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A dynamic system showing stable rhythmic activity can be represented by the dynamics

of phase oscillators. This would provide a useful mathematical framework through which

one can understand the system’s dynamic properties. A recent study proposed a

Bayesian approach capable of extracting the underlying phase dynamics directly from

time-series data of a system showing rhythmic activity. Here we extended this method

to spike data that otherwise provide only limited phase information. To determine how this

method performs with spike data, we applied it to simulated spike data generated by a

realistic neuronal network model. We then compared the estimated dynamics obtained

based on the spike data with the dynamics theoretically derived from the model. The

method successfully extracted the modeled phase dynamics, particularly the interaction

function, when the amount of available data was sufficiently large. Furthermore, the

method was able to infer synaptic connections based on the estimated interaction

function. Thus, the method was found to be applicable to spike data and practical for

understanding the dynamic properties of rhythmic neural systems.

Keywords: coupled oscillators, phase dynamics, multi-neuronal spikes, Bayesian estimation, connectivity

inference

INTRODUCTION

Rhythmic activities in neurons and neuronal networks are thought to contribute to information
transfer and processing in the brain. Specific frequency bands in rhythmic activities contribute
to or disrupt neural information transfer from one neuron to another or from one brain region
to another (Mallet et al., 2008; Sohal et al., 2009; Jackson et al., 2011; Liebe et al., 2012; McGinn
and Valiante, 2014; Bastos et al., 2015). Synchronization, desynchronization, and phase-locking
in rhythmic activities might play an important role in neural information representation and
processing (Womelsdorf et al., 2006, 2007; van Elswijk et al., 2010; van Wingerden et al., 2010;
Vinck et al., 2010; Park et al., 2013). To understand the mechanisms underpinning such functions,
it is necessary to mathematically describe and analyze the properties of the underlying nonlinear
dynamics (Hoppensteadt and Izhikevich, 1997). A mathematical description of this sort can be

Abbreviations: FN, false negative; FP, false positive; GABA, gamma-aminobutyric acid; GP, globus pallidus; MCC, Matthew’s

correlation coefficient; TN, true negative; TP, true positive.
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achieved with a detailed model based on biophysical mechanisms
such as the kinetics of ion channels responsible for a given change
in neuronal membrane potential (Hodgkin and Huxley, 1952).
Such a model generally consists of a considerable number of
variables and parameters. While such a detailed model enables
us to directly compare its behavior with experimental data
recorded under various experimental conditions, it is usually too
complicated to extract essential properties of the dynamic system.
As long as the detailed model possesses the nature of a nonlinear
oscillator, however, its complicated dynamics can be reduced to
those described by a single variable, the phase (Ermentrout and
Kopell, 1984; Kuramoto, 1984; Hansel et al., 1995). Although
this reduction makes impossible a quantitative comparison of
the behavior of the reduced phase dynamics with experimentally
observed phenomena, it provides a mathematically tractable
framework through which to understand the essential properties
of the dynamic system (see Figure 1a). Thus, most previous
studies have first described the detailed dynamics of the model
before reducing it to the simpler phase dynamics in order to
analyze its dynamic properties as a rhythmic system.

However, it is quite difficult to exactly construct a detailed
model based on experimental data due to nonlinearity, model
selection, and parameter tuning. Therefore, it is best to obtain
the reduced phase dynamics directly from experimental data
if possible (Figure 1b; Tokuda et al., 2007; Kralemann et al.,
2008; Cadieu and Koepsell, 2010; Stankovski et al., 2012). Ota
and Aoyagi (2014) proposed a method by which one can
extract the phase dynamics directly from the time-series data
of coupled nonlinear oscillators using Bayesian estimation. In
the proposed method, it is assumed that time-series data of all
units composing a coupled oscillatory system are available. On
applying the method to neural activity, however, simultaneous
recoding of membrane potentials and time-series data of
neuronal states from multi-neurons is still difficult, and only
multi-neuronal spikes that represent a specific timing or phase

FIGURE 1 | Scheme of the present study’s framework. (a) The conventional way in which a detailed model of coupled nonlinear oscillators is first constructed, and

then reduced (simplified) to retain only the essential dynamics. (b) The method used to extract the reduced dynamic model directly from time-series data obtained by

measurement of the oscillatory system. (c) The method used in this study to estimate the reduced dynamic model from spike data. Note that membrane potentials

(thin lines) were unavailable in this method. Therefore, only spikes (short thick lines) could be used.

in oscillatory activity can be obtained. Therefore, it remains to
be established whether the proposed Bayesian approach is an
effective means of extracting the phase dynamics from multi-
neuronal spike data. In the present study, we addressed this issue
by applying the Bayesian approach to the simulated spike data
of a conductance-based neuronal network model (Figure 1c).
Using the simulated spike data, we were able to compare the
phase dynamics estimated directly from the multi-neuronal
spike data with those theoretically derived from the detailed
model.

MATERIALS AND METHODS

We first conducted a numerical simulation of the computational
neuronal network model in order to generate multi-neuronal
spike data. We also theoretically derived the phase dynamics
from the detailed model of the neuronal network with the
phase reduction technique (see Phase response analysis). We
then applied the Bayesian estimation to the simulated spike
data and confirmed the validity of the estimated results in
comparison with the reduced theoretical model (Ota and Aoyagi,
2014).

Simulation Model of a Neuronal Network
Our network model consisted of globus pallidus (GP) neurons in
the basal ganglia, which exhibit autonomous periodic firing. We
used the conductance-based model of a GP neuron previously
proposed by Fujita et al. (2012) (accession number 143100 in
ModelDB). The membrane potential dynamics of the ith neuron
Vi is represented by the following equation:

Cm
dVi

dt
= −gleak(Vi − Eleak)− INaF − INaP − IKv2 − IKv3

−IKv4f − IKv4s − IKCNQ − ICaH − IHCN − ISK

+Isyn,i + Iapp,i + ηi(t), (1)
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where Cm, gleak, and Eleak are the unit capacitance, leak
conductance, and reversal potential of the leak current,
respectively. IXs, Isyn, and Iapp represent currents through ion
channels, synaptic currents, and the applied current, respectively.
ηi(t) represents Gaussian white noise. Because the GP neuron
is inhibitory, the model neurons are connected by gamma-
aminobutyric acid (GABA)ergic synapses. The kinetics of the
synapses were described using the first-order kinetic model by
Destexhe et al. (1998). The conductance of all synapses was set
to 0.02 mS/cm2, which would amount to approximately 0.7–
1.4 nS depending on the membrane area. The network model
in the present study consisted of 64 GP neurons, each of which
received GABAergic synaptic inputs from 8 randomly chosen GP
neurons. Later in the analysis, where we saw how the proposed
method performed for spike data from larger-size networks, the
number of connections were set to 16 and 32 for the networks
with 128 and 256 neurons, respectively. To maintain the similar
firing rate, the maximal synaptic conductance was set to a half
(0.01 mS/cm2) for the case of 128 neurons and a quarter (0.005
mS/cm2) for that of 256 neurons.

As reported in the previous study that prompted this research
(Fujita et al., 2012), the set of the maximal conductances
of the ion channels exerts a certain influence on the stable
state of the GP network. Specifically, a combination of the
maximal conductance values of persistent sodium channels
(gNaP), Kv3 potassium channels (gKv3), M-type potassium
channels (gKCNQ), and calcium-dependent potassium channels
(gSK) determines whether the network takes the monostable
state of in-phase synchronization or the bistable state of in-
phase and antiphase synchronization. We set the values of the
four conductances according to two configurations: case A for
the monostable in-phase synchronization state, and B for the
bistable in-phase/antiphase state. For case A, gNaP and gKv3 were
increased 20% from the reference values, whereas gKCNQ and
gSK were decreased by 20%. For case B, the opposite changes
in conductance were applied, rendering both in-phase and
antiphase states stable. To equalize the firing rate of an isolated
GP neuron for case A and B, it was necessary to set different
values of applied current; Iapp was set to 1.58 µA/cm2 for case A,
and 2.74 µA/cm2 for case B, with the isolated firing rate adjusted
to 40 spikes/s. In our simulation, the applied current for each
neuron was drawn from a Gaussian distribution, Iapp,i = Iapp(1
+ νi) where νi ∼ N(0, σ 2

I ), and where N(µ, σ 2) denotes the
density of a Gaussian distribution with the mean µ and the
variance σ 2. The standard deviation (σ I) was set to 10% of the
value (σ I = 0.1). Then, we tested the effect of increased firing
rate variability by resetting the standard deviation to 30% of the
value (σ I = 0.0, 0.1, 0.2, and 0.3). This caused firing rates in the
network to be distributed. ηi(t) is independent Gaussian white
noise drawn from the distribution N(0, σ 2

N). We here set σN to
0.0, 0.4, 0.8, and 1.6 µA/cm2. All other parameters were set as in
the previous study that informed this research (Fujita et al., 2012).

Phase Response Analysis
The dynamics of a limit cycle oscillator can generally be
represented by a single degree of freedom, the phase.
Furthermore, when such oscillators weakly interact with

each other, the coupled limit cycle oscillators are described as
coupled phase oscillators. In this phase description, the dynamics
of the ith phase oscillator is

dφi

dt
= ωi +

N
∑

j 6=i

Ŵij(φi − φj)+ ξi(t), (2)

where φi and ωi represent the phase and the natural frequency
of the ith oscillator, respectively. We assumed that ξi(t) was
independent Gaussian white noise satisfying < ξi(t)> = 0 and
< ξi(t) ξj(s)> = 2Diδijδ(t – s). Ŵij(φi –φj) is the interaction
function from the jth oscillator to the ith oscillator, which can
be theoretically derived as follows:

Ŵij(1φij) =
1

T

∫ T

0
Zi(τ )Iij(τ ;1φij)dτ , (3)

where 1φij, T, Zi(t), and Iij (t; 1φij) represent the phase
difference between the jth and ith oscillator (1φij = φi–φj), the
period of oscillation, the phase response function of the receiver
oscillator (the ith oscillator), and the input from the sender
oscillator (the jth oscillator) to the receiver, respectively. The
phase response function Z(t) represents the amount of phase
advance (>0) or delay (<0) when an infinitesimal perturbation
is given at t. Using the interaction function, the dynamics of the
phase difference between two phase oscillators can be expressed
as follows (Hansel et al., 1995):

d1φ

dt
= Ŵodd(1φ) ≡ Ŵ(1φ)− Ŵ(−1φ). (4)

Stable phase differences must satisfy the following equation:

Ŵodd(1φ) = 0 and
dŴodd(1φ)

d1φ
< 0 (5)

If 1φ = 0 is a unique solution of Ŵodd(1φ), the network of
oscillators exhibits global synchrony. Therefore, to obtain the
interaction function is essential to understanding the dynamic
properties of the coupled oscillators.

When applying the method above to neural oscillators, we
must obtain the phase response function Z(t) and the input
between oscillators I(t). If the detailed dynamics of a neuron are
known, it is possible to compute the phase response function
Z(t) theoretically or numerically by solving the adjoint equation
(Ermentrout, 1996; Nomura et al., 2003; Takekawa et al., 2007).
In the present study, we numerically computed Z(t) from the
neuronal dynamics of a GP neuron model, Equation (1). The
inputs between neural oscillators were determined by the synapse
model mentioned above (Destexhe et al., 1998). We computed
the interaction functions for parameter sets A and B by using
those functions.

In the network simulation, neurons received inhibitory
synaptic inputs, which reduced their firing rates. The change in
a firing rate (or a firing period) might cause a bifurcation of the
solutions of Equation (5). Therefore, we confirmed the shapes of
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the interaction function for different firing rates or periods by
computing the phase response function after altering the applied
current. We then compared the estimated interaction function
derived from simulated spike data (see Bayesian estimation) with
the analytically derived function for the case of the same firing
period as employed in the simulated spiking activity.

Characterization of Network States
We used the coherence measure to estimate the degree of
synchrony in the neuronal population (Wang and Buzsáki, 1996).
This measure was calculated for a pair of neurons i and j as
follows:

κij =
∑

n xi(tn)xj(tn)
√

∑

n xi(tn)
∑

n xj(tn)
(6)

where xi(tn) represents a binary variable with 1 (a spike) or
0 (no spike) within the n-th bin for neuron i. We defined
network state as the average coherence measure of all possible
pairs in the network: κ = <κij>ij. A change in the average
coherence measure κ as a function of bin size characterizes a
network state; a linear increase in the average coherence measure
with an increase in bin size indicates uniform existence of
spikes, i.e., an asynchronous firing pattern. However, the average
coherence measure saturates with increased bin size if a neuronal
population exhibits global synchronization, i.e., a synchronous
firing pattern (Wang and Buzsáki, 1996).

Bayesian Estimation
Following the method previously proposed (Ota and Aoyagi,
2014), we used Bayesian estimation to determine ωi, Γ ij, and
Di in Equation (2). Because the interaction function Γ ij is a
nonlinear function, it is generally difficult to estimate. However,
the Bayesian approach allows us to estimate the function, and
consequently the phase dynamics, successfully from time-series
data.

To obtain phase time-series data from the observed spike
data, the proposed method required modification. Spike data
provide only information regarding timing when phase variables
have specific values and do not contain detailed information on
temporal changes in phase variables. Here we defined a spike time
as zero of a phase variable, i.e., φ(tspk)= 0, where tspk denotes the
time of a spike. Because ωi is generally very large compared to
Ŵij (1φij) and ξi(t), we linearly approximated temporal changes
in phase variables and interpolated phase values between the sth
and the (s+ 1)th spikes as follows:

φ(τ ) = 2π
1t

ts+1 − ts
τ (τ = 1, 2, . . . ,Ts − 1), (7)

where ts denotes the time of the sth spike of a neuron. The
constant 1t is a sampling interval that determines the number
of intervals Ts as follows: Ts = (ts+1 – ts)/1t.

We required some other parameters to describe the function
Ŵij (1φij). Because the interaction function is a 2π-periodic

function, it can be expanded in a Fourier series as follows:

Ŵij(1φij) = a
(0)
ij +

Mi
∑

m=1

[a(m)
ij cos(m1φij)+b

(m)
ij sin(m1φij)], (8)

where the variable Mi denotes the number of harmonics for
each Γ ij (1φij) and controls the model complexity. Using these
notations, we rewrote the Model Equation (2) as follows:

dφi

dt
= ω̂i +

N
∑

j 6=i

Mi
∑

m=1

[a(m)
ij cos(m1φij)+ b

(m)
ij sin(m1φij)]

+ξi(t), (9)

where we treated ω̂i ≡ ωi +
∑N

j 6=i a
(0)
ij as a single parameter

because the contributions of ωi and aij
(0) to the dynamics are

inseparable. Thus, the dynamics are estimated by evaluating
2+2Mi(N−1) unknown parameters, ω̂i,Di, and {aij

(m), bij
(m)}m,j.

For simplicity, hereafter we use the shorthand notations ci ≡
[ω̂i, ci,1, . . . , ci,i−1, ci,i+1, . . . , ci,N]

T with

ci,j ≡ [a(1)ij , b(1)ij , a(2)ij , b(2)ij , . . . , a(Mi)
ij , b(Mi)

ij ] (10)

and

Ŵ̂ij(1φij) ≡
∑Mi

m=1
[a(m)

ij cos(m1φij)+ b
(m)
ij sin(m1φij)]. (11)

We next evaluated all unknown parameters to describe the phase
dynamics following the standard Bayesian approach (Bishop,
2006; Murphy, 2012). In this approach, when we obtain new
observed data {φi(t)}, the parameter distribution p(ci, Di) is
updated as follows:

p(ci,Di|{φi(t)}) ∝ p({φi(t)}|ci,Di)p(ci,Di), (12)

where p({φi(t)}|ci, Di) is the likelihood function, which denotes
the probability of reproducing the observed data for the given
parameters. For this update, we needed to determine the
likelihood function, initial distribution of the parameters, and
model complexity.

First, we defined the likelihood function. It is by virtue
of this function that phase time-series data {φi(t)}, including
interpolated data sampled at T equal intervals, can be obtained.
The likelihood function in our method was defined as follows:

p({φi(t)}|ci,Di)

=
T−1
∏

τ=0

N





φi(τ + 1)− φi(τ )

1t

∣

∣

∣

∣

∣

∣

ω̂i +
N
∑

j 6=i

Ŵ̂ij(1φij),
2Di

1t





(13)

The phase variables φi(0) and φi(T) take values of 0 and 2π,
respectively.

Next, we used a conjugate prior distribution as the initial
distribution so that the posterior distribution had the same
functional form as the prior distribution. This enabled us
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to derive the posterior distribution by only updating the
values of hyperparameters that characterize the conjugate prior
distribution. In our approach, we adopted a Gaussian-inverse-
gamma distribution, as follows:

p(ci,Di) ∝ exp

(

− (ci − χi)
T6−1

i (ci − χi)+ 2βi

2σ 2
i

)

(σ 2
i )

− Pi
2 −αi−1

(14)

where Pi is the dimension of the vector ci. The variable σi
2

is defined as σ 2
i ≡ 2Di/1t. χ i, 6i, αi, and β i denote

hyperparameters. Thus, we obtained the posterior distribution
after updating the hyperparameters:

χnew
i = 6new

i (FTi δi + (6old
i )

−1
χold
i ),

6new
i = {(6old

i )
−1 + FTi Fi}

−1
,

αnew
i = αold

i + T

2
,

βnew
i = βold

i + 1

2
{δTi δi + (χold

i )
T
(6old

i )
−1

χold
i

−(χnew
i )T(6new

i )−1}. (15)

Here, we defined T-dimensional column vectors, (δi)τ =
{φi(τ+1)– φi(τ )}/1t (τ = 0, 1,..., T−1), and T × {1+2Mi(N−1)}
matrices

Fi =







1 G0
i,1 . . . G0

i,i−1 G0
i,i+1 · · · G0

i,N
...

...
...

...
...

1 GT−1
i,1 · · · GT−1

i,i−1 GT−1
i,i+1 · · · GT−1

i,N






(16)

with Mi-dimensional row vectors, where Gi
τ
j was defined as

Gi,
τ
j = [cos1φij(τ ), sin1φij(τ ), cos(21φij(τ )), sin(21φij(τ )), ···,

cos(Mi1φij(τ )), sin(Mi1φij(τ ))]. The superscripts “new” and
“old” indicate the hyperparameters of the posterior and prior
distributions, respectively.

Finally, we determined the model complexity Mi. Following
the Bayesian model selection method, we determined the value
of Mi by maximizing the model evidence given by the following
equation:

p({φ(t)}|Mi) =
p({φ(t)}|ci,Di)p(ci,Di)

p(ci,Di|{φi(t)})
. (17)

Because it is generally impossible to analytically optimize model
evidence, we explored the optimal parameter value within the
range of 1–5. We calculated the model evidence for each of these
values and then chose the value that resulted in the largest model
evidence as the optimal value.

Evaluation of Estimation Performance
To evaluate estimation performance, we calculated the L2-
distance between two vectors c∗i,j and ci,j, which characterized

the theoretical function Ŵ̂∗
ij(1φij; c∗i,j) and the estimated function

Ŵ̂ij(1φij; ci,j), respectively. The L2-distance was given by the

following equation:

dij(c
∗
i,j, ci.j) ≡

√

∑2Mi

k=1
(c∗
k
− ck)

2 +
∑2n

l=2Mi+1
(c∗
l
− 0)2 (18)

where {ck
∗} and {ck} denote c∗i,j and ci,j, respectively. The constant

n is sufficiently larger thanMi.

Inference of Synaptic Connections
We inferred synaptic connections between neurons on the basis
of the magnitudes of the estimated interaction functions in order
to evaluate the performance of the estimation from another
viewpoint. Using Otsu’s method (Otsu, 1979), we estimated the
threshold and regarded a synapse as connected (wij

est = 1) if
the magnitude of the corresponding interaction function was
greater than the threshold; otherwise, synapses were considered
unconnected (wij

est = 0).
We quantitatively compared the inferred synaptic connections

(wij
est) with the actual connections in the network model

(wij
act) using Matthew’s correlation coefficient (MCC), which is

a measure of classification quality (Baldi et al., 2000; Kobayashi
and Kitano, 2013). The case in which both connections exist for
the jth to ith neuron (wij

est = 1 and wij
act = 1) is regarded as a

True Positive (TP). Cases with (wij
est, wij

act ) = (1, 0), (0, 0), and
(0, 1) are called a False Positive (FP), a True Negative (TN), and a
False Negative (FN), respectively. After obtaining the numbers of
these four types of results for the neuron pairs, we calculated the
MCC using the equation below:

MCC = TP · TN − FP · FN√
(TP + FP)(TP + FN))(TN + FP)(TN + FN)

. (19)

The MCC becomes 1 if the two classes (wij
est and wij

act)
match perfectly, while a random guess results in a value of
approximately 0.

RESULTS

Fujita et al. (2012) reported their network to exhibit two distinct
states for different parameter sets: global synchrony (case A) and
two clusters corresponding to in-phase and antiphase synchrony
(case B). Figures 2, 3 display the firing patterns of the network
model for various conditions for cases A and B, respectively.
Figure 2A is the raster display of the neurons in the network
under the conditions of case A for different conditions of
σ I and σN. When all the neurons exhibited the same firing
rate or period (σ I = 0), the network globally synchronized
irrespective of the presence of noise. In contrast, when the firing
periods varied (σ I = 0.1), the neurons no longer showed global
synchronization. As shown in Figure 2B, firing periods were
distributed on the basis of different values of σ I (σ I = 0.0: 29.03
± 0.00 [mean ± standard deviation] ms; 0.1: 31.10 ± 2.32ms;
0.2: 32.32 ± 5.32ms; 0.3: 34.37 ± 9.80ms). Figure 2C illustrates
the changes in average coherence measure with or without noise
as a function of bin size (σ I = 0). Although the precision of
synchronization reduced with an increase in noise intensity, the
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FIGURE 2 | Simulated neuronal spikes that were utilized in the phase dynamics estimation. Raster displays of a globus pallidus neuronal network and characteristics

of the network activity for case A. Spiking activity of the neurons under the various conditions of the variation in applied current and noise (A), distributions of firing

periods for the different standard deviations σ I when σN was set to 0.4 (B), and changes in average coherence measure as a function of bin size for different standard

deviations of noise σN when σ I = 0 (C).

FIGURE 3 | Simulated neuronal spikes utilized in the phase dynamics estimation. Raster displays of a globus pallidus neuronal network and characteristics of the

network activity for case B. Spiking activity of the neurons under the various conditions (A), distributions of firing periods for the different standard deviations σ I

(B), and changes in the average coherence measure as a function of bin size for different standard deviations of noise σN (C). The parameter values are the same as

those described in Figure 2.

neurons synchronized even with increased noise intensity. The
network activity patterns for case B are displayed in Figure 3A.
When the firing periods equalized, neuronal spikes phase-locked
with finite phases irrespective of noise. However, such phase-
locking was lost when the firing periods varied as shown in
Figure 3B (σ I = 0.0: 29.40 ± 0.05ms; 0.1: 30.08 ± 2.49ms; 0.2:
31.55 ± 5.95ms; 0.3: 34.37 ± 12.07ms). The changes in the
average coherence measure increased linearly, suggesting that
the spikes were uniformly distributed (Figure 3C). As shown

in Figures 2B, 3B, increased variance in the applied current
changed the neuronal firing periods. Since a change in the firing
period can yield different stable solutions, we confirmed the
stability of the phase differences by applying the phase response
analysis to different firing periods (see Materials and Methods).
Figures 4A,B illustrate the odd parts of the interaction functions
for cases A and B, respectively. For case A, the stable phase
difference was only 0, indicating that only in-phase synchrony
is stable for the examined firing periods. For case B, both 0
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FIGURE 4 | The odd parts of interaction functions derived from the phase response analysis for different firing periods. (A) The odd parts of interaction functions for

case A. For all periods investigated here, the stable phase difference was only 0 (or 2π). (B) Similar plot to A, but for case B. The stable phase differences in this case

were 0 and π, suggesting that coupled neurons had bistable states of in-phase and antiphase synchronization.

FIGURE 5 | Estimated interaction function for case A. (A) Estimated interaction functions Ŵ̂(1φ) of a connected neuron pair for various cycle numbers of data (blue

lines). Ŵ̂(1φ) derived from the detailed model is also shown for comparison (dashed lines). The light blue zone represents the 95% confidence interval. The vertical

scale is in rad/ms. The L2-distances were 0.0107, 0.0066, 0.0023, and 0.0021, for 100, 500, 1,000, and 5,000 cycles, respectively. (B) Similar to (A), except that this

panel describes the results from an unconnected neuron pair. Since there was no interaction function for this neuron pair, the theoretically derived Ŵ̂(1φ) is

represented by the flat dashed lines. The L2-distances were 0.0490, 0.0117, 0.0014, and 0.0002, for 100, 500, 1,000, and 5,000 cycles, respectively. (C)

Comparison of the odd part of Ŵ̂(1φ) between the estimated and theoretically obtained functions. The filled circles indicate stable phase differences whereas the open

circle shows an unstable phase difference. Although a discrepancy between the odd parts is seen, they have the same stable phase difference (1φ = 0). (D)

Dependence of L2-distances on the variation of applied currents. The averages of L2-distance d1j (j = 2, 3, …, 64) were calculated with several numbers of cycles.

Blue, red, and black lines indicate the results for 500, 1,000, and 5,000 cycles, respectively. σN was set to 0.4. (E) Dependence of L2-distances on the standard

deviation of noise. The usage of colors is the same as in (D). σ I was set to 0.1.
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and π were the stable phase differences, suggesting that in-phase
and antiphase synchrony are bistable. In both cases, stable phase
differences were not affected by changes in firing period.

We applied the Bayesian approach to the spike data to
estimate the interaction functions between the neuron pairs.
Figure 5 shows the estimated interaction functions between a
connected pair and an unconnected pair in case A. Figure 5A
shows the estimated interaction function from neuron #32 to
neuron #1 for several different numbers of spike cycles. Because
there was a synaptic connection in that direction between the
neurons, the interaction function theoretically obtained from
the detailed model is indicated in Figure 5A by a dashed line.
As more data were used, the estimated function took a shape
more analogous to the theoretically derived function. In contrast,
the network had no synapse to transmit a signal from neuron
#17 to neuron #1. There was thus no interaction function in
that direction. The estimated function thus took on a flat shape
when 1,000 cycles of spike data were used. This confirms the
estimation of the unconnected synapse to have been correct
(Figure 5B). The shape of the interaction function determines
the stability of the network states. Because the odd part of the
function, Γodd, describes the stable states, we compared Γodd of
the estimated function with that of the theoretically obtained
function in Figure 5C. Although the scales were different, the
estimated function yielded the same stable phase difference
(1φ = 0) as the theoretical function. Thus, if the data of a
sufficient number of spike cycles are available, the Bayesian
approach can successfully estimate the interaction function with
the parameters of case A. Estimated functions were evaluated
by L2-distance between theoretically derived and experimentally
derived interaction functions for various parameters (see section
Materials and Methods). First, we determined the dependence of
the distance on themagnitude of σ I for σN = 0.4 (Figure 5D). All
distances except for σ I = 0.0 were improved as the data lengths
(cycles) became larger. When σ I = 0.0, the distance was large
for all data lengths, which indicates that the proposed method
did not perform well in this case. This poor estimation was
independent of whether a neuron pair had direct connections
(Figure S1). Figure 5E shows the dependence of the distance on
the magnitude of σN for σ I = 0.1. It is suggested that the distance
was not significantly affected by σN when compared to σ I. In this
case, the distance increased as σN increased (red, 1,000 cycles).

Figure 6 is similar to Figure 5, except that it describes
case B instead of case A. Figures 6A,B illustrate the estimated
interaction functions of a connected neuronal pair (from #28 to
#1) and an unconnected pair (from #12 to #1), respectively. In
addition, so long as data with a sufficient number of spike cycles
were used in case B, the estimated interaction functions took on
the expected shape (i.e., analogous to the shape of the theoretical
functions for a connected pair or a flat shape for an unconnected
pair). Similar to case A, although the estimated Γodd was different
from the theoretical one, the stabilities of the two solutions for
phase differences 0 and π were unchanged (Figure 6C). Similar
to Figures 5D,E,6D,E show the dependence of the L2-distances
on σ I and σN, respectively. As shown in Figure 6D, except for
the case with 500 cycles, the distances for all values of σ I were
smaller than those in case A (Figure 5D). Even when σ I = 0.0, the

phase differences were distributed (Figures 3A,C) due to random
connections, which enabled us to collect information regarding
the phase relations utilized for reconstruction of the interaction
functions (data not shown). The distance increased as σN became
larger in case B as well.

The effect of partial observation on estimation performance
was investigated. In the above analyses, we utilized spike data
from all of the neurons in the model. Here, the results pertain to
spikes recorded from a subset of modeled neurons. Figures 7A,B
show the L2-distance averaged over the sampled neurons as a
function of the number of sampled neurons for cases A and
B, respectively. The estimation performance deteriorated with
decreasing numbers of sampled neurons. Figures 7C,D illustrate
how the averaged distances depended on σ I when the numbers
of sampled neurons were 32 and 16, respectively. Although the
distance depends highly on both the number of cycles and σ I,
estimation performance for the case with 32 neurons was better
than that of the case with 16 neurons for all values of σ I when
sufficient data were available (black, 5,000 cycles). Similarly,
Figures 7E,F illustrate the dependence on σN in the cases with
32 and 16 neurons, respectively. In these analyses, the average
distances for 32 neurons were slightly smaller than those for
16 neurons when we considered 5,000 cycles of spike data. In
this case, the estimation result did not depend on whether a
neuron pair had a direct connection. Subsequently, we examined
whether the dependence of the estimation performance on partial
sampling was the case for larger-sized networks. We increased
the number of neurons in the network to 128 and 256. With
an increase in the network size, the number of connections was
increased whereas the synaptic strengths were decreased (see
section Materials and Methods for details). Under this condition,
the firing periods in the network of 128 neurons exhibited
30.94 ± 2.68ms for case A and 29.87 ± 2.91ms for case B.
Similarly, those in the network of 256 neurons were 30.95 ±
2.27ms for case A and 29.89 ± 2.42ms for case B. Figures 7G,H
demonstrate how the L2-distances depended on the network size
for cases A and B, respectively. Similar to the case of the 64-
neuron network, the estimation deteriorated as the number of
sampled neurons (or the sample rate) was reduced. Furthermore,
as the network size was increased, the L2-distances scaled by the
synaptic strengths were increased, suggesting that the estimation
performance deteriorated. This is because the synaptic strengths
were decreased for the larger-size networks and it was harder for
the proposed method to detect changes in phase differences for
such a case.

Finally, we examined whether it is possible to infer synaptic
connections based on the estimated interaction functions. We
hypothesized that the summed powers of the Fourier coefficients

of the estimated interaction function
∑Mi

m=1 {(a
(m)
ij )

2
+ (b(m)

ij )
2
}

would be a good criterion for the presence of a synaptic
connection.We calculated the normalized summed powers of the
function P1j for 63 pairs of neurons (from neuron #j to neuron #1,
j= 2, 3,. . . , 64). We then applied the Otsu method to these values
to classify them into two clusters based on the threshold. When
P1j was larger than the threshold, it was inferred that a synaptic
connection was present from neuron #j to #1. Figure 8A shows
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FIGURE 6 | Estimated interaction function for case B. This figure is similar to Figure 5, except that it describes the results from case B instead of case A. (A) The

estimated interaction functions of a connected neuron pair for various cycle numbers of data (blue lines). The light blue zone represents the 95% confidence interval.

Ŵ̂(1φ) derived from the detailed model is also shown for comparison (dashed lines). The L2-distances were 0.1235, 0.0044, 0.0016, and 0.0002, for 100, 500, 1,000,

and 5,000 cycles, respectively. (B) The estimated interaction functions of an unconnected neuron pair. The L2-distances were 0.1261, 0.0062, 0.0015, and 0.0003,

for 100, 500, 1,000, and 5,000 cycles, respectively. (C) Comparison of the odd part of Ŵ̂(1φ) between the estimated and theoretically obtained functions. As in

Figure 5C, the filled circles indicate stable phase differences while the open circles show unstable phase differences. (D,E) Dependence of L2-distances on the

standard deviation of applied currents and of noise. σN was set to 0.4 for (D), while σ I was set to 0.1 for (E).

the distribution of P1j for case A. The top and bottom panels
of Figure 8A show the results of fitting for 100- and 5,000-cycle
spike data, respectively. The summed powers of neuron pairs
with (red) and without (blue) actual connections were merged
for 100-cycle data, but were clearly separated for 5,000-cycle data.
In Figure 8B, the distributions of the summed powers for case B
are shown. These data suggest that 100-cycle spike data were not
sufficient for the inference of synaptic connections, while 5,000-
cycle spike data were useful for this purpose. The correlation
between actual and inferred connections was evaluated using
MCC. In Figure 8C, MCC values are shown as functions of cycle
number. Although the inferred connections did not correlate
with actual connections for 100-cycle data, our method worked
perfectly for 1,000-cycle data.

DISCUSSION

Constructing a detailed dynamic model based on measured
data is often difficult and involves the selection of an

appropriate model, adjustment for many unknown parameters,
and insufficient information regarding measured data used
for modeling. Furthermore, incorrect modeling can lead to
misunderstanding of the properties of the dynamic system.
For cases wherein the dynamic system consisted of nonlinear
oscillators, Ota and Aoyagi (2014) have proposed a Bayesian
method through which the reduced dynamics of a complicated
dynamic system can be derived directly based on measured
data (Tokuda et al., 2007; Kralemann et al., 2008; Cadieu
and Koepsell, 2010; Stankovski et al., 2012). This approach
is based on the fact that such oscillator systems can be
represented by the reduced dynamics of phase oscillators
(Ermentrout and Kopell, 1984; Kuramoto, 1984; Hansel et al.,
1995). The method requires time-series data to construct the
phase dynamics because the time-series data contain detailed
phase information of oscillatory units. This method would
be a powerful tool for the analysis of experiments recoding
time-series data such as that of the electroencephalogram.
However, it is still difficult to record time-series data, such
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FIGURE 7 | Effects of partial observation on estimation performance. (A,B) Dependence of the L2-distances on the numbers of sampled neurons for cases A and B,

respectively. Here we plotted L2-distances averaged over neuron pairs between the reference neuron (#1) and other sampled neurons for 20 different sampling runs.

Blue, red, and black lines indicate the results for 500, 1,000, and 5,000 cycles, respectively. The color used here are consistent with those used elsewhere in this figure.

σ I and σN were set to 0.1 and 0.4, respectively. (C,D) Dependence of the average L2-distance on different values of σ I. (C,D) Display the results for cases with 32

and 16 sampled neurons, respectively. σN was set to 0.4. (E,F) Dependence of the averaged L2-distance on different values of σN. Similar to (C–F) display the results

for cases with 32 and 16 sampled neurons, respectively. σ I was set to 0.1. (G,H) Dependence of the average L2-distance on the size of network and the number of

sampled neurons for case A and B, respectively. For comparison, the average L2-distances were scaled by the relative synaptic strengths, i.e., the distances for the

128-neuron network were doubled whereas those for the 256-neuron network were quadrupled. The sample rate 25, 50, and 100% correspond to 32, 64, and 128

neurons for the 128-neuron network whereas 64, 128, and 256 neurons for the 256-neuron network. Blue, red, and black lines indicate the results for the 64-, 128-,

and 256-neuron networks, respectively. The number of cycles and trials were 5,000 and 10, respectively. σ I and σN were set to 0.1 and 0.4, respectively.
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FIGURE 8 | Inference of synaptic connections based on estimated interaction

functions. In this analysis, σ I and σN were set to 0.1 and 0.4, respectively. (A)

Distributions of summed powers of Ŵ̂(1φ) for case A. The values were

normalized using the maximum value, maxj (P1j). The upper panel shows the

result for 100-cycle data, and the bottom panel shows that for 5,000-cycle

data. Blue and red histograms display the distributions of unconnected neuron

pairs and connected neuron pairs, respectively. The vertical dashed lines show

the thresholds determined using Otsu’s method. These lines were used as the

thresholds for inference of the presence of synaptic connections. (B)

Distributions of summed powers for case B. As in (A), the upper panel shows

the result for 100-cycle data, and bottom panel shows that for 5,000-cycle

data. (C) Matthew’s correlation coefficient (MCC) for the inference of synaptic

connections as a function of cycle number. Blue and red indicate MCC for

case A and B, respectively.

as membrane potentials, from multiple neurons to investigate
neural activity.

To apply the Bayesian method to spike data, it is necessary
to interpolate phase values between spikes because spike
timing only provides a specific phase value. Because no
detailed information regarding the interspike phase values was
available, we simply employed linear interpolation. This simple
approximation method can be used to extract only a limited
amount of information regarding the dynamics of each cycle.
In addition, the neuronal network model used in the present
study was rather complex and included 10 different ionic
currents. Nevertheless, we were also able to use the Bayesian
method to estimate the interaction function for the different
conditions leading to the different network states (Figures 5, 6).
Additionally, using the estimated interaction functions to infer
the synaptic connections worked perfectly, although this was the
case only when spike data with high cycle numbers were used
(Figure 8). The method performed poorly when the network
exhibited global synchronization (Figure 5 and Figure S1), when
low cycle number spike data were used (Figures 5–8), when the
fraction of recorded neurons was small (Figure 7), and when the
synaptic strengths were weak (Figure 7). Thus, even though the
data available to extract the phase dynamics consisted only of
spikes, the effectiveness of the method was confirmed for several
different conditions.

Estimation performance depended on firing period variability,
noise intensity, and the number of sampled neurons. Although
a higher degree of noise tended to degrade the estimation
performance, noise intensity had a limited impact on estimation
performance relative to the other factors when sufficient spike
data (>5,000 cycles) were available. To examine the in vivo firing
rate of GP neurons, which ranges from 30 to 50 spikes/s, a
much greater input than the threshold current was applied. This
resulted in a modest impact of noise on the spiking patterns and
estimation performance.

Variation in firing period greatly influenced estimation
performance (Figure 5D vs. Figure 5E, Figure 6D vs. Figure 6E,
Figure 7C vs. Figure 7E, and Figure 7D vs. Figure 7F). Wide
sampling of data on phase relations is required to improve
Bayesian estimation. In the case of an identical firing period
(σ I = 0), the neurons exhibited in-phase synchronization
(Figure 2A) or phase-locking with finite phase differences
(Figure 3A). This limited sampling to specific phase differences.
As a result, the estimation performance for the former case was
the lowest among the examined conditions (Figures 5D, 7C,D).
This is because when the neurons were globally synchronized, all
phase differences were kept at 0. This led to biased sampling of
phase relations, which is supported by the fact the confidence
intervals did not converge, even for the larger cycles (Figures
S1A,B). In contrast, when the variability of the firing period
was not zero, but was small, it was possible to collect phase
information for neuron pairs evenly over a cycle due to the
slightly different firing periods. For the latter case, the phase
differences for many neuron pairs were kept fixed, although those
for some pairs slightly fluctuated due to random connections.
This prevented us from sampling only limited phase differences.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 January 2018 | Volume 11 | Article 116

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Suzuki et al. Spike-Based Estimation of Phase Dynamics

Thus, except in the special case of global synchrony, the proposed
method performed well when sufficiently large and stationary
spike data were available.

Partial observation is essential because it is impossible
in principle to observe the activity of all neurons in the
brain. Indeed, as the number of sampled neurons decreased,
estimation performance deteriorated (Figures 7A,B). This is
partially because the probability of sampling connected neuron
pairs was decreased. If spikes of presynaptic neurons that
contribute to the postsynaptic dynamics are missing (i.e., many
Γ ij(1φij)s in Equation (2) are missing), the method would be
forced to make them up, and consequently to make a wrong
estimation. However, in the model investigated here, utilization
of more data could serve as partial compensation. The present
network model was a very small network compared to real
neuronal networks. When applying the proposed method to a
real neuronal network, the fraction of observable neurons should
be very small. The analyses for the networks with different
sizes also exhibited the same tendency that the estimation
performance would deteriorate with a decrease in the fraction
of observable neurons (Figures 7G,H) although we should note
that the result was partly due to weakening of synaptic strengths.
Thus, considering the analysis of spike data from a real neuronal
network that consists of thousands or tens of thousands of
neurons, the present method would be not practical and some
improvements should be required. Possibly, as discussed above,
the estimation performance might be improved if we can use the
knowledge on anatomical connectivity to avoid randomly sample
neurons to be recorded.

In the network model, neurons were connected by synapses of
the same strength (synaptic conductance) or were unconnected,
allowing the successful estimation of the interaction function
and inference of synaptic connections so long as spike data
from all neurons were used (Figure 8). Such binary connectivity
potentially oversimplifies synaptic connectivity, given that
synaptic strength is known to vary (Song et al., 2005). The

magnitude of the interaction function is in proportion to
the corresponding synaptic conductance. When using differing
synaptic connection strengths, the interaction function of a weak
synaptic connection could be estimated, although a large amount
of spike data is required. In practice, however, it should be
difficult to estimate such a weak interaction function based on
limited spike data. Furthermore, it is significantly harder to make
inferences when using differing synaptic connection strengths
because of the inherent difficulty in separating the distributions
of the summed powers. In particular, it would be quite difficult
to discriminate a neuron pair with a very weak synapse from
a neuron pair without synapses. Distinguishing between weak
and unconnected synapses as accurately as possible would be
more useful when introducing group lasso regularization to the
Bayesian method.
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