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Our eyes move constantly at a frequency of 3–5 times per second. These movements,

called saccades, induce the sweeping of visual images on the retina, yet we perceive

the world as stable. It has been suggested that the brain achieves this visual stability

via predictive remapping of neuronal receptive field (RF). A recent experimental study

disclosed details of this remapping process in the lateral intraparietal area (LIP), that is,

about the time of the saccade, the neuronal RF expands along the saccadic trajectory

temporally, covering the current RF (CRF), the future RF (FRF), and the region the eye

will sweep through during the saccade. A cortical wave (CW) model was also proposed,

which attributes the RF remapping as a consequence of neural activity propagating in

the cortex, triggered jointly by a visual stimulus and the corollary discharge (CD) signal

responsible for the saccade. In this study, we investigate how this CW model is learned

naturally from visual experiences at the development of the brain. We build a two-layer

network, with one layer consisting of LIP neurons and the other superior colliculus (SC)

neurons. Initially, neuronal connections are random and non-selective. A saccade will

cause a static visual image to sweep through the retina passively, creating the effect of

the visual stimulus moving in the opposite direction of the saccade. According to the

spiking-time-dependent-plasticity rule, the connection path in the opposite direction of

the saccade between LIP neurons and the connection path from SC to LIP are enhanced.

Over many such visual experiences, the CW model is developed, which generates the

peri-saccadic RF remapping in LIP as observed in the experiment.

Keywords: predictive remapping, saccade, STDP, LIP, corollary discharge

INTRODUCTION

Our eyes move constantly at a frequency of 3–5 times per second. An eye movement, called a
saccade, induces the sweeping of visual images on the retina, yet we perceive the world to be stable.
The shift of visual inputs on the retina caused by a saccade is no different to a shift caused by
objects moving in real space, yet we do not mistake one for another. Understanding how the brain
achieves visual stability across the saccade has been a challenge to both experimental (Sommer and
Wurtz, 2008; Hall and Colby, 2011; Wurtz et al., 2011) and theoretical (Quaia et al., 1998; Keith
et al., 2010; Ziesche and Hamker, 2014) neuroscience for decades. It has been suggested that the
brain solves this problem by utilizing an efference copy of the motor command responsible for a
saccade, called corollary discharge (CD), to compensate in advance for the disturbance brought by
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the saccade (Sommer and Wurtz, 2002, 2006; Sun and Goldberg,
2016). This idea is supported by a phenomenon found in the
lateral intraparietal cortex (LIP) called peri-saccadic receptive
field (RF) remapping, which shows that neurons can respond
to stimuli appearing in their future receptive fields (FRFs), i.e.,
the spatial locations the neuronal RFs will move into after the
saccade, even before the eye movement actually starts.

In a recent study Wang et al. (2016) further investigated
the detailed time course of peri-saccadic remapping in LIP.
They found that about the time of a saccade, the neuronal
RF expands along the saccadic trajectory temporally, covering
the current RF (CRF), the future RF (FRF), and the region
the eye will sweep through during the saccade (Figure 1A).
Moreover, the RF of the neuron shrinks to its normal size
shortly after the saccade. Wang et al. further proposed a
computational model to unveil the underlying mechanism of
this remapping phenomenon. Their model attributes the peri-
saccadic RF remapping to the neural activity propagating in
LIP, triggered by visual stimuli and the CD signal (Figure 1B).
Hereafter, the model is referred to as the cortical wave (CW)
model for convenience. Specifically, the CWmodel assumes that:
(1) neurons in the LIP are grouped into many clusters, and

FIGURE 1 | Illustrating elongated peri-saccadic remapping of neuronal RF in LIP and the CW model. (A) In the peri-saccadic period, neuronal RF in LIP transiently

“stretches” along the saccadic trajectory, covering CRF, FRF, and the intermediate location (IML) between them. (B) Cartoon of the one-dimensional CW model.

Neurons in LIP are uni-directionally connected in the opposite direction of the saccade. Each neuron in LIP (green) receives an input from its adjacent neuron and the

CD signal from the moving hill activity in SC (left). About the time of the saccade, the joint effort of the visual stimulus at FRF of an example neuron (red arrow from the

input layer) and the CD signal triggers a wave of excitation to emerge and propagate along the opposite direction of the saccade and eventually reach to CRF of the

neuron. Adapted from Wang et al. (2016).

neurons in each cluster are uni-directionally connected to form
a path responsible for RF remapping in the opposite direction
(Figure 1B); (2) the CD signal from the superior colliculus
(SC) conveys the information about the saccadic direction and
amplitude; (3) the joint effect of a visual stimulus and the
CD signal triggers the neural activity to propagate along the
opposite direction of the saccade (i.e., CW), achieving peri-
saccadic remapping. The CWmodel reproduces the experimental
data and also outperforms other models with a simpler structure
(Quaia et al., 1998).

Despite its success in interpreting the experimental data, the
biological plausibility of the CW model remains unresolved. In
particular, the model makes a few strong assumptions about the
network topology, whose biological relevance, such as the uni-
directional connections between neurons in LIP and the matched
connections from SC to LIP, is yet to be justified. In this study, we
aim to address this issue by computational modeling. Specifically,
we build up a network-learning model to demonstrate that the
structure of the CWmodel can be naturally acquired from visual
experiences at the development of the brain via biologically
plausible synaptic plasticity. We expect this study will strengthen
our understanding on the occurrence of RF remapping.
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MATERIALS AND METHODS

The Network Model
The networkmodel we consider consists of two layers of neurons,
one for LIP and one for SC. The final structure of the network
will be learned from visual experiences via a biologically plausible
synaptic plasticity rule (to be introduced below). Initially, the
connections between LIP neurons and the connections from SC
to LIP are homogenous and un-structured (Figure 2). For the
purpose of elucidating the learning process clearly, we first study
a simplified one-dimensional (1D) network model (Figure 2A),
and later generalize the study to the 2D case (Figure 2B).

In the 1D network, neurons in the LIP layer are located
in a 1D retinotopic map. They are uniformly distributed
in the 1D retinotopic map, with inhibitory neurons inserted
among excitatory ones at regular intervals. Before learning,
neuronal connections between LIP neurons are bi-directional
and stochastic. Neurons in the SC layer are uniformly distributed
in a 1D movement map and send the CD signal containing the

FIGURE 2 | The network structure before learning. (A) The 1D network model.

Neurons in LIP (only excitatory neurons are shown for clearance) are uniformly

distributed on the 1D retinotopic map, and neurons in SC are on the 1D

movement map. The connections between LIP neurons are bidirectional and

weak (indicated by gray lines), and so are the feedforward connections from

SC to LIP. (B) The 2D network model. Neurons in LIP are located on the 2D

retinotopic map (grid). At each location, 6 excitatory neurons are considered.

Their connections are bidirectional and weak. Neurons in SC are located on

the 2D movement map (in the polar coordinate). The connections from SC to

LIP are homogenous and non-selective. Since there are too many connections

between neurons, for clearance, we only show the connections of an example

neuron in LIP to other neurons in LIP and SC, and since the connections are

random (see Equation 14), only a few of them are presented.

saccade information to LIP neurons. The connections from SC
to LIP which are weak before learning will be strengthened after
learning. Note that the connection selectivity from SC to LIP can
only be reflected in the 2D network.

In the 2D network, neurons in LIP are distributed in the
2D retinotopic map. At each retinotopic location, rather than a
single neuron, a group of remapping neurons exist (6 neurons are
considered in the present study as an example). Before learning,
similar to the 1D case, the connections between neurons at
different spatial locations are bidirectional and random. After
learning, neurons at the same location will be diversified to be
responsible for different remapping directions. Neurons in the
SC layer are located in the 2D movement map. Before learning,
the connections from SC to LIP are weak and non-selective.
After learning, the matched connections from SC to LIP are
established.

The Synaptic Plasticity
Two types of synaptic plasticity are considered in the present
study. One is short-term plasticity (STP) (Markram and Tsodyks,
1996), which may display dominating short-term depression
(STD), or dominating short-term facilitation (STF), or a mixture
of both, depending on the parameters (Tsodyks et al., 1998). STP
is not really essential for our model. We consider it because
STP is observed ubiquitously in the experimental data (Stevens
and Wang, 1995; Zucker and Regehr, 2002), and STD helps to
stabilize the cortical wave. The detailed implementation of STP is
presented in Equations (9–13).

We also consider long-term plasticity, which is key to learn
the remapping function from visual experiences in our model.
In particular, we consider spike-timing-dependent-plasticity
(STDP), a biologically plausible learning rule (Markram et al.,
1997; Bi and Poo, 1998; Tsodyks et al., 1998; Andrew, 2003; Dan
and Poo, 2006) exclusive to synapses between excitatory neurons.
Denote Wij (t) ∈ (0, 1) the synapse efficacy from neurons i to j.
The STDP rule is given by

dWij(t) =







A+e
−1tij
τ+ , if1tij ≥ 0,

A−e
1tij
τ− , if1tij < 0,

(1)

where A+ and A− represent, respectively, the learning rates of
facilitation and depression, and τ+ and τ− the corresponding
time constants. 1tij denotes the time difference between
the spiking moments of the postsynaptic neuron i and the
presynaptic neuron j. Only nearest-neighbor spikes are counted
in STDP (Izhikevich and Desai, 2003; Sjöström and Gerstner,
2010).

The Network Dynamics
We adopt the AdEx IAF model with spike-frequency adaptation
to describe the single neuron dynamics, which are given by Brette
and Gerstner (2005)

Cm
dVi

dt
= −gL(Vi − El)+ gL1T exp

(

Vi − VT

1T

)

+ Ireci (t) + Iexti (t) − wi, (2)
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τw
dwi

dt
= a (Vi − El) − wi, (3)

Iexti (t) = I
bg
i (t) + Istii (t) + ISCi (t) , (4)

Ireci (t) = IAMPA
i (t) + INMDA

i (t) + IGABAi (t) , (5)

whereVi is the membrane potential of neuron i, andVT the firing
threshold. When Vi > VT , the neuron fires and its membrane
voltage is reset to be Vre. Cm is the membrane capacitance,
gL the leak conductance, and El is the resting potential. wi

denotes the adaptation current, which increases following a
spike. Irec denotes the recurrent input from neurons in the
LIP layer. Iext denotes the external input, which consists of the
background noise Ibg , the visual stimulus Isti, and the CD signal
ISC. The input Irec consists of three components, IAMPA, INMDA,
and IGABA, representing the AMPA and the NMDA receptor-
mediated excitatory currents, and the GABAA receptor-mediated
inhibitory current, respectively. The currents Isc and Isti are
mediated by AMPA receptor. The synaptic currents are given by:

IAMPA
i (t) = gAMPA (Vi − VE)

NE
∑

j=1

WijCijS
AMPA
ij (t), (6)

IGABAi (t) = gGABA (Vi − VI)

N
∑

j=NE+1

WijCijS
GABA
ij (t), (7)

INMDA
i (t) = gNMDA (Vi − VE)

∑NE
j=1WijCijS

NMDA
ij (t)

(

1+ CMg exp (−0.062Vi/3.57)
) ,

(8)

where gAMPA, gGABA, gNMDA denote the peak synaptic
conductance of AMPA, GABA, and NMDA, respectively.
VE = 0mV and VI = −70mV are the excitatory and inhibitory
reversal potentials, respectively. NMDA currents have a voltage
dependence that is controlled by the extracellular magnesium
concentration, CMg = 1mM. Cij = 1 if a connection exists
from neuron j to i, otherwise Cij = 0. Wij is the synaptic weight
from neuron j to i and is subject to STDP. SXij (X = AMPA,

NMDA, GABA) are synaptic gating variables (fraction of open
channels). Following a spike arrival, the gating variables increase,
or otherwise decay exponentially with time constants τ x.

The dynamics of the synaptic gating variables displaying STD
are given by Tsodyks et al. (1998)

dSij
AMPA (t)

dt
= −

Sij
AMPA

τAMPA
+ Uxj (t)

∑

k

δ

(

t − tkj − Dij

)

, (9)

dSGABAij (t)

dt
= −

SGABAij

τGABA
+
∑

k

δ

(

t − tkj − Dij

)

, (10)

dSNMDA
ij (t)

dt
= −

SNMDA
ij

τNMDA,decay
+ yNMDA

ij (t)
(

1− SNMDA
ij (t)

)

,

(11)

dyNMDA
ij (t)

dt
= −

yNMDA
ij (t)

τNMDA,rise
+ Uxj (t)

∑

k

δ

(

t − tkj − Dij

)

,

(12)

dxj (t)

dt
=

1− xj (t)

τD
− Uxj (t)

∑

k

δ

(

t − tkj

)

, (13)

where tkj denotes the moment of the kth spike of neuron j. Dij

is the distance dependent transmission delay from neuron i to
j (see the simulation protocol below for the detail definition).
U ∈ (0, 1) denotes the utilization of the synaptic efficacy when
a spike arrives. The variable y quantifies the efficiency of NMDA
receptor at the post-synaptic neuron and the variable x quantifies
the fraction of neurotransmitter available at the pre-synaptic
neuron. τD is the depression time constant.

The Simulation Protocol
We carry out numerical simulations to model the learning
processes of the networks. The simulations were programmed in
Python using Brian2 (Goodman and Brette, 2009) and NumPy
libraries. Details of the model parameters are summarized in the
Table 1.

1D Model

Excitatory neurons in LIP were distributed along a line were
labeled from 1 to NE, while all inhibitory neurons were labeled
from 1 to NI . The ratio between them was set to 4:1. The distance
between two excitatory neurons was normalized to 1, hence
the position of the ith excitatory neuron xEi is i/NE. Inhibitory
neurons were inserted into the chain at regular intervals, with xIj
denoting the position of the jth inhibitory neuron. Neurons i and

j were connected with a probability PX,Yij = exp

(

−

(

xXi − xYj

)2

2δ2

)

,

where δ is a constant, and X,Y = E,I depending on the neuron
type. The transmission delay from neuron i to j was given by
DX,Y
ij = d|xXi − xYj |, with d as a constant. Before learning, the

synaptic weightWij(t) between LIP neurons was set to 0.1 for all
connections.

The SC neurons modeled by a group of neurons firing
according to Poisson process, which serve as the source of the CD
signal. The duration of the CD signal depended on themagnitude
of the saccade. The feedforward connection weight WSC

ij (t) from

SC neurons to LIP neurons was also set to a small value of 0.1 in
the beginning.

All the neurons continually received background noises
through the simulation, modeled by Gaussian white noises.

In the learning process, a moving stimulus Istii (t) was injected
into a group of nearby excitatory neurons (stimulus size Ssti) for
a fixed duration Ssti/vsti and slid from neuron i to neuron NE.
Inhibitory neurons also received the moving stimulus when it
passed by.

2D Model

The simulation protocol described above for the 1D model could
be extended directly to the 2D case.We only considered 6 saccade
directions for illustration. Every six neurons formed a cluster at
a location in the 2D retinotopic map (Figure 2B). The 2D model
was composed of NE× NE×6 excitatory neurons and NI×NI×6
inhibitory neurons. Denote xEI and yEI as the coordinate of the
ith excitatory neuron in the 2D retinotopic map and dEI as its
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TABLE 1 | Model parameters.

Network structure Synapses parameters

One dimensional(1D) network size N 250 AMPA conductance gAMPA 1.2 nS

Number of excitatory neurons(1D) Ne 200 NMDA conductance gNMDA 0.8 nS

Number of inhibitory neurons(1D) Ni 50 GABA conductance gGABA 2 nS

Number of excitatory neurons(2D) Ne× Ne 40 × 40 NMDA receptor parameter CMg 1

Number of inhibitory neurons(2D) Ni× Ni 10 × 10 AMPA synaptic time constant τAMPA 2ms

Distance between neurons 1x 1 NMDA rise time constant τNMDA,rise 2ms

Simulation time step 1t 0.1ms NMDA decay time constant τNMDA,rise 200ms

Connection width δ 10.8 GABA synaptic time constant τGABA 5ms

Single neuron parameters STP time constant τd 200ms

Reset potential Vre −70mV STP parameter U 0.5

Firing threshold Vth −55mV Distance-dependent delay Ddist 0.1 ms/1x

Exc. and Inh. reversal potential VE,VI 0mV, −70mV Input parameters

Leak reversal potential VL −70mV Number of poisson spike noise Nbg 100

Membrane capacitance Cm 281 pF Noise input conductance gbg 0.025 nS

Leak conductance gL 30 nS Noise firing rate rbg 6Hz

Slope factor 1T 2mV Stimulus size Ssti 5 1x

Adaptation time constant τw 40ms Speed of moving stimulus Vsti 3 1x/ms

Subthreshold adaptation a 4 nS External conductance gsti 0.25 nS

Spike-triggered adaptation b 0.08 nA Rate of external input rsti 200Hz

Refractory time τref 2ms

STDP parameters

Max.weight Wmax 1

Positive learning rate A+ 0.01

Negative learning rate A− 0.0105

Positive time constant τ+ 20ms

Negative time constant τ− 20ms

preferred saccade direction. The inhibitory neurons were also
inserted into the 2D retionatopic map at regular intervals. The
coordinate of the jth inhibitory is xIj , y

I
j . Neurons i and j were

connected with a probability,

PX,Yij = exp






−

(

xX,Yi − xX,Yj

)2
+

(

yX,Yi − yX,Yj

)2

2δ2







exp






−

(

dX,Yi − dX,Yj

)2

2δd
2






(14)

and transmission delay between neurons was given by

DX,Y
ij = D

√

(

xX,Yi − xX,Yj

)2
+

(

yX,Yi − yX,Yj

)2
, (15)

where X,Y=E, I depending on the neuron type. The initial values
of weights were all set to 0.1. Similarly, 6 groups of SC neurons
sent Poisson spike trains to LIP neurons (Figure 2B), with each
of them representing a saccade direction. Before learning, the

couplings between SC to LIP were all-to-all without directional
selectivity. The initial weights were also set to be 0.1. Similar to
the 1Dmodel, in the learning process, a moving stimulus induced
by a saccade swept over a group of LIP neurons.

RESULTS

The Learning Mechanism
Before presenting the results, we first summarize the mechanism
underlying the learning of the peri-saccadic RF remapping.
At the developing stage of the brain, the network structure
for remapping is not yet established. A saccade will cause
a static visual image to sweep through the retina passively,
creating the effect of the visual stimulus moving in the opposite
direction to the saccade. During this process, LIP neurons
located in the retinotopic map are activated sequentially by the
moving stimulus; meanwhile, SC neurons holding the saccadic
movement map respond, although the link between SC and LIP
is not yet established. The visual experience described above
is repeated many times. According to the STDP rule, a uni-
directional connection path between LIP neurons is eventually
learned; meanwhile, a matching connection from the saccadic
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direction in SC to the remapping direction in LIP is established.
Over many such visual experiences in different retinotopic
locations and different saccadic directions, a full 2D remapping
CWmodel in LIP is finally developed.

Learning to Remap in the One-Dimensional
Network
We first present the results after learning for the 1D network. As
described in Materials and Methods, we apply an external input
moving in the opposite direction of a saccade to the network, to
reflect the passive shift of a static image along the retina caused
by the eye movement. The CD signal is switched on from 100ms
before to 100ms after the saccade. Synaptic plasticity occurs
at the connections between excitatory neurons in LIP and the
connections from SC neurons to LIP excitatory neurons.

Figure 3A displays the learned network structure
after the network is exposed to the same moving input
many times (experiencing saccades in the same direction
for many times). Compared to Figure 2A, we see that
enhanced are the neuronal synapses in LIP in the opposite
direction of the saccade and the synapses from SC to LIP;
weakened are the synapses in the direction of the saccade.
Figures 3B,D displays changes in the weights of connections
in LIP through learning. The initial weight matrix reveal
no directional connectivity: the symmetry connections
which are around the main diagonal imply bidirectional
connectivity between neurons within the network. After
learning with the directional moving stimulus, only the
weights around the upper band of the main diagonal increase,
which accounts for a potentiation of connections between
neurons within the network in the direction of the moving
stimulus. Figures 3C–E show that the connections from
the SC neurons to the LIP neurons are also strengthened.
Figures 3F,G present the weight distributions before and after
learning.

Figures 4A–D display the learning process of our model
over trials. We see that as the time went on, the neuronal
connections in LIP in the opposite direction of the saccade were
gradually enhanced; whereas, the neuronal connections in the
saccadic direction were gradually weakened. Furthermore, the
connections from the SC to LIP were gradually strengthened
during the learning.

The strengthened synapses at LIP form a unidirectional path,
which works together with the timely CD signal to support the
propagation of cortical wave. To test this, we apply a stimulus to
a neuron at LIP simultaneously with the onset of the CD signal.
As shown in Figure 4E, a cortical wave is initiated and propagates
along the unidirectional path. We also see that without the
CD signal, the stimulus alone is insufficient to activate a LIP
neuron. The role of the CD signal is to increase the subthreshold
membrane potential of a LIP neuron (Figure 4F), such that the
neuron can be elicited by a visual stimulus or recurrent inputs
from neighboring neurons.

The propagation distance of the cortical wave is determined by
the duration of the CD signal (Figure 5), with the latter encoding
the amplitude of the saccade. An experimental study revealed

that the CD signal is associated with the moving hill activity in
SC (Munoz and Wurtz, 1995). During the saccade, the moving
hill activity migrates from the caudal to the rostral of the saccade
map in SC. The saccade ends when the rostral colliculus begins
to discharge. Thus, the duration of the CD signal correlates with
the saccade amplitude. As expected, the propagation distance of
the cortical wave monotonically increases with the duration CD
signal. Thus, by correctly setting the duration of the CD signal,
the cortical wave will propagate from the FRF to the CRF of a
neuron, realizing remapping as required.

To reproduce the experimental findings as reported in Wang
et al. (2016), we mimicked the experimental protocol and applied
a probe stimulus to the CRF, IML, and FRF of a neuron at
different moments with respect to the onset of the saccade. The
results are shown in Figure 6, which strongly agrees with the
experimental data, that is, (1) long before the saccade (100ms
before), the neuron will only be activated by the probe stimulus
at CRF; (2) about the time of the saccade, from 100ms before
and after, the neuron will be activated by the probe stimulus at
CRF, IML, and FRF; (3) long after the saccade (after 100ms),
the neuron will only be activated by the probe stimulus at FRF.
Overall, during the saccade, the RF of the neuron is effectively
elongated along the saccade direction temporally. The underlying
cause of this phenomenon is the propagation of cortical
wave.

Learning to Remap in the Two-Dimensional
Network
We then present the results after learning for the 2D network.
Since the movement of a stimulus is induced by a saccade, the
direction a stimulus takes is determined by the direction of the
saccade. In our model, each neuron in the column is assumed to
respond selectively to a particular direction of a stimulus.

To mimic saccades with different saccade vectors, we chose
a chain of neurons that “prefer” the same saccade direction
in each training trial. We applied a stimulus moving in the
opposite direction of the saccade to the chain. Therefore, chains
of neurons embedded in the two-dimensional network are “sub-
one-dimensional” (1D sub-network). Alike with the 1D model,
the CD signal is turned on from 100ms before to 100ms after the
saccade and synaptic plasticity occurs at the connections between
excitatory neurons in LIP and the connections from SC neurons
to LIP excitatory neurons.

Figure 7A displays the learned network structure after the
network is exposed to a stimulus moving in different directions
(experiencing eye movements with different saccade vectors
for many times). Compared to Figure 2B, the 2D network
has been modified by the STDP learning rule as follows.
(1) Repeated experiences of saccades in one direction cause a
chain of neurons to select a sub-1D network. The uni-directional
connections which are opposite to the saccade directions are
strengthened, while the connections in the direction of the
saccade are weakened. (2) Synapses between the neurons in
other sub-1D networks are pruned. (3) A saccade map in SC
that provides information about saccade direction and amplitude
allows strengthened coupling between the “selected” LIP neurons
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FIGURE 3 | 1D model results. (A) Illustration of the learning process. At the early stage of development, all the connections in the network are weak, hence no

remapping occurs. After learning, a connection path in LIP in the opposite direction of the saccade is developed and the connection from SC to LIP is enhanced.

(B) Connection pattern between LIP neurons before learning. (C) Connection pattern between LIP neurons and SC neurons before learning. (D) Connection pattern

between LIP neurons after learning. (E) Connection pattern between LIP neurons and SC neurons after learning. (F) The distribution of connection weights between

LIP neurons before and after learning. (G) The distribution of connection weights between LIP and SC neurons before and after learning.
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FIGURE 4 | Activity raster and weight distribution of successful wave propagation before, during and after training. (A–D) snapshot of the training process, before

learning, 10, 20, 100 trial, respectively. The insets illustrate the weight distribution changes along the training process. The remapping connections (red, in the

opposite direction of saccade) are enhanced while the reverse connections (blue, in the direction of saccade) are weakened. The bottom insets show that the

connections from the SC to LIP are strengthened by the training. The short cyan bars in the insets mark the initial value of the connection weights. (E) Upper: After

training, a static stimulus at the start point causes a wave to propagate toward the end point. Bottom: membrane potential of the example neuron marked by green X

in the upper panel. (F) In absence of the CD signal, no activity propagation is observed when loading a static stimulus onto the start point.
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(1D sub-network) and the SC neurons in the same saccade map,
while weakening coupling between the other “non-selected” LIP
neurons(1D sub-network preferring other saccade directions)
and the chosen group of SC neurons. These modifications of
the network ensure that the propagation of the cortical wave is
constrained to a one-dimensional path from the FRF to CRF.

FIGURE 5 | Propagation distances differ for different CD duration. The shade

area is the 95% confidence interval of averaged propagation distance through

CD duration.

To support the propagation of cortical wave, the strengthened
synapses at LIP work together with the timely and directional
CD signal, similar to the 1D model. Specifically, when the
monkey is looking at FPa (Fixation Point) and planning a 60◦

right upward saccade, all neurons preferring that direction will
receive a set of CD inputs, which increase the subthreshold
membrane potential of neurons in the 1D sub-network (see the
red arrow stemming from the 60◦ curve in the saccade map
of SC Figure 7A). When the monkey is looking at FPb and
planning a 60◦ right downward saccade, the sub-1D network
with neurons that prefer this direction will receive the CD
signal that codes the 60◦ right downward saccade (see the
green arrow from the −60◦ curve in the saccade map of SC
Figure 7A).

Figures 7B,D depict changes in the weights of connections
in LIP and the emergence of direction-specific connectivity
through learning. Neurons are grouped according to their
preferred direction of saccade and the sub-network they belong
to. The initial weight matrix reveal no directional connectivity:
(1) the symmetry connections which are around the main
diagonal imply bidirectional connectivity between neurons
within a sub-network; (2) other connection patterns represent
the connections between neurons in different sub-network. After
learning with the directional moving stimulus, only the weights
around the upper band of the main diagonal increase, which

FIGURE 6 | Transient elongation of visual receptive field around the time of a saccade. The y axes is the moments of applying the probe visual stimulus in different

trials and the x axes is the time relative to the beginning of saccade. The saccade begins at t = 0ms, represented by the solid and dashed vertical lines in each panel,

the short green bars mark the end of saccade. A visual stimulus (red dot) is applied briefly at different moments (different rows) relative to the saccade in three

locations: CRF (A), IML (B), and FRF (C). The results show that: in the pre-saccadic period, the stimulus activates the neuron in CRF only; in the post-saccadic

period, the stimulus activates the neuron in FRF only; but in the peri-saccadic period, the neuron is activated by the stimulus in all three locations, signifying the

elongated remapping.
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FIGURE 7 | 2D model results. (A) Schematic of the two-dimension model. Upper: The network is composed of many mini-columns are arranged on a 2D grid. Each

mini-column is composed of 6 pyramidal cells which preferentially active for one direction of moving stimulus. Bottom left: network is trained by 60◦ upward saccades.

The red arrows in LIP indicate the strengthening of uni-directional connections between neurons preferring that direction. The red arrows from saccade map in SC to

the LIP neurons show that after training, coupling between SC and LIP neurons reveals direction selectivity. Bottom right: 60◦ downward saccades, similar with 60◦

upward saccades. (B) Initial connectivity matrix of LIP, Neurons are sorted according to their preferred directions and which sub-network they belong to. (C) Initial

connectivity matrix of SC to LIP. (D) Matrix of synaptic weights of LIP, after training. Uni-directional connections have been built up while other connections are

suppressed. (E) Matrix of synaptic weights of SC to LIP, after training. Connections between SC neurons and LIP neurons that code the same saccade direction are

enhanced, otherwise suppressed.

accounts for a potentiation of connections between neurons
within the same sub-network in the direction of the moving
stimulus. Other connections are weakened and pruned in the
ongoing training process.

Furthermore, the connections from the targeted SC
neurons to the LIP neurons that share the same saccade
direction preference are strengthened, otherwise, weakened
(Figures 7C,E). This connection pattern can support the
propagation of the cortical wave by conveying the CD signal
properly to LIP neurons according to the saccade vector.

After training, the strengthened synapses at LIP form many
unidirectional paths. Together with the timely CD signal,
they support the propagation of the cortical wave in the 2D
network. As shown in Figure 7A, when a static visual stimulus
triggers the neuron with a FRF, a cortical wave is initiated and
propagates along the 1D path corresponding to the saccade
vector. The responses of neurons on the path are illustrated in
Figures 8C,D, 60◦ upward saccade and 60◦ downward saccade,
respectively.

We stimulated the plastic network with a stimulus moving in
different directions according to a random sequence to reflect
a visual experience involving different saccades. Neurons that
received the moving stimulus fired sequentially (Figures 8A,B,
response of 60◦ and −60◦ sub-network, respectively), resulting
in the connections which in the same direction with the
moving stimulus exhibit a positive development while a
negative development in the opposite directions (inset of
Figures 8A,B).

CONCLUSION

In this study, we have built a spiking neural network model
with synaptic plasticity to demonstrate that the peri-saccadic
remapping function can be acquired from visual experiences at
the development stage of brain. Our model implemented the
main results of the previous modeling work and reproduced
a number of experimental results. We showed that, with
the learning process, the unidirectional connections between
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FIGURE 8 | Neuron response of sub-network. (A) Activity raster and weight distribution when training with 60◦ upward saccades (Figure 7A, Bottom left). (B) Activity

raster and weight distribution when training with 60◦ downward saccades (Figure 7A, Bottom right). (C) A static stimulus (Black marker in Figure 7A, when monkey

plan a 60◦ upward saccade) at FRF, a wave propagates toward CRF. Bottom: membrane potential of the example neuron marked by red X in the upper panel. (D) A

static stimulus (Black marker in Figure 7A, when monkey plan a 60◦ downward saccade) at FRF, a wave propagates toward the CRF. Bottom: membrane potential of

the example neuron marked by green X in the upper panel.

the LIP neurons were strengthened as well as the couplings
between LIP and SC. When the network was trained, the CD
signal was able to facilitate a transcortical spread of activity
which was triggered by a static visual stimulus at FRF of
a neuron, and this activity would propagate to CRF of the
neuron, resulting in the remapping phenomenon. To display
the receptive field elongation, we also showed that a probe
stimulus at the IML would drive the neuron with CRF around
the time of saccade. We also expanded the 1D model to
implement the saccades in a 2D space, and showed that
direction-specific connections emerged in the learning process.
Specifically, a visual stimulus in 2D space guided the learning
process to strengthen the connectivity between LIP neurons
with the same preference of direction, while the connections
from SC neurons to LIP targeted neurons that prefer the same

saccade direction were also strengthened. We hope that this
study strengthens our understanding on the function of RF
remapping.
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