
ORIGINAL RESEARCH
published: 21 November 2017

doi: 10.3389/fncom.2017.00104

Frontiers in Computational Neuroscience | www.frontiersin.org 1 November 2017 | Volume 11 | Article 104

Edited by:

Florentin Wörgötter,

University of Göttingen, Germany

Reviewed by:

J. Michael Herrmann,

University of Edinburgh,

United Kingdom

Christian Leibold,

Ludwig-Maximilians-Universität

München, Germany

*Correspondence:

Takashi Matsubara

matsubara@phoenix.kobe-u.ac.jp

Received: 31 May 2017

Accepted: 02 November 2017

Published: 21 November 2017

Citation:

Matsubara T (2017) Conduction Delay

Learning Model for Unsupervised and

Supervised Classification of

Spatio-Temporal Spike Patterns.

Front. Comput. Neurosci. 11:104.

doi: 10.3389/fncom.2017.00104

Conduction Delay Learning Model for
Unsupervised and Supervised
Classification of Spatio-Temporal
Spike Patterns
Takashi Matsubara*

Computational Intelligence, Fundamentals of Computational Science, Department of Computational Science, Graduate

School of System Informatics, Kobe University, Hyogo, Japan

Precise spike timing is considered to play a fundamental role in communications

and signal processing in biological neural networks. Understanding the mechanism of

spike timing adjustment would deepen our understanding of biological systems and

enable advanced engineering applications such as efficient computational architectures.

However, the biological mechanisms that adjust andmaintain spike timing remain unclear.

Existing algorithms adopt a supervised approach, which adjusts the axonal conduction

delay and synaptic efficacy until the spike timings approximate the desired timings.

This study proposes a spike timing-dependent learning model that adjusts the axonal

conduction delay and synaptic efficacy in both unsupervised and supervised manners.

The proposed learning algorithm approximates the Expectation-Maximization algorithm,

and classifies the input data encoded into spatio-temporal spike patterns. Even in the

supervised classification, the algorithm requires no external spikes indicating the desired

spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent

with biological models and hypotheses found in existing biological studies, it could

capture the mechanism underlying biological delay learning.

Keywords: spiking neural network, temporal coding, delay learning, activity-dependent myelination, spike timing-

dependent plasticity, unsupervised learning

1. INTRODUCTION

As confirmed in biological studies, the precise timing of a neuronal spike plays a fundamental role
in information processing in the central nervous system (Carr and Konishi, 1990; Middlebrooks
et al., 1994; Seidl et al., 2010). In information coding called temporal coding, the timing of at least
one generated spike represents an output. In contrast, in rate coding, spiking neural network (SNN)
generates spikes repeatedly over a certain period and the number of generated spikes represents
an output (Brader et al., 2007; Nessler et al., 2009; Beyeler et al., 2013; O’Connor et al., 2013;
Diehl and Cook, 2015; Zambrano and Bohte, 2016). SNNs in rate coding are increasingly being
investigated for efficient computational architectures in engineering applications. The SNN-based
architectures consume less energy and require smaller hardware area than traditional artificial
neural network architectures (Querlioz et al., 2013; Neftci et al., 2014; Cao et al., 2015). However,
repeated spike generation increases the computational time (VanRullen and Thorpe, 2001). To
improve the efficiency of SNN-based architectures, the SNN can be implemented in temporal
coding rather than rate coding (Matsubara and Torikai, 2013, 2016).
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When multiple pre-synaptic spikes simultaneously arrive at
a post-synaptic neuron, they evoke a large excitatory post-
synaptic potential (EPSP). In response, the post-synaptic neuron
elicits a spike and thereby delivers the signal to the latter
part of the SNN with a high probability (see Figure 1). In
other words, a neuron behaves as a coincidence detector. As
the membrane potential of the post-synaptic neuron increases
rapidly with increasing efficacy of the projecting synapse,
synaptic modification influences the post-synaptic spike timing.
Many algorithms adjust the timing of post-synaptic spikes in
a supervised manner by potentiating synapses that potentially
evoke EPSPs at the desired timing, while depressing other
synapses. Examples are the ReSuMe algorithm (Ponulak, 2005;
Sporea and Grüning, 2013; Matsubara and Torikai, 2016), the
Tempotron algorithm (Gütig and Sompolinsky, 2006; Yu et al.,
2014), and algorithms proposed in Pfister et al. (2006) and
Paugam-Moisy et al. (2008). A pre-synaptic spike arrives at
a post-synaptic neuron through the axon of the pre-synaptic
neuron. The delay incurred by traveling through the axon is
called the axonal conduction delay (Waxman and Swadlow,
1976). Thus, temporal coding must consider the pre-synaptic
spike timing plus the conduction delay (see left panel of
Figure 1B). Izhikevich et al. (2004) and Izhikevich (2006b)
demonstrated that even when the conduction delays are constant,
an SNNwith synaptic modification called spike timing-dependent
plasticity (STDP) (Markram et al., 1997; Bi and Poo, 1998) self-
organizes its characteristic responses to spatio-temporal spike
patterns. In Gerstner et al. (1996), multiple pre-synaptic neurons
driven by a single signal source deliver the signal to a post-
synaptic neuron after various delays. Synaptic modification
maintains the synapses that simultaneously evoke an EPSP by
potentiating them and prunes other synapses by depressing
them. SpikeProp (Bohte et al., 2002) models a similar process
in a supervised manner. However, under the assumption of
multiple connections, the SNN requires numerous unused paths
for future development. Alternatively, the SNN accepts limited
spatio-temporal spike patterns depending on the initial network
connections and conduction delays. Fixing the delay time limits
the flexibility and efficiency of the SNN (see right panel of
Figure 1B).

As mentioned above, information processing in a neural
circuit requires the synchronous arrival of spikes elicited by
multiple pre-synaptic neurons, and thus optimal conduction
delay in the axons is critical. Axons are surrounded by myelin,
which works as an electrical insulator and reduces the conduction
delay (Rushton, 1951). Myelination and demyelination of axons
appear to depend on neuronal activity (Fields, 2005; Bakkum
et al., 2008; Jamann et al., 2017). Fields (2015) and Baraban et al.
(2016) hypothesized that synaptic modification occurs only after
the arrival timings of the pre-synaptic spikes have been adjusted
by activity-dependent myelination.

The adaptation of the conduction delay is called delay
learning. Supervised delay learning algorithms such as the DL-
ReSuMe algorithm (Taherkhani et al., 2015) directly adjust the
conduction delay to suit the given spatio-temporal patterns
of the pre- and post-synaptic spikes. After the adjustment,
the SNN generates post-synaptic spikes at the desired timings
(see Figure 1C). These algorithms answer the purpose to

reproduce the spatio-temporal patterns, but are not suited
for classification of the spatio-temporal patterns because the
desired timings are generally unknown and should be manually
adjusted with great care in the classification tasks. Hence, this
approach reduces the flexibility in the context of machine
learning and poorly represents biological systems that self-
adapt to changing environments. In unsupervised delay learning,
the SNN instead self-organizes in response to a given spike
pattern (Hüning et al., 1998; Eurich et al., 1999, 2000). However,
none of the unsupervised delay learning algorithms tackled
practical tasks such as classification and reproduction of given
spike patterns (see Table 1 for comparison). Thus, a delay
learning algorithm that classifies given spike patterns in both
unsupervised and supervised manners is greatly desired.

The present study proposes an unsupervised learning
algorithm that adjusts the conduction delays and synaptic
weights of an SNN. In a theoretical analysis, the proposed
learning algorithm is confirmed to approximate the Expectation-
Maximization (EM) algorithm. Optimization algorithms in
probabilistic models including EM algorithm have been analyzed
SNNs with no or fixed delay (e.g., Nessler et al., 2009; Kappel
et al., 2014, 2015; Rezende and Gerstner, 2014). The proposed
learning algorithm can be considered to extend the earlier
methods to the conduction delay optimization. When evaluated
on several practical classification tasks, the proposed algorithm
successfully discriminated the given spatio-temporal spike
patterns in an unsupervised manner. Furthermore, the algorithm
was adaptable to supervised learning for improved classification
accuracy. Remarkably, even in the supervised classification, the
algorithm does give no external spikes indicating the timings
at which the SNN should generate spikes. The adjustment of
the synaptic weight in the proposed algorithm mimics that
of STDP and occurs after the conduction delay was adjusted,
supporting the hypothesis of Fields (2015) and Baraban et al.
(2016). Therefore, the proposed learning algorithm presents as a
good hypothetical model of biological delay learning, and might
contribute to further investigations of SNNs in temporal coding.
Preliminary and limited results of this study were presented in
our conference paper (Matsubara, 2017).

2. SPIKE TIMING-DEPENDENT
CONDUCTION DELAY LEARNING

2.1. Spiking Neural Network (SNN)
An SNN consists of multiple pre-synaptic neurons x0, . . . , xN−1
connected to a post-synaptic neuron z (see Figure 1A). Let T
be an experimental time period and δ be the time step. The
discrete times are denoted by t = 0, δ, 2δ, . . . (t < T). The
binary variable xi,s is set to 1 when a pre-synaptic neuron xi
generates a spike at time s and 0 otherwise. Owing to the discrete
time, a spike has a width equal to the time step δ. Hence, each
set x = {xis} represents a spatio-temporal spike pattern (see
Figure 1B). The pre-synaptic neuron xi is connected to the post-
synaptic neuron z via a synapse with a synaptic weight Wi ≥ 0
and a conduction delay τi ≥ 0. A pre-synaptic spike xis = 1
arrives at the post-synaptic neuron z after a conduction delay τi.
After τi, the spike evokes an excitatory post-synaptic potential
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FIGURE 1 | (A) Schematic of a spiking neural network (SNN) consisting of multiple pre-synaptic neurons xi and a post-synaptic neuron z. W0 denotes the weight of

the synapse projecting from the pre-synaptic neuron x0 to the post-synaptic neuron z, and τ0 denotes the conduction delay of the axon corresponding to the

synapse. (B,C) Post-synaptic spikes in response to spatio-temporal spike patterns. Each vertical line denotes a spike elicited by a neuron. Dotted lines show the

transmission paths of the pre-synaptic spikes to the post-synaptic neuron z. (B) When the conduction delays are fixed, the post-synaptic neuron responds to the

spatio-temporal pattern of pre-synaptic spikes and elicits a spike (left panel), but is unresponsive to a second pattern (right panel). (C) When the conduction delays are

plastic, the optimized SNN generates post-synaptic spikes at times depending on the given spatio-temporal patterns of the pre-synaptic spikes.

TABLE 1 | Comparison of SNNs in different studies.

Studies Weight Delay Coding Learning manner Classification

Brader et al., 2007 and others* Plastic No Rate Unsupervised and/or supervised Yes

Ponulak, 2005 and others ** Plastic No Temporal Supervised Yes

Izhikevich et al., 2004; Izhikevich, 2006b Plastic Fixed Temporal Unsupervised No

Gerstner et al., 1996 Plastic Fixed/multiple Temporal Unsupervised No

Bohte et al., 2002 Plastic Fixed/multiple Temporal Supervised Yes

Taherkhani et al., 2015 Plastic Plastic Temporal Supervised Yes

Hüning et al., 1998 and others *** Plastic Plastic Temporal Unsupervised No

This study Plastic Plastic Temporal Unsupervised and supervised Yes

*Brader et al., 2007; Nessler et al., 2009; Beyeler et al., 2013; O’Connor et al., 2013; Querlioz et al., 2013; Neftci et al., 2014; Diehl and Cook, 2015; Zambrano and Bohte, 2016.
**Bohte et al., 2002; Ponulak, 2005; Gütig and Sompolinsky, 2006; Pfister et al., 2006; Paugam-Moisy et al., 2008; Matsubara and Torikai, 2016.
***Hüning et al., 1998; Eurich et al., 1999, 2000.

(EPSP) proportional to the synaptic weight Wi. The time course
of the EPSP is expressed by a temporal relation function g(1t)
that depends on the temporal difference s− t and the conduction
delay τi (namely, 1t = s + τi − t). For multiple pre-synaptic
spikes, the EPSP is the linear sum of the EPSPs evoked by the
pre-synaptic spikes. Then, the post-synaptic membrane potential
vt at time t is then given by

vt =
∑

is

xisWig(s+ τi − t). (1)

The binary variable zt is set to 1 when the post-synaptic neuron z
generates a spike at time t and 0 otherwise. For the parameters
τ = {τi} and W = {Wi} and a given spatio-temporal spike
pattern x = {xis}, the post-synaptic neuron z is assumed to
generate a single spike within the experimental time period 0 ≤
t < T, i.e.,

∑

t zt = 1. Such a constraint is important and

is commonly applied in studies of temporal coding (e.g., Bohte
et al., 2002) where the output of the SNN in temporal coding
is defined as the timing of the post-synaptic spike. The present
study initially follows the previous studies, but later proposed an
alternative model without the constraint (see section 2.5). This
study also assumes that for a spatio-temporal spike pattern x =
{xis}, the probability of generating a post-synaptic spike zt = 1 at
time t is exponentially proportional to the EPSP normalized by a
constant Z =

∑

t′ exp(vt′ ) as follows:

p(zt = 1|x) = exp(vt)
∑

t′ exp(vt)

= 1

Z
exp(vt) (2)

∝ exp

(

∑

is

xisWig(s+ τi − t)

)

.
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Note that p(zt = 1|x) > 0 at any time t. In other words,
the post-synaptic neuron z can elicit a spike even before the
first pre-synaptic spike arrives. In biological neural networks,
such spikes are induced by physiological noise. Note also that
the normalizing constant Z includes a term vt′ denoting the
membrane potential at a future time t′ > t. Therefore, sampling
the post-synaptic spike zt = 1 requires anti-causal information.
The alternative model proposed in section 2.5 overcomes this
limitation.

2.2. Multinoulli-Bernoulli Mixture Model
This subsection introduces the mixture probabilistic model. Let
x be a set of visible binary random variables {xis}, each following
a Bernoulli distribution, and z be a set of latent binary random
variables {zt} following a Multinoulli distribution, i.e.,

∑

t zt = 1.
Also let ω = {ωt} denote the mixture weights, and π = {πist}
denote the posterior probability of xis = 1 given zt = 1. The
generative Multinoulli-Bernoulli mixture model p(z, x;ω,π) is
then expressed as

p(z, x;ω,π) =
∏

t

[

ωt

∏

is

(πist)
xis (1− πist)

1−xis

]zt

,

log p(z, x;ω,π) =
∑

t

zt

[

logωt +
∑

is

xis log
πist

1−πist

+
∑

is

log(1−πist)

]

.

Here, the posterior probability πist is substituted by sigm(Vist)
using the sigmoid function sigm(u) = (1 + exp(−u))−1. In
addition, Vist is modeled by the function Wig(s + τi − t) − v
where v is a bias parameter and the mixture weight wt is assumed
to have a constant value eb. The log-probability is then rewritten
as

log p(z, x;ω,π) =
∑

tzt
[

logωt+
∑

is xisVist−
∑

is log(1+ eVist )
]

=
∑

tzt

[

b+
∑

is xis(Wig(s+ τi − t)− v)

−
∑

is log(1+e(Wig(s+τi−t)−v))
]

(3)

= log p(z, x;W, τ ).

When the experimental time period T is sufficiently long and the
time t is sufficiently distant from the temporal boundaries (0 and

T), b̂ is independent of the post-synaptic spike timing t; that is,

b̂ = b−
∑

is log(1+ eWig(s+τi−t)−v). The posterior probability of
zt = 1 given x = {xis} is then equivalent to Equation (2);

p(zt = 1|x;W, τ ) = p(zt = 1, x)
∑

t′ p(zt′ = 1, x)

∝ exp

(

b̂+
∑

is

xis(Wig(s+ τi − t)− v)

)

∝ exp

(

∑

is

xisWig(s+ τi − t)

)

.

2.3. Learning Algorithm Based on the EM
Algorithm
The SNN model Equation (2) can be optimized through
optimization of the Multinoulli-Bernoulli mixture model
Equation (4) under the certain constraints . Let θ be the
parameter set andX be a dataset of spatio-temporal spike patterns
x. In general, training a generative model involves maximizing
the model evidence Ex∼X[log p(x; θ)] (Murphy, 2012). For an
arbitrary distribution q(z), the evidence is expressed as

Ex∼X
[

log p(x; θ)
]

= Ex∼XEz∼q(z)

[

log
p(z, x; θ)q(z)
p(z|x; θ)q(z)

]

= Ex∼XEz∼q(z)
[

log p(z, x; θ)− log q(z)
]

+ Ex∼X
[

DKL(q(z)||p(z|x; θ))
]

= L(θ)+ Ex∼X
[

DKL(q(z)||p(z|x; θ))
]

,

where the evidence lower bound L(θ) equals
Ex∼XEz∼q(z)

[

log p(z, x; θ)− log q(z)
]

and DKL(·) is
the Kullback-Leibler divergence. The model evidence
Ex∼X

[

log p(x; θ)
]

can be maximized by the Expectation-
Maximization (EM) algorithm. In the E-step, q(z) is substituted

by the posterior probability p(z|x; θold) of the mixture model

with the currently estimated parameter set θold. The M-step
updates the estimated parameter set θ to maximize the evidence
lower bound L(θ). The present study employs a stochastic
version of the EM algorithm (Sato, 1999; Nessler et al., 2009).
Given a spatio-temporal spike pattern x̂, the stochastic EM
algorithm first generates a post-synaptic spike ẑ by Equation (2).
This spike generation corresponds to the E-step of the EM
algorithm. Next, the parameters θ = {W, τ } are updated to
maximize the evidence lower bound L(θ) using a gradient ascent
algorithm. This parameter update corresponds to the M-step
of the EM algorithm. From an SNN perspective, the parameter
update corresponds to synaptic plasticity with delay learning.
Note that, unlike the original EM algorithm, the M-step of the
stochastic EM algorithm is not guaranteed to maximize the
model evidence Ex∼X

[

log p(x; θ)
]

but at least maximizes the
evidence lower bound L(θ).

Based on Equation (4), the gradients of the evidence lower
bound L(θ) w.r.t. the conduction delay τi and synaptic weight
Wi are respectively given by;

∂

∂τi
L(θ) =

∑

t

zt
∑

s

(xis − sigm(Wig(s+ τi − t)− v))

× g(s+ τi − t)Wi
−(s+ τi − t − µ)

σ 2
(4)

= −
∑

t

zt
∑

s

xis · g(s+ τi − t)Wi
s+ τi − t − µ

σ 2

= −
∑

t

zt
∑

s

xis · g(1t)Wi
1t − µ

σ 2
,

∂

∂Wi
L(θ)

=
∑

t,s

zt(xis − sigm(Wig(s+ τi − t)− v))g(s+ τi − t)
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=
[

∑

t,s

ztxisg(s+τi−t)
]

−
[

∑

1t′
sigm(Wig(1t′) − v)g(1t′)

]

=
[

∑

t,s

ztxisg(1t)

]

−
[

∑

1t′
sigm(Wig(1t′)− v)g(1t′)

]

.

(5)

As Equation (4) and the first term in Equation (5) are
independent of the time step δ, the second term in Equation (5)
(which does depend on δ) is multiplied by δ: This normalization
makes Equation (5) robust to the size of the time step δ. The
parameters θ are then updated as follows:

θ ← θ + η
∂

∂θ
L(θ)

∣

∣

∣

∣

z=ẑ,x=x̂
,

where η is a learning rate. The conditions are similar in a
supervised manner, except that the post-synaptic spike ẑ is
sourced externally.

2.4. Classification
A spatio-temporal spike pattern x is associated with one of the
timings t = 0δ, 1δ, . . . depending on the timing t of the generated
post-synaptic spike zt = 1. However, a given dataset X of spatio-
temporal spike patterns x should be classifiable into smaller
groups. In this study, the decision boundaries between N groups
are defined as the n-th N-quantiles (n = 1, 2, . . . ,N − 1) of the
generated post-synaptic spike timings t for which zt = 1. For
example, suppose that a dataset X contains 100 spatio-temporal
spike patterns x falling into estimated two groups. The spatio-
temporal spike patterns x are then sorted by the timings t of
the post-synaptic spikes zt = 1. After sorting, patterns 1–50
are classified into group 1 and the remainder are classified into
group 2.

2.5. Alternative Spiking Neural Network
In the SNN introduced above, the Multinoulli distribution
p(z|x; τ ,W) must be sampled over time t to generate a post-
synaptic spike zt = 1. In other words, whether a post-synaptic
spike zt = 1 is generated at time t anti-causally depends on
the EPSP vt′ and post-synaptic spike zt′ at a future time t′ > t.
To remove this unrealistic assumption, this subsection slightly
modifies the SNN formulation. The new formulation replaces
the Multinoulli distribution with multiple independent Bernoulli
distributions and introduces the following Bernoulli–Bernoulli
mixture model with posterior probability ρ = {ρist} of xis = 1
given zt = 0;

p(zt , x;ω,π , ρ) =
[

ωt

∏

is

(πist)
xis (1− πist)

1−xis

]zt

×
[

(1− ωt)
∏

is

(ρist)
xis (1− ρist)

1−xis

]1−zt
.

In this case, given a spatio-temporal spike pattern x, the posterior
probabilities p(zt|x;ω,π , ρ) of the post-synaptic spikes zt = 1
at times t are completely independent. As described above, the
prior probabilityωt of zt = 1 is replaced with a time-independent

term eb and the posterior probability πist of xis = 1 given zt = 1
is modeled as πist = sigm(Vist) = sigm(Wig(s + τi − t) − v). In
addition, the posterior probability ρist is substituted by a constant
sigm(v). The log-probability function becomes

log p(zt , x;ω,π , ρ)

= zt

[

logωt +
∑

is

xis log
πist

1− πist
+
∑

is

log(1− πist)

]

+ (1− zt)

[

log(1− ωt)+
∑

is

xis log
ρist

1− ρist

+
∑

is

log(1− ρist)

]

= zt

[

log
ωt

1− ωt
+
∑

is

xis (Vist + v)−
∑

is

log
1+ eVist

1+ e−v

]

+
[

log(1− ωt)− v
∑

is

xis +
∑

is

log(1+ e−v)

]

= zt

[

b̂+
∑

is

xisWig(s+ τi − t)

−
∑

is

log
(

1+ eWig(s+τi−t)−v
)

]

+ ĉ

= log p(zt , x;W, τ ),

where b̂ = log ωt
1−ωt
+
∑

is log(1 + e−v) and ĉ = log(1 − ωt) −
v
∑

is xis +
∑

is log(1+ e−v). The prior probability ωt is replaced

by an independent variable b̂ and a variable ĉ that depends on b̂
and v.

The posterior probability of zt = 1 given x is expressed as

p(zt = 1|x;W, τ ) = sigm(log p(zt=1, x;W, τ )

− log p(zt=0, x;W, τ ))

= sigm
(

b̂+
∑

is

xis
(

Wig(s+ τi − t)
)

(6)

−
∑

is

log
(

1+ eWig(s+τi−t)−v
))

= sigm

(

∑

is

xisWig(s+ τi − t)+b̃
)

,

where b̃ = b̂ −
∑

is log(1 + eWig(s+τi−t)−v). The variable

b̂ is replaced by a variable b̃, which is treated as an
independent parameter hereafter. The independent parameter b
in the Bernoulli–Bernoulli mixture model is additional to the
parameters in the Multinoulli-Bernoulli mixture model.

The evidence lower bound L(θ) is given by
Ex∼XEzt∼q(zt)

[

log p(zt , x; θ)− log q(zt)]
]

. The gradients of
L(θ) w.r.t. the parameters τi andWi are, respectively given by

∂

∂τi
L(θ) = zt

∑

s

(xis − sigm(Wig(s+ τi − t)− v))

× g(s+ τi − t)Wi
−(s+ τi − t − µ)

σ 2
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= −zt
∑

s

xis · g(s+ τi − t)Wi
s+ τi − t − µ

σ 2

= −zt
∑

s

xis · g(1t)Wi
1t − µ

σ 2
, (7)

∂

∂Wi
L(θ) =

∑

s

zt(xis − sigm(Wig(s+ τi − t)− v))g(s+ τi − t)

=
[

∑

s

ztxisg(s+τi−t)
]

−
[

∑

1t′
sigm(Wig(1t′)−v)g(1t′)

]

=
[

∑

s

ztxisg(1t)

]

−
[

∑

1t′
sigm(Wig(1t′)− v)g(1t′)

]

.

(8)
Equations (7) and (8) are equivalent to Equations (4) and (5)
respectively, but are summed over time t (they sum the post-
synaptic spikes zt = 1). Therefore, given a spatio-temporal spike
pattern x and a single post-synaptic spike zt = 1, the parameters
are updated as in the Multinoulli-Bernoulli mixture model.

Unlike the SNN based on the Multinoulli-Bernoulli mixture
model, the above SNN is unconstrained by the number of post-
synaptic spikes (i.e.,

∑

t zt ∈ Z). To prevent an excessive
number or the complete absence of post-synaptic spikes, this
subsection introduces homeostatic plasticity (Turrigiano et al.,
1999; Turrigiano and Nelson, 2000), a biological mechanism
that presumably maintains the excitability of a neuron within a
regular range (Van Rossum et al., 2000; Abraham, 2008; Watt
and Desai, 2010; Matsubara and Uehara, 2016). The additional
parameter b̃ in Equation (6) embodies the intrinsic excitability

of the Bernoulli neuron z. The intrinsic excitability b̃ is adjusted
after every receipt of the spatio-temporal spike pattern x. When
post-synaptic neuron z generates at least one spike (i.e.,

∑

t zt >

0), its intrinsic excitability b̃ reduces by b̃−; conversely if no spikes
are generated (i.e.,

∑

t zt = 0), its intrinsic excitability b̃ increases

by b̃+. Algorithmically, this conditional expression is given by

b̃←
{

b̃− b̃− if
∑

t zt > 0

b̃+ b̃+ otherwise.

The spatio-temporal spike patterns x are classified as described
in section 2.4, with an important difference; each post-synaptic
spike zt = 1 is weighted by the inverse number of generated post-
synaptic spikes, i.e., 1/

∑

t zt . In other words, a spatio-temporal
spike pattern x is associated with a group by majority voting of
multiple post-synaptic spikes zt = 1.

3. EXPERIMENTS AND RESULTS

3.1. Windows of Plasticity
In this study, the temporal relation function g(1t) was expressed
as the following Gaussian function:

g(1t) = 1√
2πσ

exp

(

− (1t − µ)2

2σ 2

)

. (9)

Here, the parameters µ and σ denote the mean and standard
deviation of the distribution, respectively. Figure 2A plots the

temporal relation function g(1t) when µ = 1.5 ms and σ = 1
ms. The EPSP is commonly modeled by the double-exponential
function (e.g., Shouval et al., 2010), which has zero gradient for
all 1t < 0. As the proposed SNN is trained according to the
gradient of the temporal relation function g(1t), the double-
exponential function is unsuitable for the purpose. In this study,
the causality was preserved by clamping the temporal relation
function g(s+ τi − t) to 0 for all s− t < 0.

The experimental time period T was 50 ms, the time step δ

was set to 0.05 ms. The remaining parameters were set toµ = 1.5
ms, σ = 1.0 ms, v = 10, and η = 0.001, unless otherwise
stated. The gradients of the evidence lower bound L(θ) w.r.t. the
conduction delay τi and synaptic weight Wi were considered
to be changes by the delay learning and synaptic plasticity,
respectively. When plotted against the temporal difference 1t =
s + τi − t, the gradients represent the temporal windows of the
delay learning and synaptic plasticity. As shown in Figure 2B,
the conduction delay τi increases (decreases) when the temporal
difference 1t is smaller (larger) than 1.5 ms. The EPSP peaks at
1.5 ms, indicating that a post-synaptic spike xt = 1 attracts the
nearby pre-synaptic spikes xis = 1. The temporal window of the
synaptic weight Wi is similar to that of the STDP (Figure 2C).
Specifically, the synapse is potentiated (depressed) when the
temporal difference 1t is positive (negative), but is always
depressed when the temporal difference 1t is large and positive,
as noted in previous electrophysiological studies (Markram
et al., 1997; Bi and Poo, 1998) and theoretical studies (Shouval
et al., 2002; Wittenberg and Wang, 2006; Shouval et al., 2010).
Figure 2D plots the amount of synaptic modification1Wi versus
the current synaptic weight Wi. The decreasing trend is again
consistent with previous electrophysiological (Bi and Poo, 1998)
and theoretical (Van Rossum et al., 2000; Gütig et al., 2003;
Shouval et al., 2010; Matsubara and Uehara, 2016) studies.

3.2. Results for Toy Spike Patterns
First, the SNN and the proposed learning algorithm based
on the Multinoulli-Bernoulli mixture model were evaluated on
toy spike patterns generated by three pre-synaptic neurons.
Figure 3A shows typical spatio-temporal spike patterns x. The
pre-synaptic neurons x0, x1, and x2 elicited spikes at 1+ξ0,
5+ξ1, and 13+ξ2 ms respectively in spike pattern A, and at
13+ξ0, 9+ξ1, and 1+ξ2 ms, respectively in spike pattern B.
Here, ξ0, ξ1, and ξ2 are the noise terms following a uniform
distribution U(−1, 1). Fifty samples from each of spike patterns
A and B were extracted as the training dataset; other fifty
samples were reserved as the test dataset. All synaptic weights
Wi were uniformly initialized to 1, and the conduction delays
τi (ms) were sampled from the uniform distribution U(5, 15).
The post-synaptic neuron z was repeatedly fed with the spatio-
temporal spike patterns x, and generated spikes zt = 1.
The gray shaded areas in Figure 3A depicts the posterior
probability p(zt = 1|x;W, τ ) of spiking each millisecond.
Figure 3B shows the probability distribution of post-synaptic
spike timings zt = 1 for the test dataset before learning.
The unlearned model cannot discriminate the spike patterns
A and B using the post-synaptic spike timings zt = 1. Note
that the proposed SNN is intrinsically probabilistic, meaning
that a post-synaptic neuron can elicit a spike at an arbitrary
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FIGURE 2 | (A) A temporal relation function g(1t), representing an excitatory post-synaptic potential (EPSP) or current (EPSC), when the pre-synaptic spike is elicited

at s = 0 ms. The parameters were set to µ = 1.5 ms and σ = 1.0 ms and the conduction delay τi was set to τ = 10 ms. (B–D) The gradients of the lower bound L(θ )

of the model evidence Ex∼X [log p(x; θ )] with respect to the parameters Wi and τi . The time step δ was 0.05 ms, the experimental time period T was 50 ms, and the

remaining parameters were set to v = 10, and η = 0.001. The gradient shapes depend on the shape of the temporal relation function g(1t). (B) Temporal window of

the delay learning, showing the relationship between the temporal difference 1t and the change 1τi in conduction delay τi , where 1t = s+ τi − t. (C) Temporal

window of the synaptic plasticity, showing the relationship between the temporal difference 1t and the change 1Wi in synaptic weight Wi . (D) The change 1Wi in

synaptic weight Wi versus the current synaptic weight Wi for 1t = 1.5 ms (orange) and 1t =-5.0 ms (blue).

time t. During the learning procedure, the synaptic weights
Wi and the conduction delays τi were gradually changed by
the proposed learning algorithm (Figure 3E). The conduction
delays τi (ms) were clamped to the range 0–20 ms but never
reached the limits. Figure 3F shows random samples of the post-
synaptic spike timings zt = 1, separated into spike patterns
A and B by the decision boundary (the solid black line).
After sufficiently many samples, the spike patterns converged
into limited temporal ranges and the two groups were clearly
demarcated. The post-synaptic spike timings zt = 1 and
their distributions after the learning procedure are exemplified
in Figures 3C,D, respectively. In this trial, the classification
accuracy of both the training and test datasets converged to
100 %. The average classification accuracy over 100 trials was
99.6 ± 2.6% for the training dataset and 99.6 ± 2.5% for
the test dataset (Figure 3G). The results are summarized in
Table 2.

3.3. Results for the Iris Flower Dataset
Next, the proposed learning algorithm was evaluated on the iris
flower dataset (Fisher, 1936), which consists of the data of three
species (Setosa, Versicolor, and Virginica). The dataset of each
species comprises 50 data points, and each data point consists of
four features (the lengths and widths of the sepals and petals).
Accordingly, the number N of pre-synaptic neurons was set to

4. The spike timing of each feature was normalized to the range
0–10 ms. As the sepal length k0 ranges from 4.3 to 7.9 cm, the
pre-synaptic neuron x0 generated a single spike at s0 = 10 ×
k0−4.3
7.9−4.3 ms. The generated post-synaptic spikes zt = 1 were then
classified into three groups corresponding to the three species.
Fifteen randomly chosen data points were assigned as the test
set; the remainder were used as the training dataset. The other
conditions were those described in section 3.2. The results are
summarized in Figure 4. The average classification accuracy over
100 trials was 89.5±5.3% for the training dataset and 89.5±7.5%
for the test dataset.

For comparison, this subsection introduces the results of
the multilayer ReSuMe algorithm (Sporea and Grüning, 2013),
a supervised learning algorithm for multilayer SNNs in rate
coding. The multilayer ReSuMe algorithm was also evaluated
on the iris flower dataset. In this evaluation, a trial was deemed
successful if the classification accuracy exceeded 95% on the
training dataset. After weeding out the unsuccessful trials, the
proposed learning algorithm and multilayer ReSuMe algorithm
achieved a classification accuracy of 94.7± 6.5 and 94.0± 0.79%
respectively, on the test dataset (see Table 3). Despite its single-
layer architecture, the SNN trained by the proposed learning
algorithm classified the iris flower dataset at least as accurately
as the multilayer SNN trained by the multilayer ReSuMe
algorithm.
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FIGURE 3 | Results of SNN based on the Multinoulli-Bernoulli mixture model, evaluated on toy spike patterns. (A) Representative spatio-temporal spike patterns A

(top panel) and B (bottom panel), and the post-synaptic spikes zt = 1 before the learning procedure. Vertical lines represent pre-synaptic spikes xis = 1 and

post-synaptic spikes zt = 1 (the left vertical axes). Dotted lines denote transmission of the pre-synaptic spikes xis = 1 to the post-synaptic neuron z with conduction

delays τi . Gray shaded areas denote the probability of eliciting a post-synaptic spikes zt = 1 per 1 ms (the right vertical axes). (B) Test distributions of the

post-synaptic spike timings zt = 1 before learning. (C) Post-synaptic spike timings zt = 1 after learning, given the spatio-temporal spike patterns x in (A). (D) Test

distributions of the post-synaptic spike timing zt = 1 after learning. (E) Trajectories of the synaptic weights Wi and conduction delays τi during the learning procedure.

The darkest lines denote the values of the parameters W0 and τ0, and the lighter lines denote Wi and τi for i = 1, 2, . . . . (F) Random samples of the post-synaptic

spike timings zt = 1. The black solid line marks the decision boundary between spike patterns A and B. (G) Classification accuracy in the training and test datasets,

each averaged over 100 trials.

3.4. Results for the MNIST Dataset
In this subsection, the proposed learning algorithmwas evaluated
on the MNIST dataset (LeCun et al., 1998), which contains 28
× 28 grayscale images of 70,000 handwritten digits. In standard
rate coding, the pixel intensities are represented by 28 × 28 =
784 pre-synaptic neurons (Nessler et al., 2009; Beyeler et al.,

2013; O’Connor et al., 2013; Querlioz et al., 2013; Neftci et al.,
2014; Diehl and Cook, 2015; Zambrano and Bohte, 2016). To
emphasize the temporal coding, this study instead represented
the rows and columns of the images by 28 pre-synaptic neurons
and their 28 corresponding spike timings, respectively. When a
pre-synaptic neuron xi generated a spike at time s, the intensity
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TABLE 2 | Classification accuracy of the proposed SNN based on the

Multinoulli-Bernoulli mixture model.

Dataset Unsupervised Supervised

Training Test Training Test

Toy spike patterns 99.6± 2.6 99.6± 2.5 100.0 ± 0.0 99.8± 1.2

Iris flower dataset 89.5± 5.3 89.5± 7.5 93.9 ± 5.3 89.4± 9.1

MNIST dataset 88.7± 3.4 88.7± 3.7 90.2 ± 4.0 90.1± 4.1

All the classification accuracies are expressed as ave. ± std. (%).

of the pixel in row i and column s of the image was considered
to exceed 0.5 (see Figure 5A). For simplicity, only the digits 0
and 8 were included in the analysis. After removing the other
digits, 13,728 images were available. This experiment employed a
10-fold cross-validation: 10 % of images were randomly chosen
for the test set. The results are summarized in Figure 5. This
experiment yielded much more pre-synaptic spikes xis = 1
than the previous two experiments. During transmission, the
pre-synaptic spikes xis = 1 that largely contributed to the post-
synaptic spike zt = 1 were emphasized. More specifically, if
µ−1 < 1t = s+τi−t < µ+1 for the post-synaptic spike zt = 1,
the pre-synaptic spikes xis = 1 was emphasized with a thick color
line, whereas other pre-synaptic spikes xis = 1 were attenuated
(see Figures 5A,C). According to Figure 5C, the C-shaped edges
are heightened, indicating that the SNN selectively detects and
responds to these edges. In general, the C-shaped edge appears
on the left side of digit 0 and in the center of digit 8, so the post-
synaptic spikes zt = 1 responded earlier to “0” than to “8”. In
some trials, the SNN responded to reversed C-shaped edges (or
to edges in digits such as “7”), and the post-synaptic spikes zt = 1
responded earlier to “8” than to “0” (see Figure 6). The average
classification accuracy over 100 trials was 88.7 ± 3.4% for the
training dataset and 88.7± 3.7% for the test dataset.

3.5. Results without Delay Learning
The proposed learning algorithm was also evaluated without
delay learning. More specifically, the synaptic weights Wi were
updated by Equation (5), and the conduction delays τi were
clamped to their initial values (i.e., were not updated by Equation
4). The other conditions were those described in previous
subsections. All of the accuracies were drastically reduced (see
Table 4).

3.6. Results with Supervised Learning
The proposed learning algorithm is adaptable to supervised
learning, in which synaptic plasticity and delay learning are not
self-driven by generated post-synaptic spikes, but are driven by
external spikes z̃t = 1 generated at the desired timings (Bohte
et al., 2002; Ponulak, 2005; Gütig and Sompolinsky, 2006; Pfister
et al., 2006; Paugam-Moisy et al., 2008; Taherkhani et al., 2015;
Matsubara and Torikai, 2016). However, the desired timings z̃t =
1 are generally unknown. In this study, the spatio-temporal spike
patterns x are classified by whether the post-synaptic spike timing
zt = 1 arrives earlier or later than the boundary decision. The
group with the latest average post-synaptic spike timing should

generate the most delayed post-synaptic spike. Therefore, the
“late” group were given an external post-synaptic spike z̃t+d = 1
(where d > 0) after the generated post-synaptic spike zt = 1.
Meanwhile, the “early” group were given a post-synaptic spike
z̃t−d = 1 before the generated post-synaptic spike zt = 1.
These post-synaptic spikes zt+d = 1 and zt−d = 1 tend to
delay or advance the generated post-synaptic spike zt = 1,
respectively. In this study, the time parameter d was set to δ =
0.05 ms. The results of supervised learning are summarized in
Tables 2, 3. In almost every case, the classification accuracy was
improved, confirming that the proposed learning algorithm can
be adapted to supervised learning without manually adjusting the
spike timings.

3.7. Results with Multiple Post-synaptic
Spikes
This subsection evaluates the SNN based on the Bernoulli–
Bernoulli mixture model described section 2.5. The homeostatic
plasticity parameters were set to b+ = 0.01 and b− = 0.0001,
indicating that, on average, one in every hundred spatio-temporal
spike patterns induces no post-synaptic spike zt = 1. To
determine the decision boundaries, the absence of the post-
synaptic spike zt = 1 was considered to indicate an exceptionally
late post-synaptic spike (e.g., zT = 1). As shown in Tables 3, 5,
the classification accuracy was improved in the iris flower dataset
but degraded in the MNIST dataset. As an example, Figure 7
shows the results of applying multiple post-synaptic spikes in the
MNIST dataset.

4. DISCUSSION

Rate-coding SNNs have already succeeded in various
unsupervised and supervised learning tasks (Brader et al.,
2007; Nessler et al., 2009; Beyeler et al., 2013; O’Connor et al.,
2013; Diehl and Cook, 2015; Zambrano and Bohte, 2016),
and have provided the opportunity for efficient computational
architectures (Querlioz et al., 2013; Neftci et al., 2014; Cao
et al., 2015). However, rate coding requires repeated sampling
of the generated spikes, which increases the computational
time (VanRullen and Thorpe, 2001). The alternative approach
is temporal coding, which encodes the information into a
spatio-temporal spike pattern. Temporal coding requires the
timing of at least one spike (Bohte et al., 2002; Ponulak, 2005;
Gütig and Sompolinsky, 2006; Pfister et al., 2006; Paugam-
Moisy et al., 2008; Yu et al., 2014; Taherkhani et al., 2015),
potentially enabling more efficient computational architectures
than those based on rate coding (Matsubara and Torikai, 2013,
2016). These studies computed gradients of spike timing or
excitatory post-synaptic potential with respect to synaptic
weight and/or conduction delay, and adjusted to them to elicit
post-synaptic spikes at the desired timings. However, they
focused exclusively on supervised learning algorithms, which
always require teacher spikes at the desired timings. In general,
the desired timings are unknown and require careful manual
adjustment. Therefore, this approach limits the flexibility in the
context of machine learning and poorly represents biological
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FIGURE 4 | Results of SNN based on the Multinoulli-Bernoulli mixture model, evaluated on the iris flower dataset (Fisher, 1936). (A) Representative spatio-temporal

spike patterns of Setosa (top panel), Versicolor (middle panel), and Virginica (bottom panel), and the post-synaptic spikes zt = 1 before learning. Vertical lines

represent pre-synaptic spikes xis = 1 and post-synaptic spikes zt = 1 (the left vertical axes). Dotted lines denote transmission of the pre-synaptic spikes xis = 1 to the

post-synaptic neuron z with conduction delays τi . Gray shaded areas denote the probability of eliciting a post-synaptic spikes zt = 1 per 1 ms (the right vertical axes).

(B) Test distributions of the post-synaptic spike timings zt = 1 before learning. (C) Post-synaptic spike timings zt = 1 after learning, given the spatio-temporal spike

patterns x in (A). (D) Test distributions of the post-synaptic spike timing zt = 1 after learning. (E) Trajectories of the synaptic weights Wi and conduction delays τi

during the learning procedure. The darkest lines denote the values of the parameters W0 and τ0, and the lighter lines denote Wi and τi for i = 1, 2, . . . . (F) Random

samples of the post-synaptic spike timings zt = 1. The black solid lines mark the decision boundaries between the three species. (G) Classification accuracy in the

training and test datasets, each averaged over 100 trials.

systems that self-adapt to changing environments. Unsupervised
delay learning algorithms have received far less attention than
supervised learning. The few studies published in this area
have not approached practical tasks such as classification and
reproduction of given spike patterns (Hüning et al., 1998; Eurich
et al., 1999, 2000). In contrast, the proposed unsupervised
learning algorithm approximates the EM algorithm (see

section 2), and can therefore classify the given spatio-temporal
spike patterns by inferring their hidden causes. Under the
proposed learning algorithm, the SNN also detected frequent
patterns in the given spatio-temporal spike patterns. In addition,
the proposed learning algorithm can be adapted to supervised
learning without the application of externally determined spike
timings.
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TABLE 3 | Classification accuracies in the iris flower dataset after selection.

Model Unsupervised Supervised

Training Test Training Test

MB model* 96.1 ± 0.7 94.7 ± 6.5 96.7 ± 1.1 92.2 ± 7.4

BB model** 96.2 ± 0.5 93.3 ± 5.4 96.7 ± 0.9 94.2 ± 5.8

Multilayer ReSuMe*** – – 96.0 ± 0.0 94.0 ± 0.8

*Proposed SNN based on the Multinoulli-Bernoulli model (section 3.3).
**Proposed SNN based on the Bernoulli–Bernoulli model (section 3.7).
***Sporea and Grüning, 2013.

The proposed learning algorithm relates the synaptic weight
modification 1W to the temporal difference 1t and the current
synaptic weight W (see section 3.1). When the temporal
difference 1t is positive, the synapse is potentiated; when 1t is
negative or largely positive, it is depressed. This relationship is
consistent with previous electrophysiological studies (Markram
et al., 1997; Bi and Poo, 1998) and has been discussed in
theoretical studies (Shouval et al., 2002; Wittenberg and Wang,
2006; Shouval et al., 2010). The amount of synaptic modification
1Wi decreases with increasing current synaptic weightWi. This
relationship is also consistent with previous electrophysiological
study (Bi and Poo, 1998) and is considered to maintain neuronal
activity by suppressing excessive potentiation (Van Rossum et al.,
2000; Gütig et al., 2003; Shouval et al., 2010; Matsubara and
Uehara, 2016). The Results of the iris flower dataset (summarized
in Figure 4) demonstrate that during the early learning phase, the
pre-synaptic spikes are not simultaneously delivered to the post-
synaptic neuron, and the synaptic weights and conduction delays
change only gradually. After 50,000 samples, the conduction
delays rapidly changed and almost converged to certain values
before 60,000 samples. At that time, the pre-synaptic spikes
arrived at the post-synaptic neuron simultaneously. Following
the changing conduction delays, the synaptic weights increase,
post-synaptic spikes become clustered, and the classification
accuracy becomes higher (see Figures 4E–G). Similar time
courses were observed for the toy spike patterns (see Figure 3).
These results support Fields (2015) and Baraban et al. (2016),
who hypothesized that conduction delay is adjusted for the
synchronous arrival of multiple pre-synaptic spikes before the
synaptic modification dominates. They also demonstrated that
clustered post-synaptic spikes and accurate classification require
the combined optimization of conduction delay and synaptic
weight. Before the synaptic weights increase, the classification
accuracy is poor. Therefore, delay learning and synaptic plasticity
are inherently linked as mentioned by Jamann et al. (2017).
Although, the detailed of biological delay learning (i.e., activity-
dependent myelination) remains unclear, this study provides a
good hypothetical explanation of the mechanism underlying this
process.

With the MNIST dataset, the test accuracies of the proposed
algorithm based on the Multinoulli-Bernoulli mixture model
were almost equal to the corresponding train accuracies as
summarized in Tables 2, 4. This could be because the MNIST has
a limited number of local minima insensitively to the separation

of the test dataset. Since the experiment employed a 10-fold cross-
validation, the average test accuracy becomes equal to the average
train accuracy if the proposed algorithm always converges to the
same local minimum. Actually, in all the 100 trials, the proposed
algorithm apparently converged to one of two local minima
shown in Figures 5, 6.

When the conduction delays were fixed, the classification
accuracy of the proposed learning algorithm drastically reduced
(see Table 4). This occurred because the classification depends
on the timing t of the post-synaptic spike zt = 1, which
remained almost static the delay modification. This result
demonstrates one advantage of the proposed learning algorithm
over other temporal coding learning algorithm such as the
ReSuMe algorithm (Ponulak, 2005; Sporea and Grüning, 2013)
and the Tempotron algorithm (Gütig and Sompolinsky, 2006; Yu
et al., 2014), which learn by synaptic modification only. Gerstner
et al. (1996) and Bohte et al. (2002) assumed multiple paths
from a single source to a post-synaptic neuron with various
delays. In such a situation, synaptic modification can adjust the
post-synaptic spike timing by pruning the inappropriate paths
leaving the appropriate ones only. However, an SNN based on
this approach either requires numerous unused paths for future
development, or its flexibility is limited by the initial network
connections and conduction delays. SNNs optimized by delay
learning algorithms such as the proposed learning algorithm are
more efficient and flexible. A performance comparison between
the two learning approaches is outside the scope of this paper, but
is a worthwhile future task.

Despite the single-layer architecture, the classification
accuracy of the SNN trained by the proposed learning
algorithm is comparable to (even slightly superior to) that
of multilayer ReSuMe, a supervised learning algorithm designed
for multilayer SNNs (Sporea and Grüning, 2013). Supervised
learning algorithms such as variants of ReSuMe (Ponulak,
2005; Sporea and Grüning, 2013; Taherkhani et al., 2015) and
Tempotron (Gütig and Sompolinsky, 2006; Yu et al., 2014)
require the desired timings of post-synaptic spikes, which
must be determined before the learning procedure. As the
desired timings are generally unknown, they should be adjusted
manually and carefully in classification tasks. On the other hand,
the proposed learning algorithm automatically determines the
desired timing from the given dataset and the initial parameter
values, even during a supervised learning. The removal of the
need for external timing is another advantage of the proposed
learning algorithm.

In temporal coding, the proposed learning algorithm requires
fewer parameters and fewer spikes than existing learning
algorithms in rate coding. Single-layer SNN in rate coding
required 4 pre-synaptic and 3 post-synaptic neurons with 15
parameters (4 weight parameters and a bias parameter for each
group) for the iris flower dataset, and more than 784 neurons
and parameters for 2 digits in the MNIST dataset (e.g., Nessler
et al., 2009; Neftci et al., 2014). In these algorithms, each pre-
synaptic neuron corresponds to a feature or a pixel, and each
post-synaptic neuron corresponds to a group. As a single neuron
represents multiple values by its spike timing in temporal coding,
the proposed neural network requires 4 pre-synaptic neurons and
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FIGURE 5 | Results of SNN based on the Multinoulli-Bernoulli mixture model, evaluated on the hand-written digits 0 and 8 in the MNIST dataset (LeCun et al., 1998).

(A) Representative spatio-temporal spike patterns of digit 0 (top panel) and digit 8 (bottom panel), and the post-synaptic spikes zt = 1 before learning. Thick colored

lines indicate the pre-synaptic spikes xis = 1, elicited within µ− 1 < 1t = s+ τi − t < µ+ 1 for zt = 1; other pre-synaptic spikes xis are depicted as thin gray lines

(the left vertical axes). Gray shaded areas denote the probability of eliciting a post-synaptic spikes zt = 1 per 1 ms (the right vertical axes). (B) Test distributions of the

post-synaptic spike timings zt = 1 before learning. (C) Post-synaptic spike timings zt = 1 after learning, given the spatio-temporal spike patterns x in (A). (D) Test

distributions of the post-synaptic spike timing zt = 1 after learning. (E) Trajectories of the synaptic weights Wi and conduction delays τi during the learning procedure.

The darkest lines denote the values of the parameters W0 and τ0, and the lighter lines denote Wi and τi for i = 1, 2, . . . . (F) Random samples of the post-synaptic

spike timings zt = 1. The black solid line marks the decision boundary between spike patterns the hand-written digits 0 and 8. (G) Classification accuracy in the

training and test datasets, each averaged over 100 trials.

1 post-synaptic neuron with 10 parameters (4 synaptic weights
Wi, 4 conduction delays τi, and 2 decision boundaries) for the
iris flower dataset, and only 29 neurons and 57 parameters for
2 digits in the MNIST dataset. In addition, each feature is the
iris flower dataset was encoded into a single spike timing with in
the range 0–10 ms with a time step of δ = 0.05 ms. Therefore,
the resolution of each feature was 200 stages. To achieve the

same resolution in rate coding, the pre-synaptic spikes must be
generated up to 200 times. The proposed learning algorithm
requires far fewer pre-synaptic spikes. In future works, rate
coding in the proposed and existing learning algorithms should
be compared with similar numbers of parameters and spikes.
Note that, as the proposed SNNs have only one post-synaptic
neuron, they can classify two or three groups at most. To classify
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FIGURE 6 | Other results on the hand-written digits 0 and 8 in the MNIST

dataset (LeCun et al., 1998). (A) Representative spatio-temporal spike

patterns of digit 0 (top panel) and digit 8 (bottom panel), and the post-synaptic

spikes zt = 1 after the learning procedure as per Figure 5C. Thick colored

lines indicate the pre-synaptic spikes xis = 1, elicited within

µ− 1 < 1t = s+ τi − t < µ+ 1 for zt = 1; other pre-synaptic spikes xis are

depicted as thin gray lines (the left vertical axes). Gray shaded areas denote

the probability of eliciting a post-synaptic spikes zt = 1 per 1 ms (the right

vertical axes). (B) Test distributions of the post-synaptic spike timing zt = 1

after learning. The SNN selectively responds to the reversed C-shaped edges,

so the post-synaptic spikes zt = 1 responding to “8” are earlier than those

responding to “0” (in contrast to Figure 5).

more groups, the proposed SNN must be generalized to multiple
interacting post-synaptic neurons.

This study proposed two types of SNNs; one based on the
Multinoulli-Bernoulli mixturemodel, the other on the Bernoulli–
Bernoulli mixture model. The former takes a single post-synaptic
spike from the temporal distribution, whereas the latter can
independently elicit a post-synaptic spike at every time step and

TABLE 4 | Classification accuracy of the proposed SNN without delay learning.

Dataset Unsupervised (Fixed delays)

Training Test

Toy spike patterns 94.9 ± 0.6 94.4 ± 0.9

Iris flower dataset 78.5 ± 12.0 77.2 ± 15.0

MNIST dataset 72.9 ± 11.8 72.9 ± 11.8

TABLE 5 | Classification accuracy of the proposed SNN based on thle

Bernoulli–Bernoulli mixture model.

Dataset Unsupervised Supervised

Training Test Training Test

Toy spike patterns 98.9± 3.0 98.9± 2.8 99.3± 2.3 98.1± 5.7

Iris flower dataset 90.1± 5.1 90.7± 7.8 93.1± 4.7 90.8± 7.7

MNIST dataset 83.7± 1.2 83.3± 1.5 84.8± 1.7 84.4± 1.8

exhibits a burst-like behavior. The SNN based on the Bernoulli–
Bernoulli mixture model classified the iris flower dataset more
accurately, and the MNIST dataset less accurately, than the
SNN based on the Multinoulli-Bernoulli mixture model. Owing
to the multiple generations of post-synaptic spikes, there was
little variation among trials in the iris flower dataset, and
the learning proceeded more robustly than in the SNN based
on the Multinoulli-Bernoulli mixture model. Consequently, the
accuracy was improved in this dataset. Conversely, the number
of pre-synaptic spikes representing a single image varied widely
in the MNIST dataset, generating a widely varying number of
post-synaptic spikes. The SNN based on the Bernoulli–Bernoulli
mixture model sometimes detected too many edges similar
to the template edge in various sub-regions, and sometimes
detected no edge. Meanwhile, the SNN based on the Multinoulli-
Bernoulli mixture model always detected the single edge that
best fitted the template edge. Therefore, the learning of the
SNN based on the Bernoulli–Bernoulli mixture model proceeded
less robustly, lowering the classification accuracy of the MNIST
dataset.

The SNN proposed in section 2.1 can also be implemented
in continuous time. However, the number of pre-synaptic spikes
xis = 1 is unlimited in this mode, and the joint probability
p(x, z) of the Multinoulli-Bernoulli and Bernoulli–Bernoulli
mixture models is difficult to define. For this reason, the SNN
was implemented in discrete time. The EPSP of the proposed
SNN is the linear sum of the EPSPs induced by multiple pre-
synaptic spikes xis = 1, and the proposed learning algorithms
in sections 2.3 and 2.5 were normalized by the time step δ.
Hence, the proposed SNN is robust to the time step δ and can be
approximated to continuous time as the time step δ approaches 0.

Note that Equation (4) and the first term in Equation (5)
are independent of the time step δ but the second term in
Equation (5) does depend on δ. When adjusting the time step δ.

In contrast, the behavior of dynamical spiking neurons
described by an ordinary differential equation is sensitive to the
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FIGURE 7 | Results of SNN based on the Bernoulli–Bernoulli mixture model

for the hand-written digits 0 and 8 in the MNIST dataset (LeCun et al., 1998).

(A) Representative spatio-temporal spike patterns of digit 0 (top panel) and

digit 8 (bottom panel), and the post-synaptic spikes zt = 1 after the learning

procedure as per Figure 5C. Thick colored lines indicate the pre-synaptic

spikes xis = 1, elicited within µ− 1 < 1t = s+ τi − t < µ+ 1 for zt = 1; other

pre-synaptic spikes xis are depicted as thin gray lines (the left vertical axes).

Gray shaded areas denote the probability of eliciting a post-synaptic spikes

zt = 1 per 1 ms (the right vertical axes). (B) Test distribution of mean timings of

the post-synaptic spikes zt = 1 after learning. Like the Multinoulli-Bernoulli

mixture model (see Figure 5), the SNN selectively responds to the C-shaped

edges.

time step and the numerical simulation algorithm (Hansel et al.,
1998). A continuous-time SNN and its corresponding generative
model will be explored in future work.

The Bernoulli–Bernoulli mixture model independently draws
a post-synaptic spike zt = 1 at each time step. However,
biological studies have confirmed that the intervals between

the generated spikes do not follow a Poisson distribution,
implying that the spikes in biological neural networks are not
independently generated (Burns and Webb, 1976; Levine, 1991).

When a dynamical neuron generates a spike, it enters the relative
refractory period. During this time, the neuron becomes less
sensitive to stimuli and is less likely to generate a spike. After the
relative refractory period, the neuron returns to its resting state
and resumes its usual chance of generating a spike (Izhikevich,
2006a, Chapter 8). Incorporated with these dynamics, the SNN
based on the Bernoulli–Bernoulli mixture model would be
purged of its burst-like behavior in the MNIST dataset (which
degraded the classification accuracy), and would be rendered
more computationally efficient and more biologically realistic. A
dynamic version of the proposed SNN is a further opportunity
for future work.

5. CONCLUSION

This study proposed an unsupervised learning algorithm that
adjusts the conduction delays and synaptic weights in an SNN.
The proposed learning algorithm approximates the Expectation-
Maximization (EM) algorithm and was confirmed to classify
the spatio-temporal spike patterns in several practical problems.
In addition, the proposed learning algorithm is adjustable to
supervised learning, which improves its classification accuracy.
The formulation of the proposed learning algorithm is partially
consistent with the synaptic plasticity demonstrated in previous
biological and theoretical studies. Therefore, the proposed
learning algorithm is a strong candidate model of biological delay
learning and will contribute to further investigations of SNNs in
temporal coding.
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