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A commentary on

Using goal-driven deep learning models to understand sensory cortex

by Yamins, D., and DiCarlo, J. (2016). Nat. Neurosci. 19, 356–365. doi: 10.1038/nn.4244

Recently, a goal-driven modeling approach of sensory cortex is proposed in Yamins and DiCarlo
(2016). The basic idea of this approach is to first optimize a hierarchical convolutional neural
network (HCNN) for performing an ethologically relevant task, then once the network parameters
have been fixed, to compare the outputs of different layers of the network to neural data. The success
of this approach is exemplified by the results in Yamins et al. (2014), where a 4-layer HCNN, called
HMO, was used to predict IT neuron spikes on image object stimuli. Notably by only optimizing
the 8-way image categorization performances, not only can the top output layer of the HMO
quantitatively predict IT neuron responses, but its penultimate layer can also automatically predict
V4 neuron responses. In Hong et al. (2016), under the same approach, a 6-layer HCNNwas trained
on ImageNet (Russakovsky et al., 2015) (a benchmark dataset for image object categorization
in the computer vision field, containing 1.3 million category-labeled training images of 1,000
different categories) to successfully predict category-orthogonal object properties along the ventral
stream. Another demonstrative example is the work in Khaligh-Razavi and Kriegeskorte (2014),
showing that when the 10-category representational dissimilarity matrices were used together with
the outputs of all the 8 layers of the AlexNet in Krizhevsky et al. (2012), called the IT-geometry
supervised layer, its outputs could sufficiently explain IT data.

Here in this commentary, we would say that this goal-driven approach, although with some
notable successes and great potential for understanding sensory cortex, could be not as general
as the authors (Yamins and DiCarlo, 2016) advocate, and its general use should be taken with
special care. This is because as shown in Li et al. (2016), the 4 different HCNNs, with the
same AlexNet architecture trained with the same dataset (ImageNet) but only from different
random initializations, learned both convergent and divergent features although the 4 HCNNs have
achieved the similar categorization performances: their top-1 accuracies are 58.65, 58.73, 58.79,
and 58.84% respectively, which are also similar to the top-1 performance of 59.3% reported in
the original study (Krizhevsky et al., 2012). In other words, some convergent features, which are
individually similar or related via a linear transformation, are reliably learnt by the 4 HCNNs, yet
other divergent features are not consistently learnt. In particular, the features at downstream layers
are more divergent than convergent among the 4 HCNNs. The divergence is particularly marked
by two aspects: (1) The responses of neurons at higher layers in one network were impossible to
be linearly mapped to the responses of the neurons at the same layer in other networks (Table 1
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in Li et al., 2016). Or the outputs of the neurons at the same
layer in a pair of networks cannot be adequately related via a
linear transformation; (2) Across different networks, their most
active and least active filters (shown in Figures S11 and S12 in
Li et al., 2016) were quite different, indicating different neuron
selectivity. In sum, the results in Li et al. (2016) indicate that
by merely optimizing the image categorization performances,
different HCNNs can obtain different object representations
but with similar categorization performance. This seems not
consistent with the goal-driven principle.

In Hong et al. (2016), the authors were aware of this
divergent HCNN learning problem. They said, quote: “It is
not the case that any deep convolutional network trained
to solve an arbitrary object categorization task will trivially
exhibit the features of ventral stream that are produced in
our original high-variation-trained computational model.” The
authors seem to contribute such divergent-learning problems to
the insufficiency of stimulus variations to stimulate IT neural
sites. However, initialization is an inherent problem for HCNN
learning, and it is not related to any external stimulus variations.

In sum, HCNN architecture, initialization, learning algorithm,

and training images all affect the outputs of the trained HCNN.
We thought if different architectures are allowed, more divergent
than convergent representations would be learnt, considering the
existence of many local minima and the over-parameterization
nature of HCNNs (LeCun et al., 2015). Hence “purely goal-
driven” should be taken with great care in modeling sensory
cortex.
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