s2 + sβω0
2 + ω0

2
(A4)

where τD is the time delay; KP and KD are the controller’s
proportional and derivative gains resp.; ω0 and β are the natural
frequency and the relative damping of the muscle activation
dynamics.
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