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Resting state functional MRI (rs-fMRI) is an imaging technique that allows the

spontaneous activity of the brain to be measured. Measures of functional connectivity

highly depend on the quality of the BOLD signal data processing. In this study, our

aim was to study the influence of preprocessing steps and their order of application

on small-world topology and their efficiency in resting state fMRI data analysis using

graph theory. We applied the most standard preprocessing steps: slice-timing, realign,

smoothing, filtering, and the tCompCor method. In particular, we were interested

in how preprocessing can retain the small-world economic properties and how to

maximize the local and global efficiency of a network while minimizing the cost. Tests

that we conducted in 54 healthy subjects showed that the choice and ordering of

preprocessing steps impacted the graph measures. We found that the csr (where we

applied realignment, smoothing, and tCompCor as a final step) and the scr (where we

applied realignment, tCompCor and smoothing as a final step) strategies had the highest

mean values of global efficiency (eg). Furthermore, we found that the fscr strategy (where

we applied realignment, tCompCor, smoothing, and filtering as a final step), had the

highest mean local efficiency (el) values. These results confirm that the graph theory

measures of functional connectivity depend on the ordering of the processing steps,

with the best results being obtained using smoothing and tCompCor as the final steps

for global efficiency with additional filtering for local efficiency.

Keywords: graph theory, preprocessing, resting-state fMRI, control quality, tCompCor

INTRODUCTION

Resting state functional MRI (rs-fMRI) is an imaging technique that allows measuring the
spontaneous fluctuations of the blood oxygen level-dependent (BOLD) signal in the brain. This
technique has revealed the permanent existence of several networks in healthy subjects that are
identifiable through their functional connectivity (Biswal et al., 1995). Functional connectivity is
defined by the synchronization of the BOLD signal changes between distant regions. Measures
of connectivity have been used as biomarkers to identify the various normal and pathological
behavioral or cognitive states of the brain (Bassett et al., 2009; Bullmore and Sporns, 2009, 2012).
Cerebral networks have small-world characteristics with highly clustered local connectivity and
relatively few long-distance connections (Watts and Strogatz, 1998; Bassett and Bullmore, 2006).
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The economical properties of small-world networks are
characterized by having high local and global efficiency at a low
cost (Latora and Marchiori, 2001, 2003). These properties have
been studied using graph theory, which is increasingly used to
evaluate healthy and pathological brains (Bassett et al., 2009;
Bullmore and Sporns, 2009, 2012) and has shown acceptable
reliability (Wang et al., 2010; Guo et al., 2012; Telesford et al.,
2013).

BOLD signal changes at rest are also sensitive to
artifacts. Therefore, measures of functional connectivity are
highly dependent on the quality of the BOLD signal data
processing. Several studies have investigated the reliability and
reproducibility of rs-fMRI and reported the importance of
measuring this reliability (Bennett and Miller, 2010). They also
noted that the reliability of fMRI data was low compared to
other imaging measures and needed much more processing steps
to improve reliability estimates. The reliability of rs-fMRI has
been studied using several measures of functional connectivity
(Zuo and Xing, 2014). Studies emphasized the need to ensure
low variability among the subjects in the same group and high
variability between the subjects of different groups (Zuo and
Xing, 2014). They also discussed that the choice in the different
preprocessing strategies can affect the reliability of rs-fMRI.
Moreover, they showed that the final results also depended
on the post-preprocessing methods (seed-based analysis,
independent component analysis, graph theory, etc.).

Several approaches have been proposed to improve the quality
of rs-fMRI images and more specifically to correct for artifacts.
The frequency filtering of data using a Butterworth filter with a
bandwidth of 0.01–0.1Hz eliminated high and low frequencies
(Biswal et al., 1995; Garreffa et al., 2003). Regression of the global
cerebral signal can also be applied to isolate the relevant neural
signal (Vincent et al., 2006; Bettus et al., 2009) and regression
of the signal of the white matter and the cerebrospinal fluid
can be used as a complementary technique to minimize the
influence of artifacts on correlation maps (Bartels and Zeki,
2005). In addition, there are methods for head movement artifact
removal during acquisition, besides realignment (Van Dijk et al.,
2012; Satterthwaite et al., 2013; Power et al., 2014). The measure
“Framewise Displacement” (FD) was proposed to identify the
volumes where subjects show high headmovements (Power et al.,
2014). Another component-based method (CompCor) has been
reported that reduced two artifacts (physiological noise and head
movement) in the functional data (Behzadi et al., 2007).

However, as mentioned above, the way preprocessing is
applied may influence the final results. For instance, the use of
global signal regression may increase the correlation between
the measures of connectivity and head movement (Jo et al.,
2013). Other authors confirmed that the use of global signal
regression decreased the reliability of rs-fMRI using graph theory
measures (Liang et al., 2012) and matrix correlation (Guo et al.,
2012). Another study evaluated the reliability of graph theory
measures and showed that the use of global signal regression
increased the number of negative correlations (Braun et al.,
2012), introduced spurious anticorrelations (Murphy et al.,
2009) and caused an overestimation of functional connectivity
strengths (Weissenbacher et al., 2009). The test-retest reliability

of fMRI using graph theory measures were high when slow-
4 filtering was applied (Liang et al., 2012) and when this step
was applied with no detrending and no global signal regression
(Borchardt et al., 2016). Head movements may introduce false
positives when estimating functional connectivity (Van Dijk
et al., 2012; Satterthwaite et al., 2013; Power et al., 2014). The
evaluation of the relationship between measures of graph theory
and head motion showed that this dependence decreased at the
group level, as opposed to the individual level where there was
no improvement (Yan et al., 2013b). Other authors evaluated
the reliability of different preprocessing methods to estimate
measures of graph theory and found that the use of scrubbing
reduced the dependence between graph theory measures and
head motion (Aurich et al., 2015).

The choice of preprocessing steps is very important. Choosing
the most appropriate one is difficult. The preprocessing steps
influenced the final functional connectivity through either a
seed-based analysis (Chang and Glover, 2009; Weissenbacher
et al., 2009) or graph theory (Yan et al., 2013a,b; Aurich et al.,
2015). Additionally, it has been shown that the topological
network differences between healthy volunteers and patients
were highly dependent on the preprocessing steps (Borchardt
et al., 2016). Therefore, more work has been done to evaluate the
influence of global regression signal and filtering on functional
connectivity.

In our project, we aimed to study the influence of
classical preprocessing steps, including slice-timing, realignment,
smoothing, and filtering in addition to tCompCor (Behzadi
et al., 2007) on graph theory measures. We were particularly
interested in studying the influence of the application order of
these preprocessing steps on graph theory measures, particularly
the global and local efficiency.

METHODS

Defining Strategies
Functional data were preprocessed using different steps. The
analysis was performed in the native space. Realignment of the
structural T1-weighted volume on the functional reference scan
was performed using SPM8 in the native functional space. We
defined seven different strategies for functional preprocessing,
which are detailed in Figure 1.

Strategy brut
In this strategy, we considered the data without any
preprocessing. We also defined a strategy a, in which we
applied only slice-timing. In view of the results that did not show
any significant influence of slice-timing, we chose the following
strategies that did not include slice-timing correction.

Strategy r
We only applied realignment to correct head movements, which
occurred during the acquisition of the volumes to evaluate the
impact of this step on the final result. A first volume in the
functional series was taken as a reference. Each image of the time
series was therefore processed according to a rigid displacement
toward the chosen reference image.
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FIGURE 1 | Presentation of the different steps used for network creation and definition of the different strategies. (A) Presentation of all strategies (we defined the

order of application of each step). (B) Freesurfer parcellation (only the cortical regions are shown). (C) Time course calculation and example of a correlation matrix. (D)

Simulation of the thresholding of the correlation matrix over a range of density (d1,..dn). (E) Representative diagram of the used graph theory measures.
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Strategy sr
We applied realignment and then performed a smoothing using
a 5-mm width at half maximum Gaussian filter.

Strategy cr
We applied realignment and then the component based noise
correction method (tCompCor), which allowed the reduction
of the physiological noise and head motion in the functional
data (Behzadi et al., 2007). In this algorithm, the voxels
dominated by physiological noise were processed using the
temporal standard deviation (tSTD) of the time courses. Amatrix
including calculated times courses was processed using the
principal component analysis (PCA) algorithm for component
identification and classification. From this, we defined three new
strategies.

Strategy csr
We applied realignment, smoothing, and then tCompCor.

Strategy scr
We applied realignment, then tCompCor and finally smoothing.

Strategy fr
We applied strategy r and then filtering (0.01Hz, 0.1Hz).

Strategy sfr
We applied strategy fr and then smoothing.

Strategy fcr
We applied strategy cr and filtering as the final step (0.01Hz,
0.1Hz).

Strategy fcsr
We applied strategy csr and filtering as the final step (0.01Hz,
0.1Hz).

Strategy fscr
We applied strategy scr and filtering as the final step (0.01Hz,
0.1Hz).

Subjects & Image Acquisition
We considered 54 healthy volunteers (HV) in this fMRI analysis.
All HV had no history of any neurological or psychiatric
disease and did not present any contraindications for MRI.
For data acquisition, we used a 3T Siemens Trio with body
coil excitation and a 12-channel head coil for signal reception.
Acquisition of anatomical images was performed using a sagittal
three-dimensional T1-weighted Magnetization-Prepared Rapid
Acquisition Gradient Echo (MPRAGE) acquisition characterized
by a field of view (FOV)= 256× 256 mm2, TR= 2,200ms, echo
time (TE) = 2.9ms, flip angle = 10◦, and a voxel size = 1 × 1 ×
1 mm3.

The acquisition of rs-fMRI data of the whole brain was
performed using a gradient echo echo-planar imaging sequence
sensitive to BOLD signal with the following parameter: matrix
size = 64 × 64, 45 slices, TR = 2400ms, TE = 30ms; flip
angle = 90◦, 200 volumes in one session, voxel size = 3 ×

3 × 3 mm3 without gap, acquisition time = 8min. Subjects

were instructed to relax and completely close their eyes without
sleeping during the scanning sessions.

We calculated the FD for each subject (Power et al., 2012) and
we excluded each subject having a FD > 0.05mm for at least
one volume. Four subjects were thus excluded from the analysis.
The HV were included at the (Institut du Cerveau et la Moelle
epinière, Paris, France). The study was approved by the local
ethics committee, and all of the participants provided written,
informed consent prior to participating in the study.

Network Construction
For the construction of the brain networks, we defined 164
regions of interest (ROIs) as a first step, according to an
anatomical model (Alexander et al., 1986), all of which were
obtained through parcellation using FreeSurfer (Fischl et al.,
1999, 2004) and covering the main cortical and subcortical areas.
For each subject, we applied a cortical reconstruction using the
spherical transformation of FreeSurfer. The functional network
(or graph) was represented as nodes interconnected by links. It
was constructed for each subject as follows: the nodes represented
the ROIs and the links were the correlation between the mean
signals of all the pairs of nodes (Figure 1).

To assess the small-world properties in the networks, we
computed the small-worldness parameters for each graph
(Humphries and Gurney, 2008; Rubinov and Sporns, 2010).
These measures were designed for unweighted graphs and were
highly dependent on the graph cost, which corresponded to
the graph’s density. For analyzing the topological properties
of the brain functional networks, it was necessary to calculate
the binary graphs which were obtained by thresholding each
obtained correlation matrix. A common network costs should
be able to mathematically compare the topological measures
across all considered subjects. Successive thresholds of functional
connectivity matrices were established over a range of network
costs (Achard and Bullmore, 2007). We calculated the average
values of the obtained topological results of the various metrics
estimated for each individual network over the available cost
range 0.04 and 0.25.

We estimated the small-worldness σ of the whole brain
network at each cost for each strategy.We defined the upper limit
of the small world regime as the highest cost (K = 0.25) at which
the minimum value of σ was >1 for all the strategies (Bassett
et al., 2008; Messé et al., 2013).

Quantification of Graph Theory Measures
Graph theory measures were calculated for each subject and
for each strategy. To be able to compare the topologies of the
networks for each strategy, we also calculated the graph theory
measures for the two extreme networks: regular and random.
The Brain Connectivity Toolbox was used to compute the
graph theory measures (http://www.brain-connectivity-toolbox.
net) (Rubinov and Sporns, 2010).

First, we calculated the small-worldness coefficient “σ” using
equation 1 to check if the considered networks had small-
world properties. A network was considered to have small-word
properties if σ > 1 (Humphries and Gurney, 2008). These authors
demonstrated that in the real world, there was no maximization
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of the value of σ. Therefore, the best strategy did not necessarily
provide the greatest value of “σ” but rather the value that
maintained its model more for the density interval between 0.04
and 0.25.

σ =

C
Crand

L
Lrand

(1)

where C, Crand, L, and Lrand represented the clustering
coefficients and the characteristic path lengths of tested and
random networks, respectively.

The density or cost was the actual number of edges in the
graph as a proportion of the total number of possible edges
(Bullmore and Sporns, 2009).

K =
l

(

N2 − N
)

/2
(2)

where l was the number of links in the graph, N was the number
of nodes, and N (N-1)/2 was the maximum number of links.

The characteristic path length of the network “L”
corresponded to the average distance between the nodes i
and all other nodes and was calculated using Equation (4).

L =
1

n

∑

Li =
1

n

∑

(
∑

dij

n− 1

)

(3)

whereN represented the set of all nodes in the network, nwas the
number of nodes and dij was the shortest path between the i and
j nodes.

The clustering coefficient “C” corresponded to the fraction of
a node’s neighbors that were also neighbors of one other and was
calculated using Equation (5).

C =
1

n

∑

Ci =
1

n

∑

(

2ti

ki
(

ki − 1
)

)

(4)

where ki and ti represented the degree of a node and the number
of connections for a given node, respectively.

The local efficiency and clustering coefficient were used to
evaluate network ability for processing specialized information
within densely interconnected groups of nodes (functional
segregation). The higher the clustering coefficient and local
efficiency, the more segregated the network.

The local efficiency “el” reflected the local information transfer
among the nodes and represented the robustness of the node to
the deletion of individual nodes (Latora and Marchiori, 2001).
el was calculated according to Equation (6).

el =
1

n

∑

eli =
1

n

∑

∑

aijaih
[

djh (Ni)
]−1

ki −
(

ki − 1
) (5)

where eli was the local efficiency of the node i, and djh(Ni)was the
length of the shortest path between j and h and contained only the
neighbors of i.

The global efficiency “eg” of the network was calculated
according to Equation (7) (Latora and Marchiori, 2001).

eg =
1

n

∑

egi =
1

n

∑

∑

d−1
ij

n− 1
(6)

where egi was the efficiency of node i.
As shown by Achard and Bullmore (2007), small-world

networks may also be defined as having high global and
local efficiency of parallel information transfer. In our project,
we evaluated how the values of el and eg depended on the
preprocessing strategies.We assumed that the best strategy would
provide the highest values of these two measures.

Statistical Analysis
We compared graph theory measures for each strategy with
the repeated measures ANOVA with one factor “Strategy.” The
statistical analysis was performed for each graph theory measure.
Post-hoc paired t-tests were performed to calculate the differences
in the preprocessing steps. We corrected all the tests for multiple
comparisons using a Bonferroni correction.

RESULTS

Overall, we found that csr (where we applied realignment,
smoothing, and tCompCor as a final step) and scr (where we
applied realignment, tCompCor, and smoothing as a final step)
strategies had the highest mean values of eg. However, we found
that fscr strategy (where we applied realignment, tCompCor,
smoothing, and filtering as a final step), had the highest mean
values of el.

Effect of Slice-Timing on rs-fMRI
The graph theory measures el and eg had the same mean
values in the brut and a strategies (Table 1). These results
suggested that slice-timing, which is crucial for task-fMRI,
may not be mandatory in the rs-fMRI studies at the TR that
we used.

Effect of Preprocessing Steps on Local and
Global Efficiency for Brain Functional
Network
For each preprocessing strategy, el and eg were calculated. The
curves of these measures for each network of each strategy
were represented between the two curves of the random
network and the regular network over the same range cost
(Supplementary Tables 1, 2).

We found a significant effect of strategy for el (p < 10−5;
F = 40.2) and for eg (p < 10−5, F = 128.4; Table 1). Post-hoc
t-tests showed that for el, there were no significant differences
between (cr=a=brut), (a=brut=fr), (r=sr=sfr=fcr=scr),
(r=sr=sfr=fcr=csr), (r=fr=fcr=scr) and (r=fr=fcr=csr).
The mean values were ordered as follows: (cr=a=brut)
< (a=brut=fr) < (fr=scr=fcr=r) < (fr=fcr=csr=r) <

(scr=fcr=r=sfr=sr) < (fcr=csr=r=sfr=sr) < fcsr < fscr.
Therefore, the highest mean values of el were observed in
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TABLE 1 | Mean values of global and local efficiency for each strategy.

Strategy el eg Post-hoc t-test for el # if p < 10−3

Post-hoc t-test for eg * if p < 10−3

a r sr cr Scr csr fr sfr fcr fscr fcsr

brut 0.592 ± 0.072 0.327 ± 0.068 *# *# * *# *# * *# *# *# *#

a 0.587 ± 0.071 0.338 ± 0.079 – *# *# * *# *# * *# *# *# *#

r 0.645 ± 0.045 0.389 ± 0.051 – – = *# * * * *# *#

sr 0.660 ± 0.052 0.400 ± 0.052 – – – *# * * # * *# *#

cr 0.582 ± 0.040 0.496 ± 0.020 – – – – *# *# *# *# # *# *#

scr 0.634 ± 0.027 0.507 ± 0.014 – – – – – # * * * *# *#

csr 0.644 ± 0.028 0.503 ± 0.020 – – – – – – * * * *# *#

fr 0.622 ± 0.048 0.397 ± 0.061 – – – – – – – # * *# *#

sfr 0.651 ± 0.051 0.407 ± 0.053 – – – – – – – – * *# *#

fcr 0.641 ± 0.029 0.485 ± 0.027 – – – – – – – – – *# *#

fscr 0.691 ± 0.021 0.466 ± 0.023 – – – – – – – – – – #

fcsr 0.681 ± 0.022 0.481 ± 0.019 – – – – – – – – – – –

Repeated measure ANOVA

p-value p < 10−5 p < 10−5

F 40.2 128.4

Values in BOLD indicates best strategies that provided significantly results than any other ones.

strategy fscr (el= 0.691± 0.021), and the p-values are presented
in Supplementary Table 2.

Post-hoc t-tests showed that for eg, each strategy was
significantly different from the other strategies except for
strategies (brut=a), (r=fr=sr=sfr), (fcsr=fcr) as well as
(fcr=cr). The mean values were ordered as follows (brut=a)
< (r=fr=sr=sfr) < fscr < (fcsr=fcr) < (fcr=cr) < (csr=scr).
The highest mean values of eg were observed in the csr (e.g., =
0.503 ± 0.020) and scr (e.g., = 0.507 ± 0.014) strategies and the
p-values are presented in Supplementary Table 2.

DISCUSSION

In this study, we evaluated the impact of the most common
rs-fMRI preprocessing steps including slice-timing, realignment,
filtering, smoothing, and tCompCor method on the graph theory
measures by modifying the order and presence of each step in
the preprocessing strategy in a group of healthy volunteers. We
studied this impact on the topology of the graphs and their
efficiencies (eg and el). We found that csr and scr strategies
(where we applied realignment, smoothing and tCompCor)
provided the highest values of eg. Furthermore, we found that
the fscr strategy (where we applied realignment, tCompCor,
smoothing, and filtering as a final step) had the highest values
of el.

The majority of studies evaluated the effect of global
signal regression on functional connectivity using graph theory
and seed-based analysis. Fewer works evaluated the effects
of other steps such as tComCor and filtering. We will
discuss our results regarding these studies in the following
paragraphs.

Effect of Slice-Timing on Local and Global
Efficiency
We did not find any significant differences between the data with
and without slice timing, for both el and eg. A previous study
evaluated the impact of slice-timing on functional connectivity
estimated using correlation coefficients, the amplitude of low-
frequency fluctuations (ALFFs) and fractional ALFF (fALFF)
(Wu et al., 2011). They showed that slice-timing had no
significant effect on correlation coefficients and fALFF using
three different TRs (2, 3, and 4 s). However, ALFF increased
significantly when slice-timing was applied at TR= 2 s. Although
themetrics used in our study and the previous one differed, graph
theory measures used here were derived from the correlation
coefficients of the correlation matrix and therefore we may
consider that both results agree.

Effect of Filtering on Local and Global
Efficiency
The comparison of the strategies with and without filtering
(r=fr; sr=sfr; cr=fcr) showed no significant filtering effect for
eg. The highest eg values were observed for the csr and scr

strategies. In contrast for el, the highest values were observed for
the fcsr and fscr strategies. These results suggest that filtering
improved the local (el) but not the global graph measures (eg)
when the strategy included tCompCor. Overall, our results are
in agreement with those of previous studies which suggested
that filtering improved the local efficiency more than the global
efficiency (Braun et al., 2012; Liang et al., 2012; Aurich et al.,
2015; Borchardt et al., 2016). Previous studies have reported
that the frequency of functional fluctuations of the spontaneous
BOLD activity was in the range of 0.01–0.1Hz (Biswal et al.,
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1995; Damoiseaux et al., 2006). This motivated our choice of
frequency band. Previous rs-fMRI studies assessing the effect of
filtering used a large range of frequency bands. Aurich et al.
(2015) using the same frequency band (0.01–0.1Hz) compared
the graph theory measures for seven strategies and reported that
strategies that included filtering provided higher local measures
(Aurich et al., 2015). The application of the broad frequency
band (0.008–0.15Hz) also increased the reliability of the local
measures (Braun et al., 2012). However, the broad frequency
bands may pass frequencies corresponding to the physiological
noise (Guijt et al., 2007). On the other hand, a broader frequency
band may comprise more signals from the brain neural networks
with different frequency bands (Buzsáki and Draguhn, 2004)
than a narrower frequency band (0.027–0.073Hz) which may
eliminate signals of interest (Liang et al., 2012; Borchardt et al.,
2016) Two studies suggested that the reliability of local measures
was higher in the slow-4 band (0.027–0.073Hz) than in the slow-
5 band (0.01–0.027Hz) (Liang et al., 2012; Borchardt et al., 2016).
Specific investigation of the optimal frequency band on graph
theory measures needs to be further investigated.

Effect of Smoothing on Local and Global
Efficiency
Smoothing also increased el. The highest values of el were
observed in strategies (sfr, sr, fcsr, and fscr). The smoothing
was a Gaussian spatial filter, which is a standard preprocessing
step used in most studies. Previous studies have shown that
smoothing increased the reproducibility of the local efficiency
but had no effect on global efficiency (Telesford et al., 2010).
Smoothing also increased the functional connectivity estimated
using three indices, i.e., correlation coefficients, (ALFFs) and
fractional ALFF (fALFF), when using seed-based analysis (Wu
et al., 2011). These two studies agree because an increase in the
functional connectivity indicated an increase in the correlation
coefficients, which probably resulted in increased clustering and
local efficiency (el). Our findings in the strategies including
smoothing (sfr, sr, fcsr, and fscr) are in line with these results.
Lastly, smoothing also increased global efficiency (eg) when
associated with tCompCor as shown by the (scr and csr)
strategies.

Effect of tCompCor on Local and Global
Efficiency
tCompCor estimates the noise in the BOLD signal time-course
using tSTD of the voxels with the highest tSTD values (Behzadi
et al., 2007). In our study, we found that strategies (cr, scr, and
csr), in which tComCor was applied with or without smoothing,
increased eg. In contrast, the lowest el values were observed
when tCompCor was applied without smoothing or filtering
(strategy cr). The el value increased only when tCompCor was
applied with filtering or smoothing or both of them. To our
knowledge, no study has evaluated the effect of tCompCor on
graph theory measures. However, the impact of global signal
regression has been extensively studied (Murphy et al., 2009;
Braun et al., 2012; Guo et al., 2012; Liang et al., 2012; Jo et al.,
2013). As detailed in the introduction, these studies found that
global signal regression did not improve functional connectivity
and graph theory measures (Murphy et al., 2009; Braun et al.,

2012; Guo et al., 2012; Liang et al., 2012; Jo et al., 2013). In
sum, strategies including tCompCor provided better eg values,
whereas higher el values were obtained when adding filtering
or smoothing. Lastly, tCompCor was easy to apply and did not
require external monitoring of physiological fluctuations.

LIMITATIONS

Identifying of the best strategy for the preprocessing of rs-fMRI
data is difficult. This choice depends on the number of subjects,
the number of regions constructing the networks and the final
objective of the study. In our project we evaluated 12 strategies
including smoothing, tCompCor, and filtering with a different
order of application and proposed an optimal order of processing
steps. Our result may not apply to other data analysis method.
Further study is thus needed to extend these results to other
datasets with different acquisition parameters and data analysis
methods. Controlling the quality of rs-fMRI is a crucial step but
remains insufficiently studied. In addition, a similar impact may
be expected in pathological subjects.

CONCLUSION

Tests that we conducted in healthy subjects showed that the
choice and ordering of the preprocessing steps impacted the
graph theory measures. Overall, our results confirmed that
graph theory measures of functional connectivity depend on the
ordering of the processing steps. They also suggested that global
efficiency was improved when smoothing and tCompCor were
applied as the final steps of the preprocessing pipeline and that
local efficiency was improved by additional filtering.
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