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The event-related potential (ERP) is the brain response measured in

electroencephalography (EEG), which reflects the process of human cognitive activity.

ERP has been introduced into brain computer interfaces (BCIs) to communicate the

computer with the subject’s intention. Due to the low signal-to-noise ratio of EEG, most

ERP studies are based on grand-averaging over many trials. Recently single-trial ERP

detection attracts more attention, which enables real time processing tasks as rapid face

identification. All the targets needed to be retrievedmay appear only once, and there is no

knowledge of target label for averaging. More interestingly, how the features contribute

temporally and spatially to single-trial ERP detection has not been fully investigated. In

this paper, we propose to implement a local-learning-based (LLB) feature extraction

method to investigate the importance of spatial-temporal components of ERP in a task

of rapid face identification using single-trial detection. Comparing to previous methods,

LLB method preserves the nonlinear structure of EEG signal distribution, and analyze the

importance of original spatial-temporal components via optimization in feature space.

As a data-driven methods, the weighting of the spatial-temporal component does

not depend on the ERP detection method. The importance weights are optimized by

making the targets more different from non-targets in feature space, and regularization

penalty is introduced in optimization for sparse weights. This spatial-temporal feature

extraction method is evaluated on the EEG data of 15 participants in performing a face

identification task using rapid serial visual presentation paradigm. Comparing with other

methods, the proposed spatial-temporal analysis method uses sparser (only 10% of

the total) features, and could achieve comparable performance (98%) of single-trial ERP

detection as the whole features across different detection methods. The interesting

finding is that the N250 is the earliest temporal component that contributes to single-trial

ERP detection in face identification. And the importance of N250 components is more

laterally distributed toward the left hemisphere. We show that using only the left N250

component over-performs the right N250 in the face identification task using single-trial

ERP detection. The finding is also important in building a fast and efficient (fewer

electrodes) BCI system for rapid face identification.
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INTRODUCTION

An event-related potential (ERP) is the brain response measured
in electroencephalography (EEG) signal, which is evoked by a
specific sensory, cognitive, or motor event (Luck, 2014). One
of the important ERP components, P3, is elicited when people
get involved in the process of target detection in the oddball
paradigm (Polich, 2007), in which low-probability target items
aremixed with high-probability non-target (or “standard”) items.
The detection of P3 has been introduced to the area of brain-
computer interface (BCI) that conveys subject’s intention in real-
time for different tasks, such as character spelling (Donchin
et al., 2000; Sellers et al., 2006; Belitski et al., 2011) and direction
control in wheelchair (Wang et al., 2005; Piccione et al., 2008;
Li et al., 2010). Among those BCI studies, one of the interesting
application is face identification (Cai et al., 2013). Face is
particularly special among all images due to the development
of primates’ central neural system in recognizing and socializing
with the same species (Gazzaniga et al., 2009). A face conveys
large amount of essential information in social interaction,
including identity, gender, age, emotional expressions. (Haxby
et al., 2002). The automatic machine face identification has
achieved good performance in the controlled environments with
constrained illumination, poses, or facial expressions (Gao and
Qi, 2005; Zhang andGao, 2009;Wu et al., 2010; Chen et al., 2013),
but is still far from satisfactory due to the non-rigid structure of
face and the high degree of variability in the above conditions
(Zhao et al., 2003; Tolba et al., 2006). In comparison, human
has powerful ability in identifying faces. We can identify faces
related to past experience using long term memory (Gosling
and Eimer, 2011; Zheng et al., 2012). What is extraordinary
is that our brain could perform face identification within a
surprisingly short time duration with high accuracy across large
viewpoint changes, under poor lighting conditions, even only
partial views are available (Eger et al., 2005; Gosling and Eimer,
2011).

The face processing in human brain can be recognized
by analyzing ERP in EEG signals. Due to the low signal-to-
noise ratio (SNR) of EEG, the ERP studies in neuroscience
or brain computer interface application are mainly based on
grand-averaging (Luck, 2014), i.e., EEG signals in multiple
trials with the same labels are averaged to reduce the noise
among trials. The statistical test is generally performed to

see if there is significant difference of the mean amplitudes

on each temporal component between conditions. The grand-

averaging approach may not be appropriate for the applications

where there is no label information for averaging. In addition,

the grand-averaging greatly reduces the efficiency of real-
time implementation, and increases the fatigue of the subjects
(Hoffmann et al., 2008; Krusienski et al., 2008). Therefore,
single trial detection of the ERP is necessary for real-time BCI
applications. Cai et al. proposed a BCI application to implement
face identification based on single-trial ERP detection using
face-related components, and demonstrated robust real-time
performance in rapid serial visual presentation (RSVP) paradigm
(Cai et al., 2013). Furthermore, a closed-loop BCI system
was proposed for face retrieval in database by integrating the

remarkable human recognition function with the fast searching
ability by computer vision (Wang et al., 2015).

ERP demonstrates different features distribution temporally
and spatially. Previous research has identified the temporal
components that are closely related to face processing, such
as the N170 component (Zheng et al., 2012), vertex positive
potential (VPP) (Kai et al., 1995) and the late component FP600
(Eimer, 2000). Due to the fact that the N170 is insensitive
to facial identity and familiarity, it is assumed that the N170
reflects the stages of structural encoding of faces prior to face
identification (Rossion et al., 1999; Bentin and Deouell, 2000;
Eimer, 2000; Gosling and Eimer, 2011; Zheng et al., 2012). To
further investigate the ERP components associated with face
identification, some studies have focused on the subsequent
N250. In Gosling and Eimer’s study (Gosling and Eimer, 2011),
in contrast to the N170, the N250 elicited by famous faces was
significantly larger than the N250 elicited by non-famous faces
in an explicit face identification task. Similarly, in a experiment
conducted by Zheng et al. (2012), participants performed a face
identification task while face identity strength was manipulated
by varying the relative weight of an individual face vs. the average
face. This work reports that the increase of the face identity
strength is associated with the larger N250, but the effect is
absent in the N170. These studies all suggest that the N250
is an early ERP component associated with face identification
task. In addition, other studies also report that, relative to
unfamiliar faces, familiar faces elicit distinct FN400, an enhanced
negativity over mid-frontal areas, which is believed to reflect
the later activation of semantic or episodic memory (Curran
and Hancock, 2007; Jon et al., 2011). On the other hand, using
noninvasive neuroimaging techniques (Han et al., 2013, 2015a,b),
such as functional magnetic resonance imaging (fMRI) and
positron emission tomography (PET), a face-related brain region
has been identified, the fusiform gyrus (Kanwisher et al., 1997;
Mccarthy et al., 1997; George et al., 1999; Kuskowski and Pardo,
1999; Rossion et al., 2000; Loffler et al., 2005), when a face is
shown among images with non-face topics such as object or
national scene. Research also suggests that different hemispheres
of brain could play roles non-symmetrically in identifying faces
(Keenan et al., 2001). Therefore, understanding the spatial and
temporal features of ERP could contribute to a fast and efficient
BCI design.

Investigation on both spatial and temporal features of the
ERPs may provide potentials using partially EEG electrodes
and early temporal components to generate an efficient face
identification application using single-trial ERP detection. It may
also shed light on understanding the mechanism of robust face
identification in brain. The classic grand averaging approach
identifies the component where the temporal amplitudes are
statistically significantly different between conditions (Gosling
and Eimer, 2011; Zheng et al., 2012). Researchers also develop
a few computational methods to analyze the spatial-temporal
features of ERPs. The most common used methods are Fisher
criterion (FC) (Krusienski et al., 2008; D’croz-Baron et al.,
2012; Guo et al., 2015), support vector machine recursive
feature elimination (SVMRFE) (Guyon et al., 2002; Hidalgo-
Muñoz et al., 2013), and mutual information (MI) (Shahriari
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and Erfanian, 2011; Ang et al., 2012). FC evaluates the feature
importance by linearly computing the ratio of inter-class scatter
to the intra-class scatter for each feature. The bigger the ratio
is, the more important the feature is. Krusienski et al. used
FC to analyze important features for P300 speller BCI, and
found the P300 features in the parietal electrodes contributed
the most to the ERP detection (Krusienski et al., 2008). SVMRFE
utilizes the weights of features in trained SVM model to indicate
the feature importance. Hidalgo-Muñoz and his colleagues
proposed to use SVMRFE to analyze the ERPs induced by
visual stimuli categorized with different value of affective valence.
They demonstrated that ERP features from 300 to 500ms in
the central, parietal and occipital electrodes were the most
relevant for classifying the affective valence (Hidalgo-Muñoz
et al., 2013, 2014). Liu et al. also adopted SVMRFE to analyze
the ERP features in the emotion recognition task (Liu et al.,
2014). The mutual information method is based on statistical
theory, it measures the feature importance by evaluating the
information amount between each feature and the class label.
Shahriari et al. proposed to use mutual information to analyze
important electrodes in P300 speller BCI, and demonstrated
that using features in 8 important electrodes located in central
areas can achieve comparable performance as the full electrodes
(Shahriari and Erfanian, 2011). Zhang et al. used mutual
information to analyze EEG features for mental fatigue analysis,
and demonstrated alpha band power in the parietal and occipital
electrodes contributed most to the fatigue level classification
(Zhang et al., 2016). However, FC and SVMRFE have linear
assumption, which cannot capture the nonlinear structure of
the EEG signal, and the extracted features depend on the ERP
detection models. Mutual information is data-driven and free
of modeling, but the extracted features may not be sparse.
In addition, all the above methods for feature extraction have
not been fully validated in the single trial ERP detection
application.

We are interested to investigate the early temporal
components and the hemisphere distributional features of
the ERPs in order to design an efficient face identification
task. In this paper, we propose to implement a local-learning-
based (LLB) feature extraction method (Sun et al., 2010) to
investigate the importance of spatial-temporal ERP features
in the face identification task. Fifteen participants were
instructed to perform a face identification task when face images
were presented through the rapid serial visual presentation
(RSVP) paradigm. The face images of 36 celebrities varied
in illumination, poses and expressions, even were partially
occluded. The corresponding EEG signals were simultaneously
collected and analyzed by the proposed spatial-temporal feature
extraction method. The LLB method has been used in gene
selection for cancer classification (Sun et al., 2010). In this paper,
the LLB method decomposes the nonlinear EEG signal into
a feature space by weighting the local structure of single trial
ERP features, where the weights indicate the importance of
the features over spatial distribution and temporal course. The
weights are obtained by minimizing the distances within the face
images of the same identity and maximizing distances from the
face images of other identities. With the weight decay operation,

the extracted spatial and temporal features are constrained to
be sparse. The temporal-spatial importance distribution of the
ERP components are also compared with FC, SVMRFE and
mutual information (MI). The contributions of the important
features are validated by applying the linear discriminant
analysis (LDA) (Bishop, 2006), linear SVM (linear-SVM), and
kernel SVM (K-SVM) (Rakotomamonjy and Guigue, 2008)
on the single-trial ERP detection using only the extracted
spatial-temporal components. The area under the receiver
operating characteristic (ROC) curve (AUC) is used as the target
identification performance criterion (Fawcett, 2004) considering
the false positive rate (FPR) and the true positive rate (TPR).
More specially, we investigate the earliest ERP component
over temporal course and the spatial distribution over different
hemispheres with respect to the rapid face identification.

The paper is organized as follows: in section Methods,
face identification task and EEG data collection are described,
followed by the descriptions of the spatial-temporal feature
extraction by the LLB method, target/non-target face
classification by single-trial ERP detection and performance
evaluation criterion. Our results are reported in detail in section
Results. Discussion and conclusion are in section Conclusion
and Discussion.

METHODS

Face Identification and Experiment
Procedure
Face images used in the identification task were selected from
Google Images, and consisted of 540 different color images of
36 celebrities (18 females, 18 males), 15 different exemplars for
each celebrity. The ratio of the familiarity vs. unfamiliarity of the
celebrities was 47.82 vs. 52.18% in average across participants. In
order to exclude non-facial cues of the identity of each image, all
face images were cropped and scaled to 200 × 200 pixels using
Adobe Photoshop. The face images varied in illumination, poses
and facial expressions, even were partially occluded (Cai et al.,
2013). The examples of the face images used in our experiment
are illustrated in Figure 1.

Totally 15 participants (7 males, 8 females, aged 21–25)
participated in this study. The experiments were approved by
the ethics committee of Zhejiang University. The experimental
setup complied with generally accepted guidelines for ERP study
documented in (Picton et al., 2000). During the experiment,
participants were seated comfortably in a dark and quiet cabin,
about 90 cm in front of a computer screen. The whole experiment
consisted of 12 blocks of target face identification task. In each
block, one celebrity was randomly selected from 36 candidate
celebrities, and served as target needed to be identified by the
participants. Each block consisted of 160 face images, including
10 face images of the chosen target and 150 face images that
were randomly selected from the rest 35 celebrities. All the 160
face images were presented in a random order to the participants
in the rapid serial visual presentation paradigm (Cai et al.,
2013), each face image was presented for 500ms, followed by a
blank inter-stimulus interval (ISI) of 500ms. Participants were
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FIGURE 1 | Examples of the face images used in our experiment. Each row shows 4 different exemplars of a celebrity.

required to minimize body and eye movements, maintain central
eye fixation, and press left button as quickly and accurately
as possible when they identified the target faces. Breaks were
encouraged between blocks. The whole experiment lasted about
2.5 h.

Data Recording and Analysis
Data Recording and Preprocessing
The EEG signals were recorded with 60 Ag/AgCl electrodes
using NeuroscanSynamps system. Figure 2 shows the scalp
distribution of the 60 electrodes, electrode positions included
the standard 10–20 system locations and intermediate positions
(Luck, 2014). EEG signals were recorded at the sampling
rate of 1,000Hz, with a 200Hz low-pass filter and a 50Hz
notch filter. EEG signals were referenced to the nose, Afz
served as ground. Impedances were kept below 30 k�.
Blinks were monitored by vertical electrooculogram (EOG)
electrodes located above and below the left eye. EEG signals
were further pre-processed to remove EOG artifacts using the
correlation between EEG and EOG (Chen et al., 2010). A
Butterworth band-pass filter was used to filter the EEG signals
between 0.5 and 30Hz. Then EEG signals were segmented
into epochs from 0 to 800ms after stimuli onset, and the
baseline was corrected relative to the 200ms pre-stimulus
interval.

For spatial-temporal feature extraction and target face
identification, EEG epochs were downsampled from 1,000 to
100Hz (i.e., 80 samples in an 800-ms EEG epoch). Then
the EEG epochs were concatenated by channel for each face
stimulus, creating a feature vector which represented the EEG
spatial-temporal pattern corresponding to each face stimulus.
The dimension of the vector was 4,800 (60 channels ×

80 samples).

Local-Learning-Based Spatial-Temporal Feature

Extraction
In this session, we describe in detail how to adopt a LLB
feature extraction method (Sun et al., 2010) to extract important

FIGURE 2 | The scalp distribution of the electrodes used in our experiment.

spatial-temporal features that contribute to single-trial ERP
analysis.

Let D =
{(

xn, yn
)}N

n=1
⊂ R

K × {±1} be the training
sample set of a certain participant’s EEG signals, where N is the
number of the training samples, n is the sample index, xn is a
K dimensional EEG original signal vector (K = 4800 in this
paper), yn is its corresponding target/non-target class label. We
define two patterns NH (xn) and NM (xn). NH (xn) is the most
similar pattern to xn with the same class, and NM (xn) is the
most similar pattern to xn with the other class label. Here the
similarity is measured by Manhattan distance (Sun et al., 2010).
The idea is to assign a weight to each feature to represent its
importance, so as to maximize inter-class distance and minimize
intra-class distance in the feature space. For the sample xn,
we define L (xn|w) as the difference between the intra-class
distance and inter-class distance when weighting the importance
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of each EEG spatial-temporal feature by nonnegative row vector
w2:

L (xn|w) = w2 |xn − NM (xn)| − w2 |xn − NH (xn)| , (1)

where | • | is an element-wise absolute value operator. Intuitively,
the larger L (xn|w) is, the more likely that xn is correctly
classified. Here we approach the distance w2 |xn − NM (xn)|

and w2 |xn − NH (xn)| between the current sample to the
most similar pattern in a probabilistic way, respectively, i.e.,
to estimate the probabilistic distribution by kernel method
(Bishop, 2006; Sun et al., 2010) based on all the samples within
corresponding set. Then the expectation of L (xn|w) will be
equivalent as:

E [L (xn|w)] = E
[

w2 |xn − NM (xn)| − w2 |xn − NH (xn)|
]

= w2
(
∑

xi∈M
P (xi = NM (xn)|w) |xn − xi|

−
∑

xi∈H
P (xi = NH (xn)|w) |xn − xi|

)

, w
2
gn,

(2)

where M is the set of EEG spatial-temporal patterns
with different class as xn, H includes those with the
same class, P (xi = NM (xn)|w) and P (xi = NH (xn)|w)

are the estimated probabilistic distributions of NM (xn)

and NH (xn) by kernel method (Bishop, 2006; Sun et al.,
2010).

In order to make the weight sparser, we add regularization
penalty on vector w, and w is obtained by solving the
optimization problem below:

minwJ(w),

J (w) =
∑N

n=1 log
(

1+ exp
(

−w2gn
))

+ λ ‖w‖22 .
(3)

An iterative method is applied for obtaining the optimal value of
w. First, we calculate the partial derivative for each element of w:

∂J (w)

∂wi
= 2λwi − 2wi

∑N

n=1

exp
(

−
∑

j w
2
j gn

(

j
)

)

1+ exp
(

−
∑

j w
2
j gn

(

j
)

) gn (i). (4)

Then each element of w is initialized to 1. In each iteration,
previously estimated w is first used to compute gn, then w is
updated by the following rule:

w = w− η∇J (w)

= w− η

(

λ1−
∑N

n=1

exp
(

−
∑

j w
2
j gn(j)

)

1+exp
(

−
∑

j w
2
j gn(j)

)gn

)

⊗

w,
(5)

where
⊗

is the Hadamard operator and η is the learning
rate. When the iteration terminates at the optimal solution, we
finally obtain the importance of EEG spatial-temporal features
represented by the learned weight vector w2. In our work, the
parameters in the LLB method were determined by 3-fold cross-
validation using training set.

Classification Algorithm and Performance Evaluation
In this study, we adopted the kernel support vector machine
(SVM), which has been proved very effective in BCI classification
problem (Kaper et al., 2004; Li et al., 2008; Rakotomamonjy and
Guigue, 2008), to detect single-trial ERP for face identification.
Given EEG spatial-temporal feature pattern xn and the
corresponding class label yn (1 or−1 corresponding to target and
no target face, respectively), the hyperplane could be obtained by
optimizing the following problem:

max
α

∑N

n=1
αn −

1

2

∑N

n,m=1
αnαmynymK (xn, xm),

s.t. 0 ≤ αn ≤ C, n = 1, . . . ,N,
∑N

n=1
αnyn = 0, (6)

where N is the total number of the EEG spatial-temporal feature
patterns, αn is the Lagrangian multiplier. K (xn, xm) is the kernel
function which implicitly maps the single-trial EEG spatial-
temporal patterns to a high-dimensional feature space to make
them more separable. The parameter C controls the balance
between the classificaition accuracy in training set and good
generalization. For the detail of the derivations of SVM, one can
refer to (Cristianini Shawe-Taylor and Shawe-Taylor, 2000). Then
the classification function is as follows:

f (x) = sgn
(

∑

N
n=1ynαnK (x, xn) + b

)

, (7)

where b = yn −
∑N

m=1 ymαmK (xn, xm) for any xn with
0 < αn < C.

In our work, kernel SVM (RBF-SVM) implemented by
LIBSVM (Chang and Lin, 2011) was used to perform the
target/nontarget EEG classification nonlinearly. The kernel width
σ and the regularization parameter C were determined by a
3-fold cross validation.

In the current study, we used the area under the receiver
operating characteristic (ROC) curve (AUC) as the performance
evaluation criterion (Fawcett, 2004). The ROC curve depicts the
tradeoff between the FPR and the TPR. The AUC’s value is
between 0 and 1, and a larger AUC means a better classification
performance (Fawcett, 2004).

RESULTS

In this section, we first examine the ERP waves elicited by the
target and non-target faces. Then we adopt the LLB method to
extract the important spatial-temporal features, and validate the
feature importance by the target identification accuracy using
feature subset. The spatial-temporal importance distribution by
proposedmethod is compared with other three feature extraction
methods, including FC, SVMRFE, and mutual information
(MI). The sparse spatial-temporal distribution of important ERP
features is identified, particularly with the early temporal course
and the spatial electrode distribution for the task of rapid face
identification.
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Grand-Average ERPs
Figure 3 shows the ERPs averaged across the all 15 participants
in electrode PO5 and FZ. X-axis is the time (ms) and y-axis is the
ERP amplitude (uV). From the ERP waves in Figure 3, we can
see that P1 component is elicited at about 100ms post face image
presented, followed by a face-specific N170 at about 150ms.
These early components (including the P1 and the N170) elicited
by target and non-target faces are highly similar in morphology.
While compared to nontarget faces, the target faces elicit a N250
component lasting from about 240 to 390ms, followed by P3
(390∼590ms) and N4 (600∼700ms). These results indicate that
the early components may be not linked to face identification
directly, the subsequent components starting with the N250, are
associated with face identification andwould play important roles
in the single-trial EEG classification.

Spatial-Temporal Feature Extraction
The LLB feature extraction method is adopted to evaluate
the importance of EEG spatial-temporal features for face
identification. The LLB method endows a weight to each spatial-
temporal feature to represent its importance. As an iterative
approach, the LLB method updates the weights for all features in
each iteration. Figure 4 shows an example of the time evolution
of the feature weights learned by the LLB method. We can see
that as iterations go, the weights of feature 3,142 and feature
3,649 are still large while those of feature 897 and feature 1,583
drop down to 0 quickly within 30 iterations. For all participants,
we observe that the weights of spatial-temporal features usually
converge within 50 iterations.

Figure 5 shows the importance weights calculated by LLB
method for four participants, the spatial-temporal features are
ranked according to their importance in descending order. X is
the feature index after ranking in logarithm scale, y is the feature

importance. We can see that, among all 4,800 features, the ones
ranked within top 100 have relative big weights, while the weights
of the features ranked after 500 are close to 0. These results
indicate that EEG signals containmany features with lowweights,
using LLBmethod to extract features with big weights can greatly
reduce the dimension of ERP features.

To validate the important ERP features extracted by the
proposed LLB method, we evaluate the face identification
performance by single-trial ERP detection using only the
important feature subset. For comparison, other three feature
extraction algorithms are also adopted, including the FC
(Krusienski et al., 2008; D’croz-Baron et al., 2012; Guo et al.,
2015), SVMRFE (Guyon et al., 2002; Hidalgo-Muñoz et al., 2013),
and mutual information (MI) (Shahriari and Erfanian, 2011;
Ang et al., 2012). The importance of spatial-temporal features
is evaluated by the above 4 methods, and features are ranked
according to their importance in descending order. Figure 6
shows the statistical single-trial ERP detection performance
averaged across participants as a function of the number of
important features for the four methods. X-axis is the feature
number and the y-axis is the classification performance (AUC)
using the same kernel SVM method but with different feature
subsets by four methods. We can see that the performance
increases as important features involved in the classification.
And with the same number of the important features, those
extracted by the LLB method always obtain the best classification
performance before the performance converges. We also find
that the average AUC achieves more than 0.851 (98% of the
performance using the full signals, 0.867) with only the most
important 480 features (10% of the total features). These results
indicate LLB method can effectively identify the important
spatial-temporal features, and the most important 480 features
hold themajority of discriminant information for single-trial face
identification.

FIGURE 3 | The grand-average ERPs in electrode PO5 and FZ. Compared to the non-target faces, the target faces evoke distinct N250, P3, and N4.
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FIGURE 4 | The time evolution of four feature weights learned by the LLB method.

FIGURE 5 | The importance weights in descending order calculated by LLB

method for four participants.

We also want to make sure that the extracted spatial-temporal
feature subset is consistently important even using different
classifiers on single-trial ERP detection. Figure 7 shows the
performance (AUC) using LDA (Bishop, 2006), linear SVM
(linear-SVM), and kernel SVM (K-SVM), with the top 10%
important features extracted by FC, SVMRFE, MI, and LLB
method, respectively. We can see that, the important features
selected by the LLB method always achieve the best performance
across different classifiers. This is because LLB method optimizes
the importance in the feature space, where the nonlinear EEG
data structure is decomposed and the local information of single
trial ERP features is preserved. Therefore, the selected important
features by LLB method doesn’t rely on the specific classification
model, the important features can constantly achieve the best
performance using different classifiers.

Spatial-Temporal Feature Analysis
In this section, we analyze the spatial-temporal distribution
of important features by FC, SVMRFE, MI and LLB method.

FIGURE 6 | The average single-trial ERP detection performance over all

participants as a function of the number of important spatial-temporal features

used. Four feature extraction methods are used to evaluate the feature

importance, including the fisher criterion (FC) (black), support vector machine

recursive feature elimination (SVMRFE) (green), mutual information (MI) (red),

and local-learning-based (LLB) method (blue).

We investigate the feature subsets which achieve 98% of the
performance using full signals, shown as the dash horizontal
line also in Figure 6. Here FC and SVMRFE need 1,280 (26.7%)
features, MI needs 800 (16.7%) features, and LLB method only
needs 480 (10%) important features. We first define a vector
function Bj (F), j is the participant index, F represents the ERP
feature vector (the dimension of F is 4800). When the feature Fi
(i = 1, . . . , 4, 800) is selected as important feature for participant
j, the value of ith item in Bj (F) equals to 1, zero otherwise.
The mean of Bj (F) across 15 participants is visualized as the
probabilistic distribution of the important features in top plot
of Figure 8. Time (ms) is on the x-axis and electrodes are on
the y-axis. Electrodes are organized in the following order: left
hemisphere (LH), midline electrodes, right hemisphere (RH).
The time intervals of different ERP components are separated by
vertical dash lines. Figure 8 also shows the scalp topographies
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FIGURE 7 | The single-trial ERP detection performance using the top 480

important features by fisher criterion (FC) (black), support vector machine

recursive feature elimination (SVMRFE) (green), mutual information (MI) (red),

and local-learning-based (LLB) method (blue).

of important features in N250, P3, and N4 in bottom plot.
We can see that the vast majority of important features are
distributed in the time windows of N250, P3, and N4, but not
in the earlier components, these results suggest the N250, P3,
and N4 are related to face identification directly, the N250 is
the earliest component linked to face identification. Among all
the feature extraction methods, LLB method demonstrates the
sparsest distribution. And important features by LLB methods
are more laterally distributed toward the left hemisphere than
other methods, especially during the N250 time window where
important features are widely distributed over the left central
and left parietal-occipital regions. During the P3 time window,
the important features are mainly distributed in the midline
electrodes, which is consistent with previous studies on P3
distribution (Polich, 2007). In addition, important features are
distributed in the frontal regions in the late N4 time window.

To validate the contribution of the early N250 component
indicated by the above spatial-temporal important feature
distribution, we conduct single-trial ERP detection using the
temporal components of the signals within every 10ms. Figure 9
shows the averaged performance (AUC) across participants as
a function of temporal component of the EEG used. X-axis is
the time (ms) and the y-axis is the classification performance
(AUC). The purple blue area represents the standard derivation
of classification performance, the cyan area represents the
upper bound of the 95% confidence interval (calculated by a
permutation procedure; Rieger et al., 2008) for chance level. The
time windows of N250, P3, and N4 are indicated by dash lines.
We can see that the classification performance firstly exceeds
the upper 95% confidence interval (the cyan area) as the ERP
features in the N250 time window are used in classification. The
highest performance is obtained within the P3 time window.
Afterwards the performance drops using only N4 component.
These results demonstrate that N250 is the earliest temporal
component contributing to the single-trial ERP detection in the
task of rapid face identification.

To further validate the lateral spatial distribution of earliest
component N250, which is indicated by the above important
feature distribution, the single-trial ERP detection performance
using N250 component in original signals is compared with all
electrodes, the left central and left parietal-occipital electrodes,
and the corresponding right central and right parietal-occipital
electrodes, respectively. Figure 10 shows the averaged single-
trial ERP detection performance (AUC) across participants
using different electrode subsets. The performance using the
N250 component from the left central and left parietal-occipital
electrodes is significantly higher than the performance using the
corresponding right central and right parietal-occipital electrodes
(0.7296 ± 0.0434 vs. 0.6855 ± 0.0431; one-tailed paired t-test, p
= 8.1270e-004), and achieves the 97.01% performance of the full
electrodes. These results demonstrate that, the N250 has a left-
hemisphere advantage on single-trial ERP detection in the task of
face identification. Using the temporal component as early as the
N250 (∼310ms), the time required to identify individual target
faces is greatly reduced comparing to the one using the temporal
information until P3 (∼480ms), not mentioning the button press
movement (∼653ms). And the lateral importance distribution of
the N250 in the left hemisphere indicates the potential of using
fewer electrodes for single-trial detection in the task of rapid face
identification.

CONCLUSION AND DISCUSSION

Event related potential (ERP) reflects the process of brain
cognitive activity, and can be introduced to BCI real-time
applications to represent the subject’s intention. Due to the
low signal-to-noise ratio (SNR) of EEG, most ERP studies
are based on grand-averaging (Luck, 2014). In the real-time
tasks as rapid face identification, all the targets needed to be
retrieved may appear only once, and there is no knowledge
of target label for trial-averaging. Therefore, single-trial ERP
detection is necessary. In addition, single-trial analysis increases
the efficiency in identifying target faces, and reduces the fatigue
of subjects. Extracting the important temporal-spatial features
that contribute to single-trial ERP detection helps to design an
efficient BCI platform of the rapid face identification, in term of
the fast identification speed using the early temporal component
and less computation using only partial electrodes.

In this paper, we propose to implement a LLB method to
investigate the importance of spatial-temporal features for single-
trial ERP detection in rapid face identification. As a nonlinear
method, the LLB method decomposes the nonlinear EEG signal
into a feature space to preserve the structure of the signal
locally (Sun et al., 2010). The importance of the EEG spatial-
temporal features is obtained through the optimization of the
clustering within the same class (all targets or all non-targets)
but further away from another class. Without priori hypothesis,
the computation is based on the EEG data distribution and does
not depend on the ERP detection methods. In addition, the
proposed LLB method introduces a weight decay regularization
for sparse weights, which makes the weights of irrelevant features
close to zero. Here we compare LLB method with three existing
feature extraction methods, including FC, SVMRFE, and mutual
information (MI). FC and SVMRFE have linear assumption,
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FIGURE 8 | The representation of the spatial-temporal distribution of important features by fisher criterion (FC) (A) support vector machine recursive feature

elimination (SVMRFE) (B) mutual information (MI) (C) and local-learning-based (LLB) method (D). Time (ms) is on the x-axis and electrodes are on the y-axis.

Electrodes are organized in the following order: left hemisphere (LH), midline electrodes, right hemisphere (RH). The time intervals of different ERP components are

separated by dash lines.

which cannot capture the nonlinear structure of the EEG signal,
and the extracted features depend on the ERP detection models.
MI is data-driven and free of modeling, but the extracted
features may not be sparse. Results show that the LLB method
identifies important spatial-temporal features with only 480
selected important features (10% of the total features) achieving
more than 98% performance of the full features. Comparing to
other 3 methods, the important features are distributed more
sparsely, and sufficiently good in terms of single-trial ERP
detection across different classifiers.

We analyze the distribution of important spatial-temporal
features, and find vast majority of important features are
distributed in the time windows of N250, P3, and N4. The results
show that the single-trial ERP detection performance starts
to significantly exceed the guessing interval in the N250 time
window. It suggests theN250, which emerges around 240ms after
stimulus onset, is the earliest ERP component that contributes to
the single-trial ERP detection in the task of face identification.
Previous ERP studies have suggested that the P1 is linked to the
processing of low-level visual features (Zheng et al., 2012), and
the N170 reflects the face-specific structural encoding processes

(Gosling and Eimer, 2011). In our task, P1 and N170 occur in
both target and non-target cases due to the fact all the images are
faces, consequently they do not contribute directly to the task of
face identification. Our finding of the early component N250 is
consistent with the results in (Gosling and Eimer, 2011; Zheng
et al., 2012), where N250 is believed to reflect the early stages
where a perceptual face representation is compared to previously
known faces, but our work advances more in the validation
using single-trial ERP detection instead of conventional grand-
averaging. From an applications perspective, we demonstrate that
single-trial ERP could be detected almost immediately after N250
occurs, which benefits to building a much faster BCI-based face
identification system than button press.

Another interesting finding concerns the laterality of the
N250. We find the important N250 components are more
laterally distributed and biased toward the left hemisphere
during the time window from 240 to 390ms (see Figure 8). In
comparison, the P3 does not show significant lateral distribution
(Supplementary Figure 1). And the subsequent single-trial
ERP detection using only left hemisphere electrodes of N250
component confirms this lateral distribution advantage. Some
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FIGURE 9 | The averaged single-trial ERP detection performance (AUC) across participants as a function of temporal component every 10ms. The purple blue area

represents the standard derivation of classification performance. The cyan area represents the upper bound of the 95% confidence interval for chance level. The time

intervals of N250, P3, and N4 are indicated by dash lines.

FIGURE 10 | The single-trial ERP detection performance using N250

component from all electrodes (blue error bar), the left central and left

parietal-occipital electrodes (green error bar), right central and right

parietal-occipital electrodes (red error bar), respectively. The electrodes used

for classification are depicted by the electrode topographies on the top plot.

previous ERP studies using trial-averaging have also reported
similar left-hemisphere bias of the N250. In (Nessler et al.,
2005), Nessler et al. reported that the N250 differentiated
familiar faces from unfamiliar faces at left parietal-occipital,
left frontal, and central electrodes, while it was not found
over right hemisphere. In the face identification experiment
conducted by Huang et al., the N250 elicited by familiar targets
was lateralized to the left occipitotemporal electrodes (Huang

et al., 2017). Some brain imaging studies also find similar left-
lateralized face identification process. A PET study conducted by
Gornotempini et al. showed that compared to unfamiliar faces,
familiar faces activated the areas spreading from the left anterior
temporal to the left temporo-parietal regions (Gornotempini
et al., 1998). Sugiura et al. reported activation in left medial
temporal regions during recognition of familiar faces (Sugiura
et al., 2001). Activations of the left hippocampus and left fusiform
gyrus were observed for familiar as compared to unfamiliar faces
in an fMRI study conducted by Eger et al. (2005). Previous studies
have suggested that right hemisphere stores and processes visual
stimuli in image-dependent manner, whereas the left hemisphere
stores and processes visual stimuli in a more abstractive, image-
independent manner (Marsolek, 1999; Cooper et al., 2007;
Meng et al., 2012). Therefore, we speculate the laterality of
N250 in our study reflects the advantage of left hemisphere
in identifying the target faces across different viewpoints and
lighting conditions, even in the presence of partial occlusion
during our experiment. In addition, considering the hypothesis
that the N250 is generated in the fusiform gyri (Schweinberger
et al., 2002; Tanaka et al., 2006), we speculate that the left fusiform
gyrus might be associated with the signal during the N250 time
window (240–390ms after stimulus onset) in our rapid face
identification task. To locate the brain sources of the N250 more
precisely, some source localizations or brain imaging techniques
(e.g., PET and fMRI) could be applied in the future work.

In summary, we propose to adopt a LLB feature extraction
method to investigate the importance of spatial-temporal
components for single-trial ERP detection in a task of rapid
face identification. Comparing with other methods, the LLB
method uses fewer and sparser features to achieve the comparable
performance as the whole features across different detection
methods. The interesting finding is that the N250 is the
earliest temporal component with laterally distribution in term
of contribution to single-trial ERP detection in rapid face
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identification. This is validated by the fact that using only the
left N250 component over-performs the right N250 in the face
identification task. Our finding is beneficial in building a fast
(using the early N250) and efficient (using fewer electrodes) BCI
system for rapid face identification.
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