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The FitzHugh–Nagumo model is improved to consider the effect of the electromagnetic

induction on single neuron. On the basis of investigating the Hopf bifurcation behavior of

the improved model, stochastic resonance in the stochastic version is captured near the

bifurcation point. It is revealed that a weak harmonic oscillation in the electromagnetic

disturbance can be amplified through stochastic resonance, and it is the cooperative

effect of random transition between the resting state and the large amplitude oscillating

state that results in the resonant phenomenon. Using the noise dependence of the

mean of interburst intervals, we essentially suggest a biologically feasible clue for

detecting weak signal by means of neuron model with subcritical Hopf bifurcation. These

observations should be helpful in understanding the influence of the magnetic field to

neural electrical activity.

Keywords: electromagnetic induction, subcritical Hopf bifurcation, stochastic resonance, weak signal detection,

improved FitzHugh-Nagumo model

INTRODUCTION

Memristor or memory resistor was supposed by Chua (1971) 46 years ago as the forth fundamental
circuit device along with resistor, inductor and capacitor, and it was successfully realized by Stan
William’s group at HP Labs in 2008 for the first time (Strukov et al., 2008). Because of the huge
storage potential and the complex nonlinearity, the memristor has recently attracted considerable
attention in theoretical and applied neuroscience (Itoh and Chua, 2008; Yogesh and Stephen, 2009;
Wen et al., 2013; Bao et al., 2015; Chen et al., 2017; Zha et al., 2017).

In modern society, human being or animals are inevitably more or less exposed in the electrical
hazards of ubiquitous electromagnetic radiation, and the fact that this radiation can have severe
consequence on biological rhythm and recognition has attracted much attention (World Health
Organization, 2011), but how the electromagnetic radiation changes the behavior of neural systems
is still unclear. Fortunately, the device of memristor emerges and it can act as a feasible tool for
exploring the influence of electromagnetic radiation on neural system activities, since one can
keep the consistency of physical dimension (or unit) when modeling the membrane potential and
magnetic flux into coupling systems (Wu et al., 2016). Several investigations have been done in this
regard. For example, Lv et al. (Lv and Ma, 2016) proposed a comprehensive modified Hindmarsh-
Rose neuron model by introducing the magnetic flux as a fourth variable, and Lu et al. (2017)
imposed different types of electrical stimulus impended with a high-low frequency current on this
improved HR model to investigate mode selection in neural activity. Guo et al. (Ren et al., 2017)
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used memristor to discuss the polarization and magnetization
in excitable neural model. Ma et al. (Wu et al., 2016; Ma
et al., 2017) adopted a magnetic flux across the membrane to
describe the electromagnetic induction and the spiral waves have
been induced. Although the abundant firing patterns have been
revealed, the underlying dynamical mechanism responsible for
these patterns in these newly-built models has not been disclosed.

In nervous systems, noise not only has various origins but
seldom acts as a trivial disturbance (Tanabe and Pakdaman,
2001; Hasegawa, 2004; Faisal et al., 2008; Shao and Kang, 2014;
Sun and Shi, 2014). One of the anti-intuitive phenomena of
noise is often termed as stochastic resonance (SR), where a
suitable noise can amplify the external weak coherent signal
under certain nonlinearity. In the absence of electromagnetic
interference, many theoretical or experimental literatures have
shown that living organisms can utilize noise as a benefit
in detecting or transferring weak signal on both cellular and
system levels (Mark et al., 2009). Kang et al. (2005) showed
the existence of signal-to-noise ratio gain of SR based on the
leaky integrate-and-fire neuron model, Jiao and Wang (2010)
observed SR under the effect of synaptic transmission noise;
Sun and Li (2016) demonstrated that the partial time delay can
induce a stochastic multi-resonance in aWatts-Strogatz neuronal
network. Nevertheless, to our knowledge the phenomenon of SR
has not been explored in neural system under electromagnetic
disturbance. Therefore, we naturally wonder whether a weak
coherent oscillation in the electromagnetic disturbance can be
amplified through SR.

After a modified FitzHugh–Nagumo (FHN) model with
flux-controlled memristor is introduced in Section A modified
FitzHugh–Nagumo neuron model, some analytical and
numerical results on the bifurcation behavior of the system
are derived in Section Analysis of bifurcation. And then, SR
in the modified model with a weak periodic modulation is
exhibited and explained in Section Stochastic resonance. Finally,
conclusion and discussion are given in Section Conclusion and
Discussion.

A MODIFIED FITZHUGH–NAGUMO
NEURON MODEL

Let us start with the conventional FHN neuron model (Fitzhugh,
1961; Nagumo et al., 1962).

{

v̇ = v(v− a)(1− v)− w+ Iext
ẇ = ε(v− dw)

(1)

where the fast-varying trans-membrane potential v and the slow
current variable w are treated as dimensionless. In the model
(1), the nonlinear term v(v − a)(1 − v) stands for total trans-
membrane ionic currents per unit area, Iext is the external forcing
current. Since our purpose is to investigate the influence of
electromagnetic induction, the external forcing current is set to
zero. The parameters ε = 0.02 ,d = 1 and a = 0.5 are fixed such
that the dynamical evolution of the model (1) starting from any
initial state can asymptotically approach a resting equilibrium

state when Iext = 0. We keep this zero external input throughout
the context.

In order to consider the effect of electromagnetic induction
on membrane potentials of neuron, with the help of Strukov
et al. (2008) we employ the memristor to realize the coupling
and modulation on membrane potential from magnetic flux for
maintaining the consistency of physical meaning (Wu et al.,
2016). Note that thememristor characterizes the relation between
charge and magnetic flux, so if let q be charge and ϕ the magnetic
flux, then a voltage across a charge-controlled memristor can

be modeled as v(t) = M(q(t))i(t) with M(q) = dϕ(q)
dq

. In

reverse, a flux-controlled memristor should be described by

i(t) = W(ϕ(t))v(t) with W(ϕ) = dq(ϕ)
dϕ

. Here the explicit forms

of M(q) and W(ϕ) should depend on the design of the device of
memristor.

We take a flux-controlled memristor of W(ϕ) = dq(ϕ)
dϕ

=
k(α + 3βϕ2) (Itoh and Chua, 2008; Bao et al., 2010a; Wu
et al., 2016) to modify the conventional FHN model. We choose
α = 0.1 and β = 0.02 to generate complex dynamical behavior
(Bao et al., 2010a,b; Wu et al., 2016). Thus, the time evolution
equation of the membrane potential v becomes

v̇ = v(v− a)(1− v)− w+ k(α + 3βϕ2)v.

According to the Faraday’s law, the change of the magnetic flux
ϕ is dominated by varying voltage and magnetic flux, we can
suppose that the time derivative of ϕ is a linear function of v and
ϕ, that is to say,

ϕ̇ = k1v− k2ϕ + ϕext

where ϕext , as a bifurcation parameter, is used to describe the bias
in external forcing magnetic field.

Therefore, the improved FHNmodel, which takes the effect of
electromagnetic induction into consideration, has the following
form of a set of three-variable nonlinear ordinary differential
equations.







v̇ = v(v− a)(1− v)− w+ k(α + 3βϕ2)v
ẇ = ε(v− dw)
ϕ̇ = k1v− k2ϕ + ϕext .

(2)

Although the original FNH model has an exclusively stable
asymptotic state for the given parameters of ε, d, and a, the
introduction of electromagnetic induction can induce complex
periodic or bursting firing patterns in the modified model. We
will explore the involving dynamical mechanism in the absence
of noise and in the presence of noise in Sections Analysis of
Bifurcation and Stochastic Resonance, respectively.

ANALYSIS OF BIFURCATION

The concept of bifurcation in nonlinear dynamical theory can
be categorized into static bifurcation and dynamic bifurcation.
Usually, the former means the change in number or the stability
of equilibrium points, while the latter refers to the similar changes
relating to limit cycles (Zhang, 2005; Xie et al., 2008a,b). If
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an equilibrium state is stable, the affiliating system will evolve
closer and closer to it if the initial state falls within its basin
of attraction; otherwise, the system will leave it forever if the
initial state is not exact on it. In neuron model, the stable
equilibrium usually stands for a resting state, and the limit cycle
corresponds to the repetitive firing state. Bifurcation has been
scrutinized analytically and numerically by many researchers in
computational neuronal science. Quantities of literatures have
dedicated to the bifurcation behavior of neuron models during
the past decades (Hassard, 1978; Guckenheimer and Labourian,
1993; Eugene, 2000; Xie et al., 2008b; Jia and Gu, 2017), but
the involving investigations have been extended to the improved
models with electromagnetic induction, even if the abundant
firing patterns have been revealed (Lv and Ma, 2016; Wu et al.,
2016; Lu et al., 2017). In this section, we aim to disclose the
underlying dynamical mechanism responsible for the emergence
of the firing pattern in the improved system (2).

At first, let us pick out the constant solution, namely the
equilibrium points of the system (2), where the variables v, w and
ϕ stay there forever if there is no external perturbation. Suppose
E0(v0,w0,ϕ0) is one of the equilibrium points, then there holds







v0(v0 − a)(1− v0)− w0 + k(α + 3βϕ0
2)v0 = 0

v0 − dw0 = 0
k1v0 − k2ϕ0 + ϕext = 0

and thus

v0

[

(v0 − a)(1− v0)−
1

d
+ k

(

α + 3β(
k1v0 + ϕext

k2
)2

)]

= 0

with three solutions given by

v01 = 0, v02 =
−B+

√
B2 − 4AC

2A
, v03 =

−B−
√
B2 − 4AC

2A

where A = 3kk21β

k22
−1 B = 6kk1βϕext

k22
+1+a C = 3kβϕ2

ext

k22
−a−

1
d
+kα . Let E01, E02 and E03 to be the resultant equilibrium points

corresponding to v01,v02 and v03, then E01 = (0, 0,ϕext/k2 )
T .

Next, let us explore the stability of the three equilibrium points
with ϕext as bifurcation parameter. Note that the stability of an
equilibrium point is determined by the eigenvalues of its Jacob
matrix. That is to say, if all the eigenvalues are of negative real
part, then the equilibrium point is stable, otherwise it might
be marginally stable or unstable. According to the distinction
criteria (Zhang, 2005), branches of the equilibrium points and
their stability on the ϕext − v plane are shown in Figure 1, where
the solid curves represent the stable branches, the dash lines
indicate the unstable ones, and evidently the points A∼H indicate
the occurrence of bifurcation.

In fact, we can further distinguish the bifurcation types of the
bifurcation points A∼H. In general, the appearance of a pair of
pure imaginary eigenvalues signifies Hopf bifurcation, and the
emergence of a zero eigenvalue predicates fork-type or saddle-
node bifurcation (Zhang, 2005). In this paper, our emphasis is
put on the identification of Hopf bifurcation. For the system (2),
if the resultant 3× 3 Jacobi matrix has one eigenvalue of negative
real part and two zero real parts at some critical value of the
bifurcation parameter, then as usual we say that Hopf bifurcation
occurs, through which a constant membrane potential solution
becomes unstable, but a stable periodically oscillatory action
potential solution appears.

Let us take the equilibrium point E01 as example to
demonstrate how Hopf bifurcation occurs. From the
linearization Jacobian matrix of the system (2)

J(v,w,ϕ) =





−3v2 + 2(1+ a)v− a+ k(α + 3βϕ2) −1 6kβϕv

ε −εd 0

k1 0 −k2



 ,

FIGURE 1 | Schema of the branches of equilibrium points for trans-membrane potential and their stability vs. the bifurcation parameter ϕext. The parameters are set

as k = 1, k1 = 0.5, and k2 = 0.9. The branches locate at lower left and right stand for E02 and the branches situate in upper left and right are E03. The flat line is E01.

In figures, the solid curves stand for stable branches, and the dash curves denote unstable branches. Remark: The figure is plotted by the software of xppaut.
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One can easily obtain the characteristic determinant of system (2)
at E01 as

|λI3 − J(0, 0,
ϕext

k2
)| =

∣

∣

∣

∣

∣

∣

λ − A1 1 0
−ε λ + εd 0
−k1 0 λ + k2

∣

∣

∣

∣

∣

∣

= (λ + k2)[(λ − A1)(λ + εd)+ ε] = 0

with A1 = −a + k(α + 3β(ϕext
k2

)
2
). Obviously, there is an

eigenvalue λ = −k2 satisfying Re(k2) 6= 0, and thus if a pair
of pure imaginary eigenvalues λ = ±iω exists, there must hold
true

−ω2 ± (εd − A1)ω i− A1εd + ε = 0

i.e.,

{

−ω2 − A1εd + ε = 0
εd − A1 = 0,

which leads to A1 = εd and ω =
√

ε − ε2d2. Thus, the branch
of the equilibrium point E01 undergoes two Hopf bifurcations at
parameter

ϕext = ±

√

εd + a− kα

3kβ
k2

which can be reduced to ϕ
(1)
ext = −2.381 and ϕ

(2)
ext = 2.381

for given parameters as denoted in the caption of Figure 1.
Clearly, they correspond to the bifurcation points A and B on
Figure 1.

Similar to the above analysis, we also can know that
the branch of the equilibrium point E02 undergoes Hopf
bifurcations at C and D, and the branch of the equilibrium
point E03 undergoes Hopf bifurcations at points E and F,
with the bifurcation parameter ϕext being −5.386(C), 5.512(D),
−4.113(E) and 3.236(F), respectively. Further, we can confirm
but skip the details that G and H, as the intersections of
the branches of E01 and E02, are saddle-knot bifurcation
points with bifurcation parameters ϕext = ±4.347, which
essentially. Here we stress that all of the numerical errors do not
exceed 0.001.

The occurrence of Hopf bifurcation has been verified by
the existence of a pair of pure imaginary eigenvalues, but Hopf
bifurcation can further distinguished into two types: subcritical
Hopf bifurcation and supercritical Hopf bifurcation by checking
dependence of the membrane potential difference over a
sufficiently large time span via bifurcation parameter. In general,
in subcritical Hopf bifurcation the oscillatory solution occurs
before the bifurcation point, but in supercritical Hopf bifurcation
the oscillatory solution emerges after the bifurcation point, and
whether a hysteresis loop exists is a typical distinction criteria. In
fact, if for some given parameter (vmax−vmin) ≈ 0, we can regard
that the system approaches an equilibrium state; otherwise, we
can pick out an oscillatory solution, which can correspond to the
limit cycle in the phase space if the occurrence of the oscillation

is due to a bifurcation induced by an equilibrium point. For
the system (2), the difference (vmax − vmin) vs. the varying
ϕext is depicted in Figure 2. From the picture, a hysteresis loop

can be clearly observed near ϕ
(1)
ext , and another hysteresis loop

can be captured near ϕ
(2)
ext by some partial amplification.,

therefore the Hopf bifurcations at A and B are both
subcritical.

For an intuitive understanding, we depict the time series
of the trans-membrane potential and the phase diagram when
ϕext > 0 in Figure 3. As Figure 3 shows, the membrane
potential will stay at the resting level when the bifurcation
parameter is less than the critical bifurcation (Figures 3A,B),
but it will evolve according to a periodic motion as the
bifurcation parameter increases (Figures 3C–F). More precisely,
the Figures 3C–F respectively correspond to subthreshold
oscillation and superthreshold oscillation (impulsive discharge)
of neurons. Moreover, Figures 3G,H reveal that the model (2)
will attain another equilibrium state of a high asymptotical
membrane potential, which should be morbid for neuronal
activity.

STOCHASTIC RESONANCE

It has been extensively proven that weak periodic signal can
be amplified by random fluctuation in many nonlinear systems
through the principle of SR (Heneghan et al., 1996). This
phenomenon has also been well-documented in neural systems
in the absence of electromagnetic induction (André, 1993; Kang
et al., 2005; Gosak et al., 2007). Here what we interest in
is to check whether a weak subthreshold oscillation in the
electromagnetic field can be amplified by a suitable amount of
fluctuation.

Assume that the external forcing magnetic field consists of a
subthreshold signal and noise, i.e., the form of ϕext is described as
follows

ϕext = r sin(2π ft)+ ϕ0
ext + ξ (t)

where r sin(2π ft)+ ϕ0
ext is a subthreshold signal of bias ϕ0

ext , that
is to say, the particle will not jump from one state to the other if
it is only driven by this signal, and ξ (t) is Gaussian white noise
satisfying < ξ (t)) > = 0 and < ξ (t)ξ (s) > = 2Dδ(t − s). With
these factors taken into account, the system (2) can be rewritten
into







v̇ = v(v− a)(1− v)− w+ k(α + 3βϕ2)v
ẇ = ε(v− dw)

ϕ̇ = k1v− k2ϕ + r sin(2π ft)+ ϕ0
ext + ξ (t)

(3)

In this section, the same parameters as in Figure 1 are used,
unless otherwise stated.

Many physical measure indexes are suitable for quantifying
the phenomenon of SR, such as spectral amplification factor,
mutual information, resident time distribution and signal-to-
noise ratio (SNR), and all these indexes can reflect the beneficial
role of noise from different viewpoints. Here, we choose the SNR
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FIGURE 2 | Dependence of the trans-membrane potential difference on the bifurcation parameter ϕext (A). The green solid branch shows how the trans-membrane

potential difference changes as the parameter ϕext increases, while the blue dash branch gives the change trend as the parameter ϕext decreases. We can see that

within certain parameter range there are two hysteresis loops, the left-hand one is evident and the magnification of the right-hand one (B) has been inserted in the

figure. The existence of the two hysteresis loops show the bifurcation at ±2.381 both are subcritical Hopf bifurcation.

defined by

SNR = 10log10
S(ω)

N(ω)

to characterize SR. Here S(ω) represents the height of the peak
at the signal frequency and N(ω) is the power spectrum density
of background noise. Figure 4 shows the dependence of SNR via
noise intensity D under different signal amplitude r and biased
intensity of electromagnetic field ϕ0

ext , and these non-monotonic
dependence curves exhibits the occurrence of SR in the model
(3). This observation confirms that SR can occur in the presence
of electromagnetic induction.

Here let us explain why the phenomenon of SR occurs in the
system (3) from the perspective of energy. As shown in Figure 5,
the circle represents the power of the system offered by the
subthreshold signal. If the power at some time is greater (less)
than the fixed power as shown in the figure, it means the periodic
signal is supplying (consuming) energy to the system. Obviously,
when the noise is absent, the power from the subthreshold signal
cannot drive the membrane potential to cross over the firing
threshold, but with the help of the energy of a suitable noise, the
membrane potential can cross the threshold over a time interval
corresponding to an arc with a central angle θ . This to a certain
extent is the dynamical mechanism underlying the occurrence of
SR.

Now we turn to explain why the width of resonant peak
becomes large as the signal amplitude enhances and why the
resonant peak shifts to smaller noise intensity as the bifurcation
parameter closes to the critical value, as observed in Figure 4.
From Figure 5, it is clear that as the signal amplitude increases
the radius of the circle becomes larger. This means that the
power supplied by the periodic signal has more dominated
capability in the interplay of noise and signal. As a result,

the width of resonant peak for stronger signal will wider than
that for the weaker signal. Similarity, when the bias intensity
increases, the “Fixed power” in Figure 5 will be boosted and the
required energy for the system to reach the threshold will become
smaller. Hence, the resonant peak will appear at smaller noise
intensity.

In order to explain the meaning of θ(D) in Figure 5, let us
resort to the statistics of the time history of membrane potential
(shown in Figure 6). It is easy to see that the firing pattern in
Figure 6 belongs to bursting. Discarding the transient evolution,
we can calculate the interburst intervals (IBIs), burst interval (BI)
and resting interval (RI). Here the IBI is referred to as the time
interval between adjacent bursts (Gritsun et al., 2011), and we
define the BI as burst interval, namely the duration interval of a
single bursting and the RI as the time interval from the end of the
first burst to the beginning of the next one. For example, as shown
in Figure 6B, the IBI, BI and RI correspond to tC− tA, tB− tA and
tC− tB, respectively. Denoting IBI(D) = 〈IBI〉, BI(D) = 〈BI〉 and
RI(D) = 〈RI〉, then θ(D) in Figure 5, proportional to time, can
be calculated by

θ(D) = 2π ×
BI(D)

IBI(D)
= 2π ×

BI(D)

BI(D)+ RI(D)
.

By means of the evolution curves of these average intervals via
the noise intensity D in Figure 7, θ(D) is less than π when the
noise intensity is under the critical value at the intersection, and
it is larger than π when the noise intensity is between this critical
value and 0.7.

Noting that in the phenomenon of SR noise helps detect
weak signal, so let us demonstrate how the weak subthreshold
signal is detected in the system (3). It is clear that when
the noise is absent, the membrane potential eventually stays
at the resting level (Figure 6A), but as the noise intensity
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FIGURE 3 | Time evolution of the trans-membrane potential and the phase diagram of the model (2). From up to down, the bifurcation parameter ϕext is equal to

2.25 (A,B), 2.3805 (C,D), 3.0 (E,F), and 3.4 (G,H), respectively.
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FIGURE 4 | Dependence of signal to noise ratio on noisy intensity under different amplitude (A) or biased intensity of electromagnetic field (B) at ε = 0.005 and

2π f = 0.001. We fix b = 2.2328 in (A) and r = 0.28 in (B). It is shown from (A) that the width of the resonant peak evidently enhances as the r increases, and from

(B) that the resonant peak is dramatically shifted to larger noise intensity as b away from the critical bifurcation point (2.3383).

FIGURE 5 | Qualitative analysis for stochastic resonance from the viewpoint of

power. Every point on the circle represents the power offered only by the

subthreshold signal (r sin(2π ft)+ ϕ0ext ) to the system at different time. The

height of center of the circle represents the fixed power offered by ϕ0ext. The

power provided by the noise raises the height of the circle. From the schemata,

there should be suitable noise level D = D0 such that the membrane potential

transits between the state 1(resting state) to state 2(burst state) almost

periodically, with a period corresponding to an arc with central angle θ (D).

increases until attains a suitable range, the membrane potential
will evolve according to an approximate periodic motion with
fluctuations (Figures 6B–D), where the relevant approximate
period is basically the signal period. Therefore, if we analyze
the time history within this suitable noise range, the period
of the weak signal will be identified. In fact, as shown in
Figure 7, the mean IBI is nearly equal to the signal drive,
although this quantity cannot be defined in the deterministic
case.

Viewing from the history of SR, the phenomenon was
named after the term of “resonance” to some extent. In the
symmetrical overdamped bistable system, the occurrence of
SR is relating to a match relation between a half of the
signal period and the mean first passage time, while in the

underdamped oscillator system, there exists a coincidence
between the driving frequency and the noise-tuned inherent
frequency peak (Kang et al., 2003). These match relations
suggest that there exists certain frequency interval such that
the phenomenon of SR in the system (3) cannot occur if
the signal frequency falls outside of this range. Figure 8 just
verifies this point. For instance, when 2π f = 0.005, as
the figure shows that the SNR as function of noise intensity
monotonically decreases, which indicates no SR for the given
signal amplitude.

CONCLUSION AND DISCUSSION

By taking the electromagnetic induction into account,
an improved FHN model is proposed by means of the
flux-controlled memristor. With the technique of linear
stability analysis, the bifurcation diagram of the deterministic
autonomous model is obtained and especially the subcritical
Hopf bifurcation points are identified. For the noisy weak
signal modulated system, we have observed the phenomenon
of SR near the subcritical Hopf bifurcation point. From the
viewpoint of energy we give an explanation of the occurring
mechanism. By defining the several mean intervals relating
to burst, we also discuss how to detect a weak signal based
on the principle of SR in this model. Our investigations once
again demonstrate that electromagnetic radiation can induce
electrical activity in neurons. Moreover, our investigations
suggest that the phenomenon of SR could be utilized by neurons
in detecting weak signal in the presence of electromagnetic
induction.

We would like to have some discussion on the phenomenon
of SR disclosed in this investigation from weak signal detection.
It is well known that neurons communicate with each other
through action potential, and the timing of action potential trains
often contains more significant information than their shape,
thus it should be more inspiring to disclose the phenomenon
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FIGURE 6 | Time history of trans-membrane potential under different noise intensity D. The parameters ε = 0.005,r = 0.28, f = 0.001/2π , and ϕ0ext = 0.328, and

from (A–D), the noise intensity D is 0, 0.25, 0.5, 0.75, respectively.

FIGURE 7 | The evolution curves of IBI(D) (red solid), BI(D) (blue circle), and

RI(D) (green dot) via noise intensity at ε = 0.005, r = 0.28, f = 0.001/2π , and

ϕ0ext = 0.328. Note that the IBI(D) cannot be defined when there is no noise,

since the long time of the deterministic system (3) is static, but once the noise

is induced and if the noise intensity falls within the range (0.07, 0.72) in the

figure, the IBI(D) will fluctuate around the period of the sinusoidal drive (black

dash), and this suggests that noise should be utilized by the model (3) in weak

signal detecting. Here we emphasize that none of IBI(D)), RI(D), and BI(D) can

be measured in absence of noise or in the case of too much noise, since the

absence of noise leads the membrane potential to a static level, while too

much noise causes the periodic bursting like patterns mix into one single noisy

bursting.

of SR both from the noise dependence of the SNR and the
statistical quantities of trains of interspike intervals (ISIs). Indeed,
as pointed out in the introduction section, the experimental
and theoretical investigations have suggested that noise helps in

FIGURE 8 | Dependence of signal to noise ratio on noisy intensity under

different signal frequency at ε = 0.005, r = 0.28, and ϕ0ext = 0.328. From the

figure, it is clear that the SNR as a function of noise is monotonic, so SR can

occur if 2π f ≤ 0.001, but if 2π f = 0.008, the function becomes monotonically

decreasing, and as a result, there is no SR in this case. This figure tells that the

phenomenon of SR has obvious frequency dependence, that is to say, the

phenomenon can only occur within certain frequency range.

detecting or transmitting weak signal (Tanabe and Pakdaman,
2001; Hasegawa, 2004; Kang et al., 2005; Faisal et al., 2008;
Mark et al., 2009; Jiao and Wang, 2010; Shao and Kang,
2014; Sun and Shi, 2014; Sun and Li, 2016), however, most
of the existing investigations only disclosed SR by showing
an optimal noise level which could make the system have a
better SNR than other noise level, but failed to try to find
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the relation between the maximal SNR and the mean of ISIs.
Different from these existing investigations, in this paper we
find the relation of the maximal SNR and the evolution of
the mean of IBIs (〈IBI〉), namely, the optimal noise level for
the SNR is an interval and over the same interval the 〈IBI〉 is
almost equal to the signal period. Although we are not sure
whether this relation is universal in general neural systems,
we infer it might be a predictable conclusion for SR occurring
near subcritical Hopf bifurcation point. If this inference can
also be confirmed in other neuron models, undoubtedly it
will provide a biologically feasible scheme for weak signal
detection.
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