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Editorial on the Research Topic

Artificial Neural Networks as Models of Neural Information Processing

INTRODUCTION

In artificial intelligence (AI), new advances make it possible that artificial neural networks (ANNs)
learn to solve complex problems in a reasonable amount of time (LeCun et al., 2015). To the
computational neuroscientist, ANNs are theoretical vehicles that aid in the understanding of
neural information processing (van Gerven). These networks can take the form of the rate-based
models that are used in AI or more biologically plausible models that make use of spiking neurons
(Brette, 2015). The objective of this special issue is to explore the use of ANNs in the context of
computational neuroscience from various perspectives.

BIOLOGICAL PLAUSIBILITY

Biological plausibility is an important topic in neural networks research. That is, are ANNs simply
convenient computational models or do they also inform about the computations that take place in
our own brains?

Marblestone et al. carefully lay out the rapid advances in deep learning and contrast these
developments with current practice and views in neuroscience. Their main insight is that biological
learningmay be driven by the optimization of cost functions using successive neural network layers.

A classic question that has haunted ANNs for years is whether backpropagation is biologically
plausible (Crick, 1989). Scellier and Bengio introduce Equilibrium Propagation as a new learning
framework for energy-based models. The algorithm computes the gradient of an objective function
without relying on separate circuits for error propagation that integrate non-local signals.

While acetylcholine (Ach) and dopamine (DA) are neuromodulators that are known to have
profound and lasting effects on the neural responses to stimuli, it is unknown what their respective
functional roles are. Holca-lamarre et al. develop a neural network model that is combined with the
physiological release schedules of ACh and DA.
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IMPROVING PERFORMANCE

Several papers propose new mechanisms to improve the
perfomance of ANNs.

Li et al. investigate chunking, which is a phenomenon
referring to the grouping of items when performing a memory
task, leading to improvements in task performance. The authors
show that chunking can have computational benefits as it allows
the use of synapses with narrow dynamic range and low precision
when performing a memory task.

An important limitation of Hopfield networks is their limited
storage capacity. Folli et al. show that by allowing non-zero
diagonal elements on the weight matrix, maximal storage
capacity is obtained when the number of stored memory patterns
exceeds the network size.

McClure and Kriegeskorte introduce representational
distance learning (RDL) as a stochastic gradient descent method
that drives the representational space of a student model to
approximate the representational space of a teacher model.

SPIKING NEURAL NETWORKS

An important endeavor in computational neuroscience is to
further our understanding of biological and artificial spiking
neural networks.

How sensory stimuli relate to the activity of neurons is one
of the big open questions in neuroscience, and determining
this relationship between the input a neuron receives and the
outgoing spike-train has remained a challenge. Zeldenrust et al.
propose a newANN-basedmethod tomeasure in vitro howmuch
information a neuron transfers in this process.

The rate with which spikes are emitted is often mapped to the
analog activation values of artificial neurons, but it is well-known
that this relationship captures only part of the information
processing in real neurons. Carrillo-medina and Latorre develop
networks of spiking neurons that operate based on the principles
developed for so-called signature neural networks.

How does the central nervous system develop the hierarchy of
sensory maps that reflect different internal or external patterns
and/or states? Chen shows how simple recurrent and reentrant

neuronal networks can discriminate different inputs and generate
sensory maps.

Understanding Brain Function
ANNs have also been embraced as a new tool for understanding
neural information processing in the brain. In this special issue, a
number of advances in this area are put forward.

One question is whether supervised or unsupervised neural
networks provide better explanations of neural information
processing. Testolin et al. taught neural networks to learn an
explicit mapping between different spatial reference frames. They
show that both network architecture and the employed learning
paradigm affect neural coding properties.

An elusive property of our own brains is that we engage in
dreaming during sleep. Horikawa and Kamitani used deep neural
networks in an effort to decode what people dream about. They
found that decoded features from dream fMRI data positively
correlated with those associated with the object categories that
related to the dream content.

An important question in neuroscience is how neural
representations to sensory input are functionally organized.
Güçlü and van Gerven show that neural responses to sensory
input can be modeled using recurrent neural networks that can
be trained end-to-end.

CONCLUSION

Neural networks are experiencing a revival that not only
transforms AI but also provides new insights about neural
computation in biological systems. The contributions in this
special issue describe new advances in neural networks that
increase their efficacy or plausibility from a biological point
of view. A closer interaction between the AI and neuroscience
communities is expected to lead to various other theoretical and
practical breakthroughs in the years to come.
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