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Recurrent networks of spiking neurons can be in an asynchronous state characterized

by low or absent cross-correlations and spike statistics which resemble those of

cortical neurons. Although spatial correlations are negligible in this state, neurons can

show pronounced temporal correlations in their spike trains that can be quantified

by the autocorrelation function or the spike-train power spectrum. Depending on

cellular and network parameters, correlations display diverse patterns (ranging from

simple refractory-period effects and stochastic oscillations to slow fluctuations) and it

is generally not well-understood how these dependencies come about. Previous work

has explored how the single-cell correlations in a homogeneous network (excitatory

and inhibitory integrate-and-fire neurons with nearly balanced mean recurrent input) can

be determined numerically from an iterative single-neuron simulation. Such a scheme

is based on the fact that every neuron is driven by the network noise (i.e., the input

currents from all its presynaptic partners) but also contributes to the network noise,

leading to a self-consistency condition for the input and output spectra. Here we first

extend this scheme to homogeneous networks with strong recurrent inhibition and a

synaptic filter, in which instabilities of the previous scheme are avoided by an averaging

procedure. We then extend the scheme to heterogeneous networks in which (i) different

neural subpopulations (e.g., excitatory and inhibitory neurons) have different cellular or

connectivity parameters; (ii) the number and strength of the input connections are random

(Erdős-Rényi topology) and thus different among neurons. In all heterogeneous cases,

neurons are lumped in different classes each of which is represented by a single neuron

in the iterative scheme; in addition, we make a Gaussian approximation of the input

current to the neuron. These approximations seem to be justified over a broad range

of parameters as indicated by comparison with simulation results of large recurrent

networks. Our method can help to elucidate how network heterogeneity shapes the

asynchronous state in recurrent neural networks.

Keywords: complex networks, stochastic models, neural noise, recurrent neural networks, neural dynamics,

spike-train statistics, spike-train power spectrum
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1. INTRODUCTION

The autonomous dynamics of recurrent networks of spiking
neurons is an important topic in computational neuroscience.
Networks of randomly connected excitatory and inhibitory
integrate-and-fire (IF) neurons are often used in the study of
this problem, because this model is computationally efficient for
numerical simulations and even sometimes permits analytical
insights (see e.g., Abbott and van Vreeswijk, 1993; Brunel,
2000; Lindner et al., 2005; Richardson, 2009; Deger et al.,
2014). Exploring the possible spike statistics in such network
models may help us to further our understanding of healthy
and pathological neural activity in different brain areas and
brain states. Moreover, understanding the autonomous (i.e.,
spontaneous) activity is also a necessary prerequisite for the
comprehension of the network response to external signals and
signal transmission and processing capabilities of the network in
general.

Recurrent networks of IF neurons can already show a
rich repertoire of activity states (Brunel, 2000) shaped by
pronounced synchronization and by oscillations on which many
computational studies have focused (see e.g., van Vreeswijk et al.,
1994; Hopfield and Herz, 1995; Ermentrout et al., 2001; Timme
et al., 2006; Ladenbauer et al., 2012). One state that lacks obvious
collective effects but still can show a statistically rich behavior
is the asynchronous state with low or absent cross-correlations
among neurons. This state is found inmany networkmodels (van
Vreeswijk and Sompolinsky, 1996; Brunel, 2000; Renart et al.,
2010; Helias et al., 2014) and also in experimental recordings in
different brain areas in the awake and attentive animal (Poulet
and Petersen, 2008; Harris and Thiele, 2011).

Although it is frequently assumed in theoretical studies,
approximating the asynchronous activity as Poisson spiking
with a total lack of temporal correlations is generally not
justified. Despite the characteristic absence or weakness of
spatial correlations among neurons, neural spike trains in
the asynchronous state can still show a pronounced temporal
correlation: experiments have revealed non-flat (i.e., non-
Poissonian) spike-train power spectra exhibiting reduced power
at low frequency (Edwards et al., 1993; Bair et al., 1994), peaks
attained at frequencies close to the firing rate and multiples
(Pesaran et al., 2002) or increased power at low frequencies
indicating slow fluctuations or bursting (Bair et al., 1994). Some
of these features (but also additional ones) have been found for
spike-train power spectra from neurons in the sensory periphery
(Neiman and Russell, 2011; Grewe et al., 2017) that lack synaptic
input from other neurons but are subject to channel noise and
other signal-unrelated fluctuations. Theoretically, some (but not
all) of these spectral shapes can be already understood if we
consider simple stochastic models, e.g., a Poisson process with
refractory period (Bair et al., 1994; Jarvis and Mitra, 2001)
or, more elaborate, integrate-and-fire models driven by white
(Lindner et al., 2002; Richardson, 2008; Vilela and Lindner,
2009b) or colored noise (Middleton et al., 2003; Bauermeister
et al., 2013; Droste and Lindner, 2017).

Interestingly, even if completely deterministic neuron models
are connected in a random network, corresponding observations

of random spiking can be made: the total chaotic input from
the network impinging on the single cell acts as an effectively
stochastic drive and the resulting spike-train power spectra
exhibit in many cases a non-trivial (in particular, non-flat, i.e.,
non-Poissonian) shape. Depending on cellular parameters as
the reset value after spiking (Dummer et al., 2014) or on the
strength of synaptic coupling (Ostojic, 2014; Wieland et al.,
2015), the spectrum can change drastically (e.g., from strongly
peaked spectra to low-frequency dominated spectra with a
1/f α form). How spike-train power spectra depend on system
parameters in a recurrent network is generally poorly understood
[for some effects of presynaptic refractoriness, slow presynaptic
rate changes, and short-term synaptic plasticity, see (Schwalger
et al., 2015), for effects of the postsynaptic refractory period,
see (Bair et al., 1994; Franklin and Bair, 1995)]. Some progress
has been achieved though for a related but distinct statistics
at a higher modeling level, namely, the power spectrum of
the population activity, for which different approximations and
numerical schemes have been put forward (Knight, 1972; Brunel
and Hakim, 1999; Spiridon and Gerstner, 1999; Mattia and
Giudice, 2002; Lindner et al., 2005; Trousdale et al., 2012; Deger
et al., 2014; Schwalger et al., 2017). In our paper we focus
exclusively on single spike-train power spectra.

According to early work by Mari (2000) and, particularly,
by Lerchner et al. (2006), a strong theoretical argument against
the white-noise approximation is the self-consistency of the
fluctuation statistics. If we think of a homogeneous network of
statistically equivalent neurons (identical neural parameters and
a fixed number of input connections as in the popular Brunel
network; Brunel, 2000), the output statistics of a cell should
be related to the input statistics because in the network every
driven cell is also a driving cell. In the simple case of current-
pulse-coupled IF neurons without a synaptic filter (homogeneous
Brunel network), the power spectrum of the input current
should be proportional to the power spectrum of the spike train
generated by the neuron. As the output power spectrum of a
white-noise driven IF neuron is generally not flat (Poisson-like)
(Lindner et al., 2002; Vilela and Lindner, 2009a) and, contrary to
some claims in the literature, summing many presynaptic spike
trains does not remove the temporal correlations of the single
process (Lindner, 2006), the flat white-noise spectrum cannot
be a self-consistent solution for the network neuron, unless all
neurons are poised deep in the subthreshold fluctuation-driven
regime of very rare firing (rates are smaller than 1Hz).

The self-consistency of the temporal correlations of input
and output in random networks is not an entirely new idea: in
statistical physics it has been used to derive correlation functions
of disordered spin systems (Sompolinsky and Zippelius, 1982;
Eissfeller and Opper, 1992); in neuroscience, it was applied
to random networks of coupled rate units by Sompolinsky
et al. (1988) (for various recent extensions, see Aljadeff et al.,
2015; Kadmon and Sompolinsky, 2015; Mastrogiuseppe and
Ostojic, 2017). Generally, the self-consistency condition of the
asynchronous state can be employed to determine correlation
functions or power spectra without actually simulating the
network but by simulating a single element iteratively. If
we make a Gaussian approximation for the incoming stream

Frontiers in Computational Neuroscience | www.frontiersin.org 2 March 2018 | Volume 12 | Article 9

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pena et al. Spike-Train Spectra for a Heterogeneous Network

of input spikes, we may ask how correlated (“colored”) this
Gaussian noise has to be to evoke a neural spike train with
a temporal correlation proportional to that of the driving
noise; equivalently, we can ask about the proportionality of
power spectra. This idea can be translated into an iterative
scheme that finds this solution numerically (if it exists). Such
a scheme has first been developed for a spin system (Eissfeller
and Opper, 1992); in the neural context it works essentially
as follows (Lerchner et al., 2006; Dummer et al., 2014): A
single neuron is driven by a Gaussian noise, the output spike
train is recorded, its power spectrum is estimated and serves
to generate a new Gaussian noise to again stimulate the
neuron in the next generation (step in the iterative scheme).
Repeating this procedure over a few generations only, for a
network with (nearly) balanced recurrent input and moderate
synaptic amplitudes, yields an excellent quantitative agreement
with the single-cell statistics of a neuron in a large network
(Dummer et al., 2014) (Lerchner et al., 2006 used the equivalent
correlation function). The simplest version of the procedure
fails in the case of strong inhibition and is naturally restricted
to homogeneous networks, in which all neurons (excitatory
and inhibitory ones) share the same cellular and presynaptic
connection parameters. Cortical neural networks are strongly
heterogeneous (Meunier et al., 2010; Tomov et al., 2014; Harrison
et al., 2015) and, hence, an extension of the method to cases in
which neural and connection parameters vary across the network
is desirable.

The purpose of the present study is to extend the iterative
scheme in several directions. First, we develop a simplemethod to
deal with the instability of the iterative scheme at strong recurrent
inhibition, whichmakes the scheme applicable to amuch broader
range of network parameters. Secondly, as sketched in Figure 1,
we study a heterogeneous network, in which excitatory and
inhibitory neurons have different parameters (either cellular or
with respect to their connectivity) or we consider even several
(more than two) populations, which differ in their parameters. As
indicated in Figure 1, every population is then represented by a
single cell in the iterative scheme, and the input statistics to each

cell in a certain generation will be determined from all output
spectra of the previous generation.

The third extension, illustrated in Figure 2 concerns the
number and strength of synaptic input connections that is in
reality certainly not constant and fixed, respectively, as in the
Brunel network studied with the iterative scheme by Dummer
et al. (2014). Just choosing a simple Erdős-Rényi topology, yields
a broad distribution of firing rates and this kind of heterogeneity
can be captured in the iterative scheme as well if we simulate a
sufficient number of representative neurons, i.e., a sample of the
network neurons (cf. Figure 2).

Our motivation for all these extensions of the method is
twofold. For once, in cases in which the single-neuron correlation
statistics is of interest, e.g., for the emergence of slow fluctuations
in recurrent networks (Litwin-Kumar and Doiron, 2012; Ostojic,
2014; Wieland et al., 2015), our extended scheme provides a
numerically efficient method that does not require large-network
simulations. Hence, if the temporal correlation statistics of the
asynchronous state is studied, our results permit to explore the
role of network heterogeneity in shaping those correlations. The
second purpose of our study is to trigger interest in the self-
consistent description of the Gaussian colored noise generated
by recurrent spiking networks. Showing that the numerical
scheme works in a physiologically relevant parameter regime can
also be regarded as a demonstration of the colored-Gaussian-
noise approximation’s validity and may encourage looking for
an analytical description of the network noise via Markovian
embedding (Schwalger et al., 2015).

Our paper is organized as follows. Section 2 presents the
neuron and network models, introduces important spike-train
statistics, shows how to stabilize the iterative procedure such
that it works also for strong recurrent inhibition and how
to incorporate a synaptic filter, and extends the scheme to
the different heterogeneous cases. In section 3, we consider
first the fluctuation statistics of the spike trains in the so-
called “heterogeneous asynchronous state” of a homogeneous
network with strong recurrent inhibition (Ostojic, 2014). Here
we demonstrate that slow fluctuations emerge due to their

FIGURE 1 | Heterogenous network of excitatory and inhibitory neurons differing in intrinsic parameters. Sketch of the network (left) and the corresponding iterative

scheme where a single neuron is simulated to represent one population (right). The input of a neuron in the next generation is composed of all power spectra from the

previous generations. The power spectrum of each population converges after the nth generation.
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FIGURE 2 | Heterogeneous network with distributed numbers and strengths of synaptic connections (Erdős-Rényi) where the number of presynaptic neurons and the

synaptic weights follow a distribution (left) and the corresponding iterative scheme where few neurons represent the distributions (right). For each neuron in each

generation these parameters are drawn from a distribution and the input is composed randomly from all power spectra from the previous generation. The average

power spectrum over all neurons converges after the nth generation.

preferred amplification by the network. We review briefly
the effect of a synaptic filter and then turn to the different
heterogeneous cases. All power spectra found with the iterative
scheme are compared to numerical simulations of large and
sparse networks. We conclude with a brief discussion of our
findings.

2. METHODS

2.1. Neuron Model and Spike-Train
Statistics
A single neuron is described by the standard leaky integrate-and-
fire neuron model (Gerstner et al., 2014). The membrane voltage
v evolves according to:

τmv̇ = −v+ RI(t). (1)

When v(t) > vth, a spike is emitted and, after a refractory period
of τR = 2 ms, the voltage is reset to v(t) = vr . The parameter
τm in Equation (1) is the membrane time constant, which may
be different depending on whether the neuron belongs to the
excitatory or the inhibitory population. The input current (scaled
by the membrane resistance R), is denoted by RI.

The statistics inspected in this work are based on spike-trains,
which are defined as sums of Delta functions

x(t) =
∑

i

δ(t − ti), (2)

where ti is the time instant of the ith spike. The instantaneous
firing rate ν is the (generally time-dependent) average of the
spike train, ν =

〈

x(t)
〉

, and can be determined for a specific
neuron within the network by an average over different runs
with randomized initial conditions. We are only interested in
the asynchronous state, in which ν does not depend on time.
In practice, we often average the rate over the population (if

appropriate, i.e., if the neurons are statistically equivalent) which
is indicated by 〈.〉 (ensemble average) and over time:

ν = 1

T

T
∫

0

〈

x(t)
〉

dt. (3)

For the calculation of spectral measures, we define the Fourier
transform by

x̃(f ) =
∫ T

0
dte2π iftx(t), (4)

where T is our time window and is set in our simulations to
T = 2 s if not mentioned otherwise. In all simulations we neglect
a transient period of 1 s before extracting the statistics over the
next T = 2 s. The power spectrum of a spike train is then
defined by

Sxx(f ) = 〈x̃x̃∗〉
T

, (5)

where x̃∗ is the complex conjugate of x̃. We note that the
power spectrum saturates for infinite frequency at the firing rate,
lim
f→∞

Sxx(f ) = ν.

Two important statistical measures can be extracted from the
power spectrum. The first is the Fano factor FF which is defined

as the variance of the spike count N =
∫ T
0 dt x(t) over its mean,

an expression that can be related to the power spectrum at zero
frequency:

FF =
〈

1N2
〉

〈N〉 = Sxx(f → 0)

ν
. (6)

The second statistical measure is the correlation time τc.
Following Neiman et al. (2007) and Wieland et al. (2015),
we consider the spike train’s correlation function c(τ ) =
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〈

x(t)x(t + τ )
〉

−
〈

x(t)
〉 〈

x(t + τ )
〉

(note that here 〈.〉 indicates a time
average) and its continuous part ĉ(τ ) = c(τ )−νδ(τ ) to define the
correlation time as an integral over the squared and normalized
ĉ(τ )

τc =
+∞
∫

−∞

dτ

[

ĉ(τ )

ĉ(0)

]2

=
+∞
∫

−∞

df

(

Sxx(f )− ν
)2

ν4
, (7)

an integral which in turn can be related to an integral over the
power spectrum via the Parseval theorem on the right side.

2.2. Network Model
Different network compositions are studied, many of which are
based on the work of Brunel (2000), specifically on his Model B, a
heterogeneous random network with fixed in-degree. In contrast
to Brunel (2000), we use a larger number of neurons, i.e., an
excitatory population size NE = 105 instead of NE = 104.
Independently of the number of populations, there is always a
mixture of excitatory to inhibitory neurons with a ratio of 4:1,
i.e., NI = γNE where γ = 0.25. Therefore, the total network size
is N = NE + NI .

The ℓth neuron from the network has the dynamics

τα v̇ℓ = −vℓ + R
(

Iloc,ℓ + Iext,α
)

. (8)

The external input current to each neuron and its membrane
time constant depend on the population it belongs to which
is here indicated by index α. The ℓth neuron receives a fixed
number of CE

ℓ (CI
ℓ) excitatory (inhibitory) randomly selected

neurons connections from population α = {E, I}. The local input
is described by:

RIloc,ℓ(t) = τα





CE
ℓ

∑

k=1

Jℓmℓ,k
xmℓ,k

(t−τD)

−gα

CI
ℓ

∑

i=1

Jℓnℓ,ixnℓ,i (t−τD)



 ∗ K(t), (9)

where gα is the ratio between average inhibitory and average
excitatory synaptic weights, which depends via α on the target
neuron (α ∈ E, I) The number of presynaptic neurons CE,I

ℓ

will be constant in some cases (fixed in-degree, in sections 2.3
and 2.4 as well as from 3.1 to 3.3) and random in others (as a
consequence of a Erdős-Rényi topology in sections 2.5 and 3.4 ).
The excitatory (inhibitory) input neurons are picked randomly
from the network and the set of the neuron indexes is denoted
by mℓ,k and nℓ,i. The synaptic coupling strength (also called
synaptic weight or synaptic efficacy) will be either constant,
Jℓj = J, (in sections 2.3–3.4) or exponentially distributed with
mean value 〈Jℓj〉 = J (in section 3.4). We fix the transmission
delay at τD = 1.5 ms unless otherwise indicated, and K(t) is a
an optional synaptic filter. In most cases, the filter is not used,
which means K(t) = δ(t). Otherwise, it is a simple exponential
filter:

K(t) = θ(t)
exp (−t/τs)

τs
, (10)

where θ(t) is the Heaviside function and τs is the synaptic filter
time. Note that in the limit τs → 0, the case without synaptic
filter is recovered. If not explicitly stated otherwise, we use the
parameter values that are given in Table 1.

2.3. Self-Consistent Scheme for a
Homogeneous Population—Stabilization of
the Scheme for Strong Recurrent Inhibition
The iterative self-consistent scheme developed by Lerchner et al.
(2006) and Dummer et al. (2014) is able to reproduce the single-
spike-train power spectrum for homogeneous populations close
to the balanced regime. In this procedure, in one generation a
single neuron is stimulated with a colored noise over many trials,
the power spectrum of its spike train is estimated, and using this
spectrum and the output firing rate, a new surrogate colored
Gaussian noise is generated which is used as the stimulus in
the next generation. This procedure is repeated iteratively until
the mean value and the spectrum of the driving noise matches
in a self-consistent manner approximately the firing rate and
the power spectrum of the resulting spike train. We present
in detail the heterogeneous iterative self-consistent scheme in
section 2.4, for further details of the homogeneous scheme we
refer to Dummer et al. (2014).

The version of the scheme by Lerchner et al. (2006) and
Dummer et al. (2014) is unable to reproduce self-consistently
the statistics of single neurons in a recurrent network with
strong relative inhibition g. More specifically, in cases where the
inhibition is high, the scheme loses stability and the measured
firing rate ν oscillates as a function of the generations (Dummer
et al., 2014) (a numerical instability in the balanced case is
reported in Lerchner et al., 2006, which is unrelated to the
instability at strong recurrent inhibition). As a result, network
regimes of low firing rate (such as those seen in cortex) cannot
be captured.

Here, we propose a method to ensure convergence even with
strong recurrent inhibition. We observed that the firing rate
oscillations are around the target firing rate, therefore we can use
the average firing rate over all past n generations as input to the

TABLE 1 | Summary of standard parameters for the iterative scheme with

different populations.

PARAMETERS

Name Value Description

NETWORK CONNECTIVITY PARAMETERS

NE 105 Size of excitatory population

NI γNE Size of inhibitory population where γ = 0.25

CE 1,000 Number of excitatory synapses per neuron

CI γCE Number of inhibitory synapses per neuron

NEURON PARAMETERS

vth 20 mV Firing threshold

vt 10 mV Reset potential

τR 2 ms Refractory period

RIext 30 mV External input
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next generation:

ν̂n = 1

n

n
∑

q=1

νq. (11)

This procedure stabilizes the scheme, see Figure 3 for a numerical
example. Note that averaging over a higher number of past
generations can yield a faster convergence (cf. Figures 3B,C).
The effect can be visualized using a similar approach as in
Dummer et al. (2014): a map from the input rate to the output
rate. We calculate the output rate from the input rate with the
approximation for synaptically filtered white noise (Brunel and
Sergi, 1998). The effect of the averaging over resulting output rate
and input can be captured by the functions νout,0 = νout(νin),

νout,1 = νout

(

νin+νout(νin)
2

)

,..., which are shown in Figure 3D.

These functions display an increasingly flatter shape in the
dependence on the initial firing rate illustrating the stabilizing
effect of the averaging.

The procedure of averaging the rate over the past generations
will be used only in cases of unstable convergence. Typically,
if excitation and inhibition are (nearly) balanced, the scheme
is stable and we do not need to apply the averaging
procedure.

2.4. The Self-Consistent Scheme for
Several Populations
The self-consistent scheme for a homogeneous population can
be generalized in different ways. First of all, real networks consist
of several types of neurons, that all differ with respect to their
physiological parameters. A first important step is to distinguish
between excitatory and inhibitory neurons not solely with respect
to their postsynaptic effect but to endow inhibitory neurons also
with other cellular parameters (membrane time constant, leak
potential, mean input current) than excitatory cells. Generally, we
distinguish between PE excitatory and PI inhibitory populations.
In the self-consistent scheme each population is represented by
one neuron.

2.4.1. Determination of the Second-Order Statistics

In the situation considered here, every neuron in the network
receives a fixed number of inputs. First of all, the mean recurrent
input to a given population α is determined by the firing rates of
the presynaptic neurons and by the connection parameters in the
network:

µα = ταJ





PE
∑

k

CE
kνE,k −

PI
∑

k

gkC
I
kνI,k



 , (12)

where νE,k and νI,k are the excitatory and inhibitory firing rates
determined by the kth presynaptic neuron. Furthermore, by
writing the effective input in the Fourier domain, we can obtain
the power spectrum of the effective input S̄α(f ) to a neuron in the
α population given by:

S̄α(f ) =
〈

RĨ(f )αRĨ
∗(f )α

〉

T

= τ 2α J
2





PE
∑

k

|K̃(f )|2CE
kS

E
k (f )+

PI
∑

l

g2l |K̃(f )|
2CI

l S
I
l (f )



,

(13)

where SE
k
(f ) and SI

l
(f ) are the spike-train power spectra from the

kth E and lth I-cells that provide synaptic input to the population
α, respectively, and K̃(f ) is the Fourier transformed synaptic filter
in Equation (10). Note that in order to distinguish it from the
output spectra, the input spectra to the population α is identified
by a bar, i.e., S̄α . If more than two populations are present, in
Equations (12, 13) their contributions are taken into account by
the number PE and PI of populations.

2.4.2. Gaussian Approximation of the Input

We want to use Equations (12, 13) to create an input with the
same first- and second-order statistics. For a large number of
presynaptic neurons that are only weakly correlated, this statistics
will be approximately Gaussian by virtue of the central limit
theorem1. To generate an input to a neuron embedded in the αth
population with a prescribed power spectrum, we generate the
Fourier transform

RĨG,α(f ) =

√

S̄α(f )

21f
(η̃r + iη̃i) (14)

of a time-dependent function RIG,α(t) by drawing two
independent Gaussian numbers η̃r , η̃i with unit variance
and zero mean in each frequency bin. The frequency resolution
is set by the length of the time window, 1f = T−1. Finally, we
generate the time-dependent current RIG,α(t) by inverse Fourier
transformation of RĨG,α(f ).

We start with Gaussian white noise as input as the 0-th
generation in the scheme and drive P neurons, where P =
PE+PI is the number of populations. The neurons are simulated
over a number of trials, the output spike-trains are measured
and their power spectra, SE,I

k
(f ), are estimated (1st generation).

For the next generation, an input is created using the spike-
train power spectra of the first generation in the Gaussian
approximation described above. The procedure is repeated until
the output power spectra matches the input power spectra, i.e.,
self-consistency is achieved. In all simulations of the scheme we
observed that iterating up to the 30th generation and using 10,000
trials for each generation was enough to reach a self-consistent

1This is evident for a finite synaptic filter, that leads to a summation of many

independent continuous functions. For delta synapses, we add up spike trains

and so it becomes questionable, how they can approach a Gaussian statistics.

In this latter case we should consider the effect of the summed shot noise on a

dynamical system such as the integrate-and-fire neuron: the sum over a small time

interval (smaller than the membrane time constant but large enough to collect

many independent spikes from the presynaptic neurons) yields a spike count which

can be well approximated by a Gaussian variable; this is similar to the common

diffusion approximation (Tuckwell, 1988), which, however, additionally involves

the assumption of a Poissonian input spike train. In this sense, the Gaussian

approximation can be applied to sums of spike trains (see also Figure 12 and the

surrounding discussion, for a test of the Gaussianity of the input current).
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FIGURE 3 | Stabilization of the iterative scheme by averaging over previous generations (inhibition-dominated regime). Convergence of the firing rate in the iterative

scheme (blue line) using different procedures. Parameters are g = 5.5, J = 0.2 mV, τs = 10 ms, γ = 0.25, and RIext = 30 mV. Recurrent network (red line) is firing at

ν = 9.1 Hz. (A) No average is considered, only the previous generation. (B) Firing rate is averaged over the past two generations. (C) Firing rate is averaged over all

past generations. (D) Visualization of the averaging procedure: firing rate resulting from i iterations of the averaging procedure νout,i of a neuron driven by the firing rate

νin (see text). The function νout (νin) is approximated using the expression for a LIF neuron driven by synaptically filtered white noise (Brunel and Sergi, 1998). The fixed

point νin = νout,1 is unstable because |dνout/dνin| > 1 (see Dummer et al., 2014). Few iterations suffice to yield a flat curve indicating a stable fixed point.

solution, provided that the scheme converged for the given
parameters.

In summary, we simulate the single LIF neuron representing
the population α with

τα v̇α = −vα + µα + R[Iext,α + IG,α(t)]. (15)

2.5. Self-Consistent Scheme for a Single
Population With Distributed Connection
Parameters
Here, we generalize the iterative scheme to the case where
the number of input neurons and the synaptic weights are
not the same for the same type of neuron. We deal with
a fixed connection probability (Erdős-Rényi topology) and
an exponential distribution of synaptic weights, resulting in
heterogeneity of firing rates and spike-train spectra. For
simplicity, we use the same membrane time constant for
inhibitory and excitatory neurons τE = τI = τ = 20ms and do
not use a synaptic filter. We represent the neurons of the network
in the iterative scheme by a number of M neurons in each
generation. The connection parameters of each neuron in each
generation are randomly drawn from the assumed distributions.
The input to each neuron in the subsequent generation is

determined independently from the other neurons taking into
account all power spectra of the previous generation.

In case of an Erdős-Rényi topology the numbers of
presynaptic neurons are binomially distributed. Likewise, in the
scheme we draw binomially distributed random numbers CE

k
and

CI
k
as numbers of presynaptic neurons connected to neuron α

with power spectrum Sk(f ) from the previous generation. The
mean of these random numbers is 〈CE

k
〉 = CE/M and 〈CI

k
〉 =

CI/M respectively. In case of exponentially distributed synaptic
weights we draw CE

k
excitatory synaptic weights JE

k,l
and CI

k

inhibitory synaptic weights JI
k,l′ for each neuron in the previous

generation from the exponential distribution. The input current
to the αth neuron is constructed with the mean input

µα(f ) = τ

M
∑

k=1













CE
k

∑

l= 1

JEk,l − g

CI
k

∑

l′=1

JIk,l′






νk






, (16)

and with the power spectrum of the effective input that is now
taken to be

S̄α(f ) = τ 2
M

∑

k=1







CE
k

∑

l= 1

(JEk,l)
2 + g2

CI
k

∑

l′=1

(JIk,l′ )
2






Sk(f ). (17)
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We assume here that E and I cells have the same spectrum if their
connection parameters are equal. With given spectrum andmean
input we calculate the voltage dynamics of neuron α as in section
2.4. To adapt the stabilization method described in section 2.3
to the case of a single heterogeneous population described by M
single neurons, we sum a constant to all firing rates in the n-th
generation, in order to set its mean firing rate to the average of all
generations

ν̂k,n = νk,n − 〈νk,n〉k +
1

n

n
∑

q=1

〈νk,q〉k, (18)

where νk,n is the firing rate of the k-th neuron in generation n and
ν̂k,n is the transformed firing rate that should be used to calculate
the input of the next generation. Note that the mean of the first
two terms is zero. These ν̂k,n are used in place of νk in Equation
(16) to stabilize the scheme in case of strong inhibition.

For the simulation of these networks, we use the Brian spiking
network simulator (Goodman and Brette, 2009).

3. RESULTS

3.1. Homogeneous Network With Strong
Recurrent Inhibition and Additional
Synaptic Filtering
We would like to start with results for the inhibition-dominated
network (g > 4), in which firing rates are low. In this regime, the
iterative scheme as proposed by Dummer et al. (2014) is highly

unstable and we only obtain convergence with the averaging
procedure described in section 2.3. To demonstrate that the
averaging procedure works in such a situation, we consider
in Figure 4 the network studied by Ostojic (2014) who found
two contrasting asynchronous states when varying the synaptic
strength J.

In Figure 4A spike-train spectra for strong recurrent
inhibition (g = 5) for different values of J and different network
sizes are shown. The power spectra of these network simulations
are close to those of the iterative scheme in most cases. For
weak coupling, the agreement between spectra is always good;
discrepancies for large J become smaller with increasing network
size because cross-correlations become less important in this
limit. An additional reason for discrepancy is that the Gaussian
approximation becomes less accurate for strong synaptic
strength. The change in spike-train power spectra upon increase
of the synaptic coupling does not hinge on the specific nature
of the subthreshold function in the IF model. If we replace the
leaky IF model by an exponential IF model (Fourcaud-Trocmé
et al., 2003) in the network and in the recurrent scheme, we
observe a similarly drastic change in low-frequency power if the
synaptic strength is doubled (inset of Figure 4A). Also for this
single-neuron model the agreement between spectra from the
network and from the self-consistent scheme is fairly good.

When the coupling strength J increases, the firing rate first
decreases and then increases (Figure 4D). More interestingly,
with increasing coupling we see a transition from Poisson-like
irregular firing (Figure 4B) to bursty firing of single neurons
(Figure 4C), i.e., periods of strong firing are separated by pauses.

FIGURE 4 | Large amplification of slow fluctuations explains heterogeneous asynchronous state in a homogeneous network. Same set-up as in Ostojic (2014),

τE = τI = 20 ms, RIext = 24 mV, γ = 0.25, τD = 0.55 ms, g = 5, and τR = 0.5 ms. This is a parameter region where the network fires at low-frequency regime and

high inhibition g = 5 is set. (A) Single-neuron spike-train power spectra from recurrent network (circles for NE =80,000 and squares for NE =8,000) and

self-consistent scheme (solid lines) for different values of J. Inset: power spectra for a large network (NE = 100, 000) of exponential IF neurons (single-neuron

dynamics is τm v̇ = −v + 1T exp(
v−vth
1T

)+ RI(t) where τE = τI = 20 ms, RIext = 30 mV, γ = 0.25, τD = 0.55 ms, g = 5, τR = 0.5 ms, and 1T = 0.2) for two different

values of the synaptic coupling, showing the same qualitative difference in low-frequency power as the LIF networks. (B,C) Raster plots containing 100 neurons from

the LIF network with NE =80,000 for J = 0.2 mV, and J = 0.8 mV, respectively. (D–F) Firing rate ν, correlation time τc, and Fano factor for different values of J for both

recurrent and self-consistent scheme evaluated in a simulation of T = 100 s.
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In the latter state one can observe a broad distribution of
spike counts, and that is why this state has been referred to
as heterogeneous asynchronous state (Ostojic, 2014). In terms
of the power spectrum this transition becomes manifest as
an amplification at low frequencies (Wieland et al., 2015);
correspondingly the Fano factor increases (Figure 4F). Together
with the minimum in the correlation time (Figure 4E) (attained
at a coupling where the Fano factor is about unity), our results
confirm that the transition described by Ostojic (2014) in the
inhibition-dominated regime is essentially the same as the one
observed and explained by Wieland et al. (2015) for the balanced
case g = 4.

In summary, the results in Figure 4 indicate that the
emergence of a new heterogeneous asynchronous state for strong
synaptic coupling can be explained only using the properties
of a single neuron and the self-consistency condition, here
demonstrated by our iterative single-neuron scheme.

We now investigate the effect of a finite synaptic filter,
Equation (10). Not surprisingly, a pronounced synaptic filter
(large τs) leads to a long time scale in the network dynamics, as
revealed by the increased power at low frequencies (Figure 5).
The synaptic filter, Equation (10) is scaled such that the total
charge per input spike remains constant. Therefore, an increased
time constant for the exponential decay renders the postsynaptic
response smaller in amplitude and longer in duration. This longer
duration of postsynaptic responses extends the range of temporal
correlations in the input to the neuron, which in turn causes the
slow fluctuations in the neuron’s activity. The resulting power
spectrum (Figure 5A), especially for long synaptic time constant,
looks similar to that of a colored-noise driven perfect IF model
(see Figure 9 in Middleton et al., 2003). We emphasize that
the emergence of the slow time scale is here imposed by the
long-lasting synaptic filter which is in marked contrast to the

network amplification of slow fluctuations for strong synaptic
coupling discussed before in Figure 4.

We also verified that the synaptic filter does not change
qualitatively the emergence of slow fluctuations for strong
coupling (i.e., the heterogeneous asynchronous state discussed
above). Using τs = 10 ms we still see the characteristic strong
increase in Fano factor (Figure 5B) and a minimum in the
correlation time (Figure 5C).

3.2. Networks With Different Parameters
for Excitatory and Inhibitory Neurons
In the following, we return to the limit of instantaneous synapses
τs → 0, i.e., K(t) = δ(t), and introduce different parameter
values for excitatory neurons (E-cells) and inhibitory neurons
(I-cells). First of all, in order to test whether the applicability of
the scheme hinges on the exact value of crucial parameters, we
choose a small change of the membrane time constant between
E and I-cells: τI = 19 ms and τE = 20 ms. Secondly, we
make the relative strength of recurrent inhibition, gE and gI ,
different for the two populations in order to see whether the
generalized iterative scheme with two neurons can cope with this
heterogeneous situation.

In Figure 6we show power spectra obtained from simulations
of the recurrent network and of the iterative scheme for different
combinations (gE, gI). In Figure 6A the two populations are
statistically rather different with an E-cell firing rate of νE =
3.2 Hz whereas I-cells fire at νI = 9.7 Hz. Both spectra are
well reproduced by the iterative scheme and show a “green”
shape (in the colored noise lingo, this is white minus red noise).
That means, the spectra exhibit a dip at low frequencies, but
this is much more pronounced for the I-cells. Even when we
increase the difference in recurrent inhibition and the two types

FIGURE 5 | Self-consistent scheme also works for a network with synaptic filtering. (A) Effect of τs on the recurrent network and iterative scheme, the plot displays

power spectra for different values of τs. This is an inhibition-dominated regime with exponential synapses and J = 0.2 mV. In this region, the network fires at low firing

rates. In (B,C) we fix τs at 10 ms and show Fano factor and correlation time τc for different values of J for both recurrent and self-consistent scheme. Other

parameters as in Figure 4.
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FIGURE 6 | Example spectra for heterogeneous network of excitatory and inhibitory neurons differing in their parameters. Comparison of power spectra of the

recurrent network with two different populations and the self-consistent iterative scheme with two neurons. Parameters are in (A) (gE , gI ) = (4.2, 4.0), in (B)

(gE ,gI ) = (3.7, 3.7), and in (C) (gE , gI ) = (4.25, 3.6).

of neurons fire at lower frequencies of νE = 0.1 Hz and νI =
7.4 Hz, the agreement of the spectra from the iterative scheme
and from the network simulations is excellent (Figure 6C). If we
choose the relative recurrent inhibition to be the same, the neural
dynamics differ only by the small difference of the membrane
time constants, which does neither cause significant differences
in the firing rates (νE = 128.9 Hz and νI = 129.9 Hz) nor in the
shape of the power spectra (cf. Figure 6B).

In order to explore the quality of the approximation
systematically, we evaluated the discrepancy using the relative
integrated error

1 =
∫ fcut
0 df

(

Sxx,net(f )− Sxx,scheme(f )
)2

∫ fcut
0 dfS2xx,net(f )

, (19)

where fcut = 2νI (we use the inhibitory firing rate because it is
usually higher).

In our scheme the assumption of weak cross-correlations
among neurons in the network is crucial - indeed we assume
an infinitely sparse system that is in a perfectly asynchronous
state. This is, of course, a somewhat artificial limit and thus it
is interesting how, for a fixed number of connections (about
103), the squared deviation as well as important statistics such
as the Fano factor depend on the system size. In Figure 7

this dependence is illustrated for the case where gE = 4.2
and gI = 4.0, the same parameters as in Figure 6A. For
the chosen connectivity, a minimal number of NE = 20,000
E-cells seems to be required to reach a good approximation

(relative error below 1% for both E and I cells) with the self-
consistent scheme. This plot illustrates that although sparsity is
an important assumption for the self-consistent determination
of spike-train power spectra, it does not lead to the necessity to
consider exorbitantly large networks.

3.3. Networks With Three Distinct
Populations and Distinct Modules
In principle, the proposed iterative scheme is applicable to any
number of populations. As long as the resulting activity is
sufficiently asynchronous (implying weak cross-correlations) and
the synaptic strength is not excessively large (needed for the
Gaussian approximation), the iterative scheme should converge
to a self-consistent result. Here we demonstrate that the extended
scheme also works for networks with more than two populations
and study two cases: a network with three distinct populations
and a modular network.

An example of three populations is given by a combination
of one excitatory and two inhibitory populations (Figure 8A),
biologically inspired by a cortical network with excitatory regular
spiking neurons (RS), inhibitory fast-spiking (FS), and low-
threshold spiking (LTS) neurons (see Izhikevich, 2003; Tomov
et al., 2014 and references therein). Their firing rates are ordered
such that νFS > νLTS > νRS. This heterogeneous situation is
achieved by changing both membrane time constants, which are
chosen to be τFS = 21 ms, τLTS = 20 ms, and τRS = 19 ms, and
making one of the synaptic weights in the network (connecting
RS neurons to FS neurons) 1.4 times stronger (indicated by
the thick arrow in Figure 8A, left). This setting illustrates how
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FIGURE 7 | Performance of iterative scheme improves with network size. The

performance of the iterative scheme depends on the network size. Curves

were produced for the case gE = 4.2 and gI = 4.0, same parameters as in

Figure 6A. (A) Relative error dependence of the scheme for a network size NE
evaluated with the integrated relative error defined in Equation (19). (B) Fano

factor dependence where dotted line represents the iterative scheme

prediction and solid lines the recurrent network. (C) correlation time τc

dependence.

heterogeneity of connectivity and membrane time constants
shape the power spectra statistics.

The resulting spectra are well-captured by the iterative
scheme; they all display the effect of neural refractoriness by
the dip at low frequencies (Bair et al., 1994; Franklin and Bair,
1995) but to a different degree. The dip is most pronounced for
the fast spiking neurons; the regular spiking neurons fire with
a statistics that is closest to a Poisson process with a flat power
spectrum.

According to a common view, the cortex possesses a modular
structure (Boucsein et al., 2011; Tomov et al., 2014, 2016), a
feature that we take into account in the next setup. We consider
two different modules as shown in Figure 8B. The two modules
are equal to each other with respect to the population size
and each consists of an E-I network with NE = 100,000 and
membrane time constants τ = 20 ms, requiring the simulation

of two neurons in total in the self-consistent scheme. For module
1 and 2 we choose J = 0.1 mV and J = 0.27 mV, respectively.
With this choice, the two modules operate in different regimes:
module 1 in a fast-fluctuation mode with low Fano factor and
peaked power spectrum, module 2 in a regime of dominating
slow fluctuations (cf. section 3.1). In module 2, we rewired 50%
of the connections so that they come from module 1, i.e., it
receives 0.5CE excitatory inputs and 0.5CI inhibitory inputs from
module 1. This results in a highly heterogeneous situation which
is reflected in the power spectrum of module 2: in contrast to the
behavior observed in Figure 4, the power spectrum of module 2
contains an additional hump around 80 Hz. The power spectra
of all different neurons in this setup are well represented by the
iterative scheme, cf. Figure 8B.

The result in Figure 8B demonstrates that the iterative scheme
can capture complex situations involving the interaction among
different modules. The simulated network contained in total
250,000 neurons and the iterative scheme reproduced the single
neuron correlation statistics with high accuracy using only two
neurons.

3.4. Network With Randomized Number
and Weight of Synaptic Inputs
Here we use the iterative scheme to represent network dynamics
for distributed connection parameters in a single population. As
a first example, we consider a network in which connections are
made with a fixed probability (Erdos and Rényi, 1960) instead
of a fixed in-degree (as in all previous examples). This Erdős-
Rényi topology yields a binomially distributed in-degree which
is certainly a more realistic scenario than the fixed in-degree.
Furthermore, a distributed in-degree leads to a distribution of
firing rates, as seen in cortical networks (Griffith and Horn,
1966; Koch and Fuster, 1989; Shafi et al., 2007; Hromádka et al.,
2008; O’Connor et al., 2010; Roxin et al., 2011). In addition
to a random number of connections, in cortical networks also
the synaptic weights are not fixed but follow a long-tailed
distribution (Song et al., 2005; Gilson and Fukai, 2011). This
feature can be approximated in the recurrent network model by
drawing the weights from an exponential distribution.

In this version of the iterative scheme, we haveM neurons that
represent independent samples of the distributions of excitatory
and inhibitory in-degrees and weights. Consequently, the firing
rates and power spectra of the M neurons will differ and reflect
the heterogeneity of these measures in the recurrent network (for
further details, see section 2.5).

The first striking feature for a randomized connectivity is a
broad distribution of firing rates. The stronger source for the rate
variability seems to origin in the random number of connections
(the case shown in Figure 9A); an exponential distribution of the
synaptic strength makes the histograms only somewhat broader
(case with additional weight variability, shown in Figure 9B). The
histograms obtained from our iterative scheme with a modest
number of M = 50 representative neurons (data are collected
over several generations to improve the sampling) agree well
with those from the network simulations. Note that analytical
expressions for self-consistent distributions of the firing rate have
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FIGURE 8 | Heterogeneous networks with more than two populations. Comparison between power spectra of the recurrent network (solid lines) with the iterative

scheme (dashed lines). (A) Three different populations (RS, LTS, and FS) whereby the inhibitory population is composed of LTS (NLTS = 0.25× NE ,

CLTS = 0.25× CE ) and of FS (NFS = 0.05× NE , CFS = 0.05× CE ). Parameters are g = 4.0, τRS = 20 ms, τLTS = 19 ms, τFS = 21 ms. We multiply the synaptic

strength by 1.4 for the excitatory weight to inhibitory neuron from population 2. (B) Modular network, modules 1 and 2 communicate through connections represented

at the sketch in the left. Each module contains 1.25× 105 cells with E:I ratio 4:1. In both modules τ = 20 ms. At module 1 J = 0.1 mV and at module 2 J = 0.27 mV,

for all modules g = 4.0. Module 2 exhibits a spectral hump around 80 Hz which comes from the interaction with module 1.

been found previously using the diffusion approximation (Amit
and Brunel, 1997; Roxin et al., 2011).

In Figure 10 we show the mean Figure 10A and the standard
deviation Figure 10B of the firing rate histograms of the iterative
scheme as a function of the generation. Because the number M
of neurons per generation (i.e., the number of samples) is finite
we consider the standard error σs = σ/

√
M − 1 represented

by the colored areas in Figure 10A, where σ is the standard
deviation of the firing rates measured from the network. The
mean firing rate and standard deviation of the iterative scheme
fluctuate around the network values within the expected standard
error (colored areas), which indicates that the scheme works
even for rather limited numbers of neurons M ≪ N. For the
considered parameter sets, we observe fast convergence within
five iterations for all used numbers of neurons except in the case
of strong recurrent inhibition with g = 6 for which we observe
convergence only after the 10th generation.

Power spectra are different for all neurons in the network and
depend most strongly on the mean input that the respective cell
receives. In the network we group neurons with similar firing
rates (within a 1 Hz interval) and average their spectra within

each group. We compare these spectra to those resulting from
the self-consistent scheme having firing rates in the same interval
(Figure 10C); we find a good agreement for a modest number of
neuronsM = 50 used in the scheme. Note that averaged spectra
are very different from each other and from the average over all
neurons in the network (Figure 10D). Even for a low number
M = 10, the iterative scheme reproduces this average spectrum
well.

If we use in addition to the random number of connections
also randomly distributed synaptic weights, the overall picture
does not change qualitatively (Figure 11). Compared to the case
of equal weights, the variance in the firing rates goes up by about
50% (Figure 11B) whereas the mean firing rate increases only
slightly (Figure 11A). Power spectra look similar to the previous
case and the agreement between scheme and network simulation
is again good, except for the case of strong inhibition g = 6, for
which we find a discrepancy between the averaged power spectra
for the scheme and the network (Figure 11D) even for a large
M (similarly for the single neuron spectra in Figure 11C). Due
to the very low firing rates and some high synaptic weights, the
Gaussian approximation becomes inaccurate. We calculated the
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FIGURE 9 | Iterative scheme reproduces firing rate distributions of

Erdős-Rényi networks. Firing rate histograms of the iterative scheme with

M = 50 neurons per generation (symbols) and the network simulation (dashed

lines) for (A) binomially distributed numbers of presynaptic neurons [all

excitatory (inhibitory) weights are the same as indicated on the left] and (B)

additionally randomized synaptic weights (weights are drawn from

distributions, sketched on the left). To build the histograms of the scheme, we

used all firing rates from the 6th to the 20th generation (after transients have

vanished). Parameters are as in Figure 10.

relative error defined in Equation (19) for the averaged power
spectra for M = 10 up to M = 100, using fcut = 2〈ν〉. All
observed relative errors were smaller than five percent.

The results of this section demonstrate how a relatively small
number of neurons in the self-consistent scheme can be used
to capture the first- and second-order statistics of neurons in a
network with a variable number of inputs and synaptic weights.

3.5. Deviations Due to Non-Gaussianity of
Current Input
The iterative scheme assumes neuronal input that obeys a
Gaussian distribution. This assumption is only accurate for a
large number of pre-synaptic spikes with small amplitude. A
low firing rate or an increase of (some) synaptic weights (as
observed for stronger recurrent inhibition, i.e., larger values of g)
shifts the statistics from approximately Gaussian to a distribution
with pronounced non-Gaussian features (skewed and with fat
tails). In fact, even the most basic statistics of the output, the
firing rate, can systematically deviate from the Gaussian setting
if synaptic amplitudes are sufficiently large (Richardson and
Swarbrick, 2010). We can thus expect that at large values of g the
iterative scheme (that assumes Gaussianity) may provide power
spectra that deviate from those measured in the network; indeed,
this is what we observed above. Here we want to illustrate the
relation between the deviations of power spectra in the network
and for the isolated neuron on the one side and non-Gaussian
features of the network input statistics on the other side.

We simulate the heterogeneous network from section 3.4
with exponentially distributed weights and either g = 4 (as in

Figure 11, middle column) or g = 6 (as in Figure 11, right
column). We pick out 1,000 representative neurons randomly.
For each of these neurons we measure the input current
spectrum and the output spike-train spectrum. Input currents
are integrated over a time bin of 2ms (10% of the membrane
time constant), in which the membrane voltage does not change
too drastically but we can expect to collect many input spikes
and thus Gaussian statistics. Clearly, for a much smaller time
bin of the order of [(CE + CI)ν̄]

−1 ≈ 0.01ms (where ν̄ is the
average firing rate of the presynaptic neurons), one single spike
at most would typically fall into one time bin. Thus, on a very
fine temporal scale, the input has always a highly non-Gaussian
statistics. Nevertheless, the Gaussian approximation works well
if the temporally integrated input noise has approximately
Gaussian statistics for an effective time step, in which the voltage
does not change much. As the deterministic drift causes already
a change by several mV over a time of 2ms, our choice of the
effective time step is conservative in the sense that non-Gaussian
features of the input in this time step will certainly become
noticeable in the output statistics of the driven cell.

For each of the 1,000 selected neurons, we first measure the
skewness and excess kurtosis of its input current to quantify
non-Gaussianity. Then, we generate a Gaussian noise with the
same power spectrum as the input current to this specific neuron
and use it to drive an isolated LIF neuron. Finally, we calculate
the relative error, Equation (19), between the output power
spectrum of this isolated neuron and the corresponding neuron
from the recurrent network. Note that for this comparison,
we do not iterate the self-consistent scheme but rather use a
Gaussian version of the (neuron-specific) network input noise for
the isolated cell. In this way, we isolate non-Gaussianity of the
input noise as one potential source of deviation between network
spectra and spectra from the self-consistent scheme.

Plots of the relative error vs. skewness and excess kurtosis
are presented in Figures 12A,B, respectively. For g = 4
(balanced case, moderate inhibitory synaptic amplitudes), the
relative error is generally small and skewness and excess kurtosis
deviate only little from zero. In contrast, for stronger inhibitory
synaptic weigths g = 6 (inhibition-dominated recurrent
feedback), the input current has a pronounced negative skew
and fat tails because of large inhibitory amplitudes, resulting in
stronger deviations between the spectra of isolated neurons and
the corresponding network neurons. Consequently, we find a
correlation between non-Gaussianity and relative error (cf. the
Pearson correlation coefficients given atop of the figure). To
gauge the relative error, we need a lower limit. To this end, we
consider the deviation between two measurements of the same
power spectrum for a given neuron of the network. The average
of this lower bound over the 1,000 selected neurons is shown
in Figure 12 for comparison. It is close to the mean error for
g = 4 but is significantly lower than the mean error for g =
6, and it barely depends on the skewness and kurtosis, again
confirming the relation between non-Gaussianiaty of the input
noise and the relative error between isolated neuron and network
neuron.

For both values of g we obtain a high relative error for
exceptionally large firing rates (>100Hz) (because the time step
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FIGURE 10 | Iterative scheme captures the heterogeneous statistics due to Erdős-Rényi topology. Statistics from the iterative scheme and recurrent network for

binomially distributed numbers of presynaptic neurons and different recurrent inhibition as indicated; remaining parameters: 〈CE 〉 = 1000, 〈CI〉 = 250, J = 0.1mV,

τm = 20ms, τD = 2 ms. For each neuron 100 trials of 10 s were used. From top to bottom: (A) mean firing rate for each generation of the scheme and the mean

network rate (dashed line); standard error σs = σ/
√
M− 1 (with σ being the standard deviation of the network firing rates) for different numbers of neurons M in the

iterative scheme (colored areas). (B) Standard deviation of firing rates in the iterative scheme vs. generation compared to σ (dashed line). (C) Power spectra averaged

over single neuron spectra with firing rates within the indicated intervals in the iterative scheme (lines, data from generations 6 to 20 for g = 3.5, 4 and 11–20 for

g = 6) and from neurons in the network (circles). (D) Power spectra averaged over all neurons in the scheme (solid lines, data from generations 11 to 20) and network

(dashed). For g = 6 we used the stabilization procedure from section 2.5.

of 2ms becomes too large in comparison to the mean ISI) or
exceptionally low firing rate (because spectra are very noisy in
this case). If we consider only a range of moderate firing rates
(Figure 13) then the correlation between the deviation from
Gaussianity and the discrepancy between network and isolated
becomes even clearer (cf. Pearson correlations coefficients stated
atop of the figure).

4. CONCLUSIONS

In this work we extended the self-consistent scheme described
by Dummer et al. (2014) to situations with strong inhibition,

synaptic filtering, networks with subpopulations of distinct
neuron types, and networks with random (instead of constant)
number and strength of synaptic connections. In all cases we
employed the Gaussian approximation and in the heterogeneous
systems considered we used a small number of neurons each
representing a certain subclass of similar neurons. Despite these
approximations, our comparison of the determined spike-train
power spectra with those found by numerical simulations of
large and sparse recurrent networks revealed a good quantitative
agreement.

Admittedly, with an increasing number of subtypes of
neurons, we loose some of the numerical advantages of the
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FIGURE 11 | Iterative scheme captures the heterogeneous statistics due to Erdős-Rényi topology and randomly distributed synaptic weights. First- and second-order

statistics from an iterative scheme for binomial distributed numbers of presynaptic neurons and additionally exponentially distributed synaptic weights. See caption of

Figure 10 for details.

scheme compared to a network simulation because in order to get
reliable estimates of the power spectrum, we have to simulate the
few neurons in each generationmany times. If the convergence of
the scheme is slow then, adding up all neurons in all generations
and all trials, we may have to simulate in the end as many
neurons as in the network (however, the typical bottleneck of
many simulations, to keep track of all synaptic connections, is
still absent in the scheme). It is thus questionable, whether much
more complicated situations than discussed here can be studied
in depth by our scheme.

Another short-coming of the approach concerns cases in
which neural cross-correlations (a very vivid topic of current
research, see Doiron et al., 2016) cannot be neglected anymore
or in which weak cross-correlations still have a significant impact
on the population activity (Schneidman et al., 2006). There

are different causes for cross-correlations including common
(shared) input, spatially homogeneous external stimuli, and a
slight overall synchronization in the network (some of which are
reviewed by Helias et al., 2014; Doiron et al., 2016). Not all of
these factors can be taken into account by extending the scheme
to pairs of neurons that are stimulated by correlated Gaussian
noise processes2. We may still learn something from finding
situations in which neural cross-correlations can quantitatively
be described by extensions of the scheme to pairs of neurons in
each generation.

2For the simpler but still formidable problem of how neuron pairs respond to

cross-correlated Gaussian white noise sources, see, for instance, Doiron et al.

(2004); de la Rocha et al. (2007); Shea-Brown et al. (2008); Ostojic et al. (2009);

Vilela and Lindner (2009b); Deniz and Rotter (2017).
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FIGURE 12 | Deviation between spectra vs. statistical measures of non-Gaussianity of the input current. Relative error, Equation (19), of spike-train spectra from

neurons in the network and from neurons driven by corresponding Gaussian noise plotted vs. skewness (A) and excess kurtosis (B) of the input current. Inset in (A)

probability distributions for g = 4 and g = 6 as indicated. Color in (A,B) encodes the firing rate of each neuron (cf. scale on the right). We used the heterogeneous

network from section 3.4 with exponentially distributed synaptic weights and g = 4 (crosses) and g = 6 (plusses) and picked 1,000 representative neurons randomly.

For these neurons, we determined the skewness and excess kurtosis as well as the power spectrum of the input current. For the former two, we used the input

current integrated over an effective time step of 2ms (see main text for a discussion, how to choose this time step). We computed the relative error for each spike

train-power spectrum from the network and its corresponding spike-train spectrum for the isolated neuron driven by the Gaussian version of the input noise (mean

values shown by black symbols). The Pearson correlation coefficients are shown atop and indicate that deviations from Gaussian input statistics and deviations

between network and single-neuron spectra co-occur. As a lower limit of the relative error, we computed 1 for two independent measurements of the power

spectrum of a network neuron; this lower bound for the specific cell was then averaged over all neurons in the network and is shown by green crosses for both

networks with g = 4 and g = 6 (there is no significant dependence of the mean lower bound on g).

FIGURE 13 | Deviation between spectra vs. statistical measures of non-Gaussianity of the input current for an intermediate range of output firing rates. Correlations

between the relative error and skewness (A) and excess (B) are higher than in Figure 12 if only neurons with firing rates from 20 to 100Hz are selected. Other

parameters as in Figure 12.

Nevertheless, the results and the approach put forward in our
paper are useful in several respects. If the single-neuron statistics
is of interest (because this is what is recorded or this is what
shows particularly interesting features), our method provides
a computationally cheap solution to calculate the spike-train
power spectrum and to study its dependence on cellular and
network parameters without the need to simulate a network. The
scheme is particularly suited for the idealized case of a perfectly
asynchronous network that is difficult to study numerically

because an almost completely asynchronous state can be reached
only in a very sparse, hence, very large network. This case is
interesting because it often permits analytical calculations via a
density equation for the membrane voltage (Knight, 1972; Abbott
and van Vreeswijk, 1993; Amit and Brunel, 1997; Brunel, 2000;
Mattia and Giudice, 2002) and thus our scheme might be useful
for comparison to simpler theories.

As already mentioned in the introduction, we can regard
our results as a confirmation that the approximation of the
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synaptic input by a correlated Gaussian noise is a reasonable one
over a physiological range of parameters for a sparse recurrent
network in the asynchronous state. UsingMarkovian embedding,
an arbitrary colored Gaussian noise can be described by a
(possibly very high-dimensional) Ornstein-Uhlenbeck process,
an idea that has been worked out in the neural context by
Schwalger et al. (2015); for examples from the physics literature,
see, for instance, Schimansky-Geier and Zülicke (1990); Hänggi
and Jung (1995); Siegle et al. (2010). Hence, a stochastic mean-
field theory in terms of the corresponding multidimensional
Fokker-Planck equation seems to be in reach, generalizing the
successful framework of the diffusion approximation, which was
based on the Poissonian (white-noise) approximation and thus
led to a one-dimensional Fokker-Planck equation. A theory
using the colored-noise Fokker-Planck equation would faithfully
reproduce the second-order temporal correlations of the spiking
neurons and, possibly, provide novel insights into the bifurcation
between asynchronous and synchronous states. This may be
particularly relevant for larger synaptic amplitudes (Ostojic,

2014; Wieland et al., 2015), for which the color of the noise
becomes more and more important.
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