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Purpose: A muscle synergies model was suggested to represent a simplifying motor

control mechanism by the brainstem and spinal cord. The aim of the study was to

investigate the feasibility of such control mechanisms in the rehabilitation of post-stroke

individuals during the execution of hand-reaching movements in multiple directions,

compared to non-stroke individuals.

Methods: Twelve non-stroke and 13 post-stroke individuals participated in the study.

Muscle synergies were extracted from EMGdata that was recorded during hand reaching

tasks, using the NMF algorithm. The optimal number of synergies was evaluated in both

groups using the Variance Accounted For (VAF) and the Mean Squared Error (MSE). A

cross validation procedure was carried out to define a representative set of synergies.

The similarity index and the K-means algorithm were applied to validate the existence

of such a set of synergies, but also to compare the modulation properties of synergies

for different movement directions between groups. The similarity index and hierarchical

cluster analysis were also applied to compare between group synergies.

Results: Four synergies were chosen to optimally capture the variances in the EMG

data, with mean VAF of 0.917 ± 0.034 and 0.883 ± 0.046 of the data variances, with

respective MSE of 0.007 and 0.016, in the control and study groups, respectively. The

representative set of synergies was set to be extracted from movement to the center

of the reaching space. Two synergies had different muscle activation balance between

groups. Seven and 17 clusters partitioned the muscle synergies of the control and

study groups. The control group exhibited a gradual change in the activation in the

amplitude in the time domain (modulation) of synergies, as reflected by the similarity

index, whereas the study group exhibited consistently significant differences between all

movement directions and the representative set of synergies. The study findings support

the existence of a representative set of synergies, which are modulated to execute

movements in different directions.

Conclusions: Post-stroke individuals differently modulate the activation of synergies

to different movement directions than do non-stroke individuals. The conclusion

was supported by different muscle activation balances, similarity values and different

classifications of synergies among groups.

Keywords: muscle synergies, post stroke, motor control, variance accounted for (VAF), electromyography (EMG),

hand reaching, non-negative matrix factorization (NMF), modulation
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INTRODUCTION

In the upper limb, numerous muscles with thousands of motor
units require the control of the motor system even when
executing simple daily tasks, such as hand reaching. Direct
control on these structures requires simultaneous control over
large degrees of freedom, which in turn, imposes a significant
computational burden on the Central Nervous System (CNS).
Given the nature of controlling such a complex system, an
alternative mechanism for motor control was suggested, in which
the brain’s cortex controls and modulates a simple combinatorial
system to control the vast movement repertoire (Bizzi and
Ajemian, 2015). In the context of this paper, modulation of
synergies will be referred to changes in the amplitude of
activations of synergies in the time-domain. This combinatorial
system is a composite of discrete numbers of building blocks,
i.e., muscle synergies within the brainstem and spinal cord. Each
synergy activates a fixed action pattern of muscles expressing a
sub-movement or reflexive behavior (Levine et al., 2014). During
execution of compound movement the CNS flexibly combines
these synergies, and modulates their amplitude and timing of
activation (Tresch and Jarc, 2009).

A common method for investigating the properties of
synergies, decomposes EMG signals to discrete number
synergies, using Non-negative Matrix Factorization (NMF)
(Tresch et al., 2006). Comprehensive understanding of
the control mechanisms post-stroke, may promote better
understanding of the underlying mechanisms of the
accompanied motor impairments. From a computational
perspective, this model simplifies the movement control
mechanisms in a way that places attractive challenges to uncover
its anatomical and physiological properties in order to enhance
motor performance (Muceli et al., 2010).

Brain lesions affect motor performance in various ways,
depending on the location and extent of the damaged area,
and the integrity of the corticospinal tract (CST) (Seitz and
Donnan, 2015; Puig et al., 2017). Despite a multitude of
therapeutic interventions available for post-stroke individuals,
considerable numbers of patients still sustain major motor
impairments, independent of the rehabilitation paradigm or
regime implemented.

The CST is considered to play a crucial role in regulating
the upper extremity in humans especially for hand and finger
control. While monosynaptic connections in the ventral horn
are believed to underlie dexterity skills in primates, the majority
of CST terminals are connected via interneurons (Riddle and
Baker, 2010). The reticulospinal tract (RST), on the other hand,
was previously though to control postural movements. Recent
findings, however, suggested that it also has projections to
proximal muscles, forearm muscles, and also monosynaptic
connections to intrinsic hand muscles (Davidson and Buford,
2006; Riddle et al., 2009; Riddle and Baker, 2010). While both
pathways converge on similar interneurons, other interneurons

Abbreviations: CNS, Central Nervous System; EMG, Electromyography; NMF,

Non-negativeMatrix Factorization;MVC,MaximumVoluntary Contraction; VAF,

Variance Accounted For; MSE, Mean Squares Error.

have either inputs from the CST or the RST. While the CST has
synapses at both the intermediate and the ventral zones, the RST
terminates at the intermediate zone. Accordingly, as opposed to
the common notion, it seems that the RST, has also considerable
impact on distal control.

In the context of motor control post-stroke, impaired
downstream messages transmitted by the CST might be partially
compensated by other RST neurons and rubrospinal tracts to
control motor outputs (Seitz and Donnan, 2015; Owen et al.,
2017; Puig et al., 2017). This, in turn, may shift, in some ways, the
target interneurons in the spinal cord that receive these messages
and assumingly effect the activation of muscle synergies. This
might be manifested as altered activation of preserved muscle
synergies, or as modifications in the muscle activation balances
within a synergy. Nevertheless, current data using machine
learning algorithms to extract muscle synergies from EMG data
show equivocal findings. Therefore, currently there is no good
evidence of how it is that cortical stroke affects muscle synergies
(Cheung et al., 2009; Roh et al., 2013, 2015).

Previous studies investigated the impact of cerebral stroke
on the synchronization of synergies and the muscles activation
balances within synergies, i.e., the inner structure of synergies
(Cheung et al., 2009; Roh et al., 2013, 2015). With regard
to mildly impaired patients, Cheung and colleagues observed
preservation of the structure of synergies, and therefore stated
that, apparently, the changes in the EMG muscle patterns reflect
alteration in the modulation of synergies by higher brain centers
(Cheung et al., 2012). Roh and collaborators, on the other
hand, observed alterations in the structure of synergies in mildly
impaired patients (Roh et al., 2015), stating that the reduction in
corticospinal inputs may shift the encoding site to lower levels
such as the brainstem and spinal cord (Roh et al., 2013).

In more impaired post-stroke individuals, it was suggested
that there is a change in the internal structure of synergies
(Cheung et al., 2012; García-Cossio et al., 2014; Roh et al.,
2015). Some of these studies reported that the impaired synergies
reflect mergence of the healthy synergies (Clark et al., 2010;
Cheung et al., 2012; García-Cossio et al., 2014). Garcia-Cossio
and colleagues reported that subcortical lesions had negative
impact on the number of shared synergies, between the affected
and less affected extremities (García-Cossio et al., 2014). It was
additionally suggested that fewer synergies were extracted in
chronic post-stroke patients with higher spasticity, expressing
the impaired ability to isolate the movement of limb-segments
(García-Cossio et al., 2014).

Investigating the modulation of synergies during hand
reaching in post-stroke individuals is complex, due to the
inherent motor impairments of patients. A recent study
evaluated the changes in task-specific muscle synergies post-
stroke during the execution of supported hand reaching task in
two dimensions. The study results indicated a greater similarity
of non-stroke synergies than post-stroke synergies compared to
a baseline set of synergies (Li et al., 2017). However, the task
constraints make it difficult to deduce the alteration in the control
mechanisms between healthy and post-stroke individuals, given
the paradigm in which synergies should be reflected independent
of task-constrains (Cheung et al., 2012; d’Avella and Lacquaniti,
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2013). Others have studied the direction modulation of muscle
synergies post-stroke during isometric force production inmildly
to severely impaired patients (Roh et al., 2013, 2015). Therefore,
there is scarce evidence regarding the way individuals post-
stroke modulate the activation of synergies in hand reaching for
different movement directions.

Two studies with non-stroke participants reported that
hand-reaching for different directions might be successfully
represented by scaling a small number of muscle synergies
(Muceli et al., 2010; d’Avella and Lacquaniti, 2013). Among these
two studies, Muceli et al. (2010) used cross-validation techniques
to investigate how synergies from a certain movement direction
may describe movements to other directions (Muceli et al.,
2010). The authors reported that extracting synergies from a
combination of three targets allowed good reconstruction of the
EMG, recorded from movements that were executed to other
directions. Semprini et al. (2016) applied the space-by-time NMF
algorithm to decompose wrist movements in three dimensions,
under four different force conditions (Semprini et al., 2016). The
study results indicated that the similarity between the synergies
of each of the participants were correlated with the average set
of synergies, which in turn was validated as a representative
set of synergies. The authors suggested that high to moderate
correlation coefficient values allowed the average set of synergies
to be set as a representative set of synergies.

In this study we aimed to compare the modulation properties
of muscle synergies in post-stroke individuals, compared to
non-stroke individuals during hand reaching tasks in multiple
directions. This might shed light on the impact cortical stroke
has on spinal control mechanisms, and perhaps indicate potential
inherent shifting in the efferent pathways. We hypothesize that
the EMG data of patients after a stroke might accurately be
captured by discrete numbers of muscle synergies with different
modulation properties induced by impaired muscle recruitment.

METHODS

Participants
Twelve healthy volunteers (control group) and 13 post-stroke
individuals (study group) participated in the study. The study
group participants included seven males and six females, who
were 21.77± 11.938 days post-stroke, demonstrating mild motor
impairments, as indicated by mean Fugl-Meyer scores of 50.769
± 7.037. The study was granted research ethical approval by
both the University of Haifa (ID number 273/16), and by the
Bait-Balev Rehabilitation Center Institutional Review Boards (ID
number BB0006/16). The study was performed in accordance
with the Declaration of Helsinki. All subjects signed an informed
consent form.

Equipment
The Hand-Reaching Spatial Device (Figure 1A) is an adjustable,
simple tool allowing standardization of hand pointing
movements for nine different directions between different
participants. It is composed of two vertical rods to which are
attached three semi-circular shelves. Each shelf contains three
movable pointing pins that can be adjusted left and rightward to

accommodate the variable arm length of each participant. The
lowest shelf was located 10 cm above the table; the middle was
located 35 cm above the table and highest 55 cm above the table.

For each participant the Hand-Reaching Spatial Device was
located at themaximum hand reach distance in front of the tested
shoulder. The side pins were located at a 45◦ angle to the shoulder
joint to both sides. The arrangement of the targets on the Hand-
Reaching Spatial Device was designed to cover the majority of
hand-reaching movements.

Electromyography
Surface EMGs were recorded (Trigno 8, Delsys, Boston,
MA) from eight muscles of the shoulder girdle and arm:
trapezius; deltoid anterior, medial, and posterior fibers; and
pectoralis major; infraspinatus; biceps; triceps. Electrodes were
placed in accordance with the guidelines of the Surface
Electromyography for the Non-Invasive Assessment of Muscles–
European Community Project (SENIAM) (Hermens et al., 1999).
Maximum voluntary contractions (MVCs) were performed,
while muscle activity was monitored by the EMG device.
This procedure verified correct electrode placement and
normalization. MVC tests were performed for all muscles
according to manual muscle testing techniques (Hislop et al.,
2002). Participants were asked to perform a full range of
motion involving the activation of the tested muscle against
gravity with no additional resistance to movement. If a
full active range of motion was obtained, participants were
asked to locate the extremity in a predefined posture, in
which the tester applied gradually increasing resistance until
muscle failure. In cases where participants were not able to
complete a full range of motion against gravity, the test was
repeated in an alternative posture to eliminate the effects
of gravity (Hislop et al., 2002). One-minute rest periods
followed each MVC to limit the possibility of fatigue. EMG
signals were band-pass filtered (20–450Hz), and sampled at
2000Hz.

Protocol
TheMVCwasmeasured by standardmuscle testing (Hislop et al.,
2002). Participants sat in front of a table with the forearm resting
in a comfortable position. The Hand-Reaching Spatial Device
was located as mentioned above. Participants were requested to
point to each target five times according to voice prompting that
was activated by the EMG software every 10 s, for 45 pointing
movements. One to 2min rest was allowed between reaching
to different targets. The order of pointing targets was constant
for all the participants, and explained for the participants before
the procedure. Figure 1B illustrates the order of the targets for
a person with right hand dominance. Accordingly, participants
carried out five hand-reaching movements to target 1, followed
by five hand-reaching movements to target 2, then target 3 and
so on. The order of targets for a left hand dominant person was
horizontally mirrored, but fixed in the vertical dimension such
that target 1 was on the left- down and target 9 was on the
right-up. Figure 1C details the experimental setup for a single
participant.
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FIGURE 1 | (A) The Hand-Reaching Spatial Device. Participants were asked to reach with their dominant hand (control group) or the more impaired hand (study

group) to nine different targets that were located in each participant’s maximum hand-reaching range of motion. The photographed participant signed an informed

consent form to permit publication of this photo. (B) Representation of the order and direction of the targets for a person with dominant right hand. (C) Experimental

setup. Participants were executed three maximal isometric contractions (MVC) for each muscle, with 1min rest between tests. During these tests the experimenter

confirmed correct placement of the electrodes. This was followed by five hand-reaching movements for each of the nine targets, in a fixed order. Participants were

aware of the target direction before the execution of the reaching task.

Data Analysis
EMG Preprocessing
Data analysis was performed using Matlab (The MathWorks,
Inc.). EMGs were demeaned, followed by an RMS calculation
using an overlapping window of 50 samples (25ms around each
time point). Mean baseline EMGs for each trial was subtracted
from the averaged data for the sequence of reaching movements.
Hence, the EMG data for each trial, a vector whose dimension
was 8 (the number of muscles recorded), corresponded to active
force generation beyond any residual baseline muscle activity.
The power of the EMG for each muscle was normalized in
accordance to the corresponding MVC of the same muscle.

Identification of Muscle Synergies
TheNMF algorithm originally used by Lee and Seung was applied
to identify muscle synergies and their activation weights (Lee and
Seung, 1999, 2001). An EMG pattern recorded in hand-reaching
movements was modeled as a linear combination of a set of N
muscle synergies, each of which specified the relative level of
activation across eight muscles, and activated by a time-varying
activation coefficient (Tresch et al., 2006; Roh et al., 2012):

VN×M ≈ WN×R ·HR×M (1)

Where V is the EMG data set matrix with N as the number
of muscles (8 muscles), M as the number of time samples,

W is the synergy matrix and H is the coefficient matrix. W
is N×R is a matrix with R synergies, N is the number of
muscles, and H is an R×M matrix with R synergies and M is
the number of time-samples. Thus, each column ofW represents
the weights of each muscle for a single synergy, and each
row of H represents how much the corresponding synergy
was activated or used to generate force. In this model, it is
possible for each muscle to belong to more than one synergy,
and thus the EMG of any single muscle might be attributed
to simultaneous or sequential activations of several muscle
synergies. The NMF reconstruction accuracy was measured
by evaluating the amount of data variation explained by the
model, i.e., Variance-Accounted-For (VAF) that will be further
detailed.

Defining the Optimal Number of Synergies
Two criteria were applied to determine the optimal number of
synergies: (1) mean squared errors (MSE); (Cheung et al., 2005);
and (2) the Variance Accounted For (VAF) (Cheung et al., 2005;
Roh et al., 2013). The optimal number of synergies was identified
by the number of muscle synergies at which the VAF curve
changed sharply according to theMSE value (Cheung et al., 2005;
Roh et al., 2015). The first method suggested fitting portions of
the VAF curve to a straight line using the least squares technique.
Initially all data points on the VAF curve were included, and
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then the 2nd to 7th points and so on until only the 5th and 7th
points were included. The correct number of synergies could then
be estimated, as the first point on the VAF curve at which the
linear fit of all points from that point to the 7th point produced
a small MSE. Using the second method, the optimal number
of synergies was defined as the minimum number of synergies
that achieved a mean VAF > 85%, with less than a 6% increase
in mean VAF upon addition of another synergy (Roh et al.,
2013).

The NMF algorithm requires the number of synergies
extracted to be specified before the application of the algorithm.
Therefore, for each data set, the VAF was calculated while
changing the number of synergies from 1 to 7. The VAF values
were calculated using the equation according to d’Avella et al.
(2006) as follows:

VAF (H) = 100%×

(

1−
||V −WH||22
∣

∣

∣

∣V − V
∣

∣

∣

∣

2

2

)

(2)

Where V is the original matrix, and W and H are the derived
factorized matrices. In the denominator the mean vector V of
each row in V were subtracted from each data point in each row
in V . Figure 2 illustrates the VAF and VAF variances against the
number of synergies for each group.

Defining Representative Set of Synergies of

Non-stroke Individuals
Our aim in this stage of analysis was to establish whether a
set of synergies exists that controls any reaching movement
in space. Therefore, we investigated how movement in certain
directions could account for movements in other directions. We
pooled the EMG data for each movement direction separately
across the eight muscles and concatenated it for the whole
sample. In that way the derived set of synergies would have
to account for the variances between different subjects, but
would also be specific for that direction alone. We applied the
NMF separately for each movement direction according to the
equation:

Vi ≈ Wi · hi (3)

where i is the target number, which corresponded to specific
movement direction in space. In this stage of the analysis Vi (the
EMG matrix) was given as an input for each target, i ∈ [1, 9],
and matrices Wi, and hi were updated iteratively. The study
procedure included reaching for nine different target directions
in space, allowing us to further investigate if there was a single
set of synergies that could account for movements in other
directions. This was done by using a cross-validation technique
between the Vi matrices and the Wj matrices by applying a
modified version of the NMF algorithm. This was followed by
correspondingVAF calculation changing the number of synergies
(

d
)

from only 3 to 5, and not from 1 to 7 based on the results of
the NMF for all the participants and for all targets, as detailed in
the results section. In the modified version of the algorithm, both
Vi and Wj (the synergies matrix) were given as an input. Only
the coefficients matrix was updated and outputted. For each pair

of a target matrix and synergies matrix (Vi and Wj), a distinct
coefficient matrix was generated, which we will refer to as Hij.
The dimensions of hi in Equation (3) were calculated according
to Equation (1), with R rows as the number of synergies and
M columns as the number of samples in Vi. The dimensions of
hij, on the other hand were R rows (as in hi), but with different
number of columns (M) as the number of samples in the V
matrices were different for different target directions. The cross-
validation process of the modified NMF was carried out for each
combination of a data matrixVi (of target i) and a synergy matrix
Wj (of target j ), resulting in 9 × 9 matrices Hij including Vi

and Wi, (i.e., overall, 81 distinct Hij matrices resulted from the
cross-validation process). EachHij was R×M dimension matrix,
in which R was fixed according to the number of synergies, but
with different number of samples M. For every i, j ∈ [1, 9], we
factorize Vi such that WjHji ≈ Vi. The representative set of
muscle synergies was chosen by calculating the VAF for each of
the 9× 9 factorizations:

VAF
(

Hij

)

= 100%×

(

1−

∣

∣

∣

∣Vi −WjHij

∣

∣

∣

∣

2

2
∣

∣

∣

∣Vi − Vi

∣

∣

∣

∣

2

2

)

(4)

FIGURE 2 | The optimal number of synergies was determined according to

two criterions: the VAF (A) and MSE (B). Four synergies could explain >85%

of the data variances with MSE value <0.02 in both groups, to be set as the

optimal number of synergies.
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assuming that consistent high values of VAF(Hij) for a specific
Vi may indicate that the synergies obtained from movements
in this direction may accurately explain movement in other
directions. Thus, for each predefined number of synergies we
received a 9× 9matrix (Figure 3) in which each cell represented
the accountability of a given synergy (row) to a specified direction
(column). Each row in the resulting matrix represented the
overall “performance” of the appropriate set of synergies, and
so the row with the highest average VAF was chosen to be the
representative set of synergies for the next stages of analysis.

Comparing between Synergies of Different Humans

and between Different Groups
This stage of analysis was carried out based on the studies
by Cheung et al. (2005) and Roh et al. (2012). Two statistical
methods were applied to evaluate the similarity between group
synergies. In both methods, synergies of each participant were
extracted from the pooled EMG data from all target directions.
In the first method, the similarity and the percentile of similarity
between the synergies of each participant and the representative
set of synergies was computed, and averaged for each group
(Figure 4 on the right side of the plot). Using the same technique
in the second method, each synergy from each participant from
the control group was compared to the synergies of all the
participants from the study group (Figure 5 on the right side of
the plot).

In both methods the percentile of similarity and the similarity
between synergies were calculated as follows (Datasheet 1,
Supplementary Material): Each of the tested synergies was
matched with the corresponding set of synergies, and accordingly
ordered to provide the lowest Euclidian distance. Since eight
muscles were monitored, each synergy could be randomly
ordered in 8! = 40320 possibilities. To evaluate the chance level
of similarity, we first generated 1,000 random synergies for each
synergy within each set of four synergies to be compared. Each
of the 1,000 random sets of synergies consisted of the muscle
weights from the evaluated synergy, but randomly shuffled in
order.

We then calculated the similarity between all possible pairs of
random synergies from the two tested synergies (1,000 × 1,000
= 106 pairs in total), and compared it to the similarity between
the non-shuffled sets of synergies. Each two sets of synergies were
indicated to be similar if their mean similarity index rose above
the 90th percentile of the distribution of the random similarity
indices. Comparisons between groups, in the first method, were
applied by an independent t-test, using the mean percentile of
similarity index and the mean similarity values between groups.

The similarity index was calculated based Euclidian distance
between each corresponding synergies and divided by two to be
normalized to one as follows:

Similarity Index(rep,W) =

∑8
i=1

∣

∣

∣
W

rep
i −Wind

i

∣

∣

∣

2
(5)

WhereR ∈ [1, 8] was themuscle number, and ind ∈ [1, 12] in the
control group or ind ∈ [1, 13] in the stroke groupwas the number
of participant, rep stands for representative synergies. Each Wi

matrix was i × Rmatrix, with R synergies. Since the sum of each
column in matrix W is one, so the maximal score for similarity
between each two matrices was one.

Comparing between Groups Synergies by Cluster

Analysis
Hierarchical cluster analysis was applied for each group
separately. For each participant, synergies were extracted from
the pooled EMG data set, and therefore account for all movement
directions. Each of the four synergies of each participant, were
ordered in a 1×8 vector. The synergies of the whole groups were
ordered in a 48 × 8 matrix in the control group or a 52×8 in
the study group. The optimal number of clusters was determined
as the minimum number of clusters allowing portioning the
data such that there was not more than one synergy in each
cluster from a given subject (Cheung et al., 2005; d’Avella et al.,
2006; Roh et al., 2015). Intuitively, it means that synergies of
a single participant differs in their muscle composition, and on
the other hand, corresponding synergies of different participants
are similar in their muscle composition, and therefore could be
classified to be in the same cluster.

The similarity between each pair of clusters from both groups
was calculated using Equation (5), and illustrated in Figure 6C.
Each cluster from the control group was paired with the single
closest cluster from the study group, according to the highest
similarity between clusters. If two clusters from the control
group, matched with the same cluster from the study group, than
the pair with the lower similarity value was set as a pair. This
process was repeated until all healthy participant clusters were
paired with a single cluster from the study group. The results of
the cluster analysis including the similarity values between pairs
of clusters are plotted in Figure 6. Since each participant has
four synergies, under the portioning condition, if four clusters
had optimally represented the data that would suggest that all
participants shared common synergies. Correspondingly, many
clusters for a given group of participants means that participants
have different synergies.

Methods for Validating the Representative Set of

Muscle Synergies
In order to validate the choice of the representative set of
synergies, two additional statistical methods were applied:
(1) the Similarity Index and (2) K-means Cluster Analysis.
The Similarity Index was calculated for each participant,
between the representative set of muscle synergies and synergies
that were extracted from all other movement directions.
The similarity values and their similarity percentiles were
averaged for each group separately, and plotted in Figure 7

using Equation (5). A weighted correlation matrix (Figure 7B)
was calculated using all pairs of target direction similarities.
The correlation matrices were averaged for each group
separately.

Discrimination between Different Movement

Directions Based on the Properties of Synergies
The K-means algorithm was applied to study whether the full
activation coefficient (H matrices) properties of synergies may
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FIGURE 3 | Cross-validation matrix. Each Vi matrix was decomposed by eachWj matrix. Each cell in the cross-validation matrix represents the corresponding VAF for

each calculation. The representative set of muscle synergies was determined according to the highest mean VAF across the rows of the matrix. The values on the right

of the matrix are the means and SD’s of each corresponding row. In order to validate this decision two additional indices were computed.

discriminate between different movement directions. The data
used for the K-means were the H coefficient matrices of the
cross validation procedure. In both groups, each V matrix for
each direction separately was decomposed by a standard NMF.
Then the cross-validation procedure was carried out between
each original Vi matrix and the Wj matrices that were extracted
from all other directions. For each group the cross validation
procedure yielded 81 full coefficient matrices (H). A constant set
of 11 features, were extracted from each matrix of each synergy.
Each of the H matrices features of each synergy was represented
as a data point (a single row), which was composed of 44 features
(11 features× 4 synergies). The selected features included six data
points equally scattered on the H coefficient matrix, time to first
peak and its amplitude, time to second peak and its amplitude
and the total area under the curve. Peaks were defined using
the “MinPeakWidth” function of 500 data points in MATLAB.
If either the first or second peaks did not exist, the algorithm
substituted the missing data by the mean amplitude and middle
time point of the matrix.

The K-means algorithm was iterated 10 times using random
centroids and by changing the number of clusters/centroids
(K) from four to nine. The accuracy of classification was
computed using the purity index for each running of the

algorithm for each K. The purity was defined as the total
number of data points that were classified correctly divided
by the total number of data points, and multiplied by 100.
The correct classification of a cluster was determined according
to the most frequent index value in a row of the K-means
analysis matrix (Figure 8A). The average accuracy for each
K was computed and plotted for each group separately
(Figure 8C).

Direction Modulation of Activation of Synergies in the

Time Domain
The functional role of each of the extracted synergies was
investigated by plotting the full activation coefficientmatrices (H)
(Figure 9). EMG data matrices of each participant and for each
movement direction were decomposed by the representative set
of synergies. Accordingly, these temporal activation properties
helped to distinguish between different movement- directions.
The extracted features that were used to apply the K-means were
also used to calculate the correlation matrices (Figure 9 on the
right). In each group, nine full activation coefficient matrices
(H) were factorized by the modified NMF, using Vi, i ∈ [1, 9]
andW5.
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FIGURE 4 | The representative synergy matrix W5. Each synergy is composed of fixed pattern of muscle activity. The height of the bars refers to the amplitude of

activation of a single muscle relative to the other muscles. Since all the muscles that were monitored by the EMG device, composed entire synergy, the amplitude of

each synergy sums to one. The similarity between the synergies of each of the participants from both groups and the representative set of synergies was calculated

and averaged, and written on the right side of the plot. The similarity index receives values from zero (high similarity) to one (completely different matrices). Determining

the identity of synergies to the representative set of synergies, based on the percentile of similarity between the tested synergies among 106 combinations of these

synergies, randomly ordered. High percentile values suggest that the tested synergies are similar relative to the same synergies, randomly ordered.

Statistical Analyses
A comparison of the number of synergies between groups as
detailed in subsection The Optimal Number of Synergies in
Non-stroke and Post-stroke Individuals was carried out using
the MANOVA procedure. Between-groups comparisons of the
distance of individual synergies from the representative set of
synergies (subsection Comparing between Synergies of Different
Humans and between Different Groups) were performed using
an independent-sample t-test. A comparison of the differences
between similarity values for different movement directions was
carried out for each group separately using a paired-sample t-test.
A comparison between the similarity values for each movement
direction between groups was applied by independent-sample t-
test. Both procedures are detailed in subsection Validation for
the Existence of a Representative Set of Synergies. Correlations
of the weighted correlation matrices in subsection Validation for
the Existence of a Representative Set of Synergies and Direction
Modulation of Activation of Synergies in the Time Domain
were Calculated Using the Pearson’s Correlation Coefficients.
The level of significance was set to <0.05 in all statistical
tests.

RESULTS

The Optimal Number of Synergies in
Non-stroke and Post-stroke Individuals
In the first stage of analysis we aimed to compare the number of

synergies which are required to reconstruct the EMG data in both
groups, before determining the optimal number of synergies, and

further analyzing the properties of these synergies. MANOVA
revealed that there were no statistically significant differences

in the VAF values between groups, F(7, 17) = 1.463, p < 0.1;

Wilk’s 3 = 0.624, partial η
2 = 0.376. The quality of the NMF

to reconstruct the EMG data was evaluated by two measures:
MSE and VAF. Figure 2 illustrates the changes in the VAF and
MSE values as a function of the number of synergies. Calculating
the MSE for the non-stroke and post-stroke groups for three
synergies (Figure 2B), yielded MSE values of 0.0409 and 0.108,
respectively. Four synergies yielded MSE values of 0.007 and
0.016, and five synergies MSE of 4.7−4 and 5.8−4. The observed
MSE values were significantly higher than the values reported
by others (Cheung et al., 2005; Roh et al., 2015), suggesting a
decreased similarity of the VAF curve to a straight line.
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FIGURE 5 | Mean synergies of groups, their similarity index and mean percentile of similarity. The mean percentile of similarity was calculated compared to 106 pairs

of randomly ordered synergies. The similarity and percentile of similarity were calculated between each participant from the control group and each participant from

the study group.

FIGURE 6 | Cluster analysis. (A,B): Seventeen and seven clusters optimally represent the synergies of the study and control group, respectively. Large number of

clusters post-stroke suggests that individuals recruit different synergies, whereas decreased number of clusters in the control group, suggest that different individuals

uses similar synergies. (C) The optimal similarities of seven clusters between groups and percentile of similarity among random synergies were computed. Six out of

seven clusters were similar between groups. (D) The number synergies (y axis) that were classified to each cluster in both groups.

The application of NMF and a corresponding VAF were
conducted separately for each participant. Figure 2 illustrates
the two criteria, which were applied to determine the optimal

number of synergies: the mean VAF and the MSE. In both the
non-stroke and the post-stroke groups, three synergies accounted
for 0.856 ± 0.0286 and 0.788 ± 0.075 of the data variances,

Frontiers in Computational Neuroscience | www.frontiersin.org 9 February 2018 | Volume 12 | Article 10

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Israely et al. Muscle Synergies Post-stroke

FIGURE 7 | The mean similarity between the representative set of synergies and synergies from all other movement directions, and the level of significance for both

groups. For each participant from both groups, synergies were extracted for each movement direction separately. Therefore, each participant represented by nine

synergy matrices. The distances between each of the nine synergy matrices and the representative set of synergies were computed and averaged for each group.

Each cell in the matrices in (A) correspond to a target as indicated in Figure 1B. A paired sample t-test was applied to test the differences between the similarity values

of each combination of the nine target directions, for group separately (B). The mean similarity values in (A) were aligned according to Figure 1B. The similarity index,

as indicated in Equation (5) takes values from zero to one, in which zero in complete identity between matrices and one is completely different matrices. Therefore,

higher similarity values are indicated by lower values and darker colors, whereas lower similarity values are indicated by higher values and brighter colors. The p-values

matrices in (B) indicate consistent significant differences between different movement directions in the study group (consistent dark colors) compared to variable

similarity levels between different movement directions in the control group, which is indicated by different brightness of cell between different movement directions.

with respective MSE of 0.04 and 0.108. Four synergies accounted
for 0.917 ± 0.034 and 0.883 ± 0.046 of the data variances,
with respective MSE of 0.007 and 0.016. Based on Roh’s and
colleagues method, the optimal number of synergies was defined
as the minimum number of synergies that achieved a mean
VAF > 85%, with less than a 6% increase in mean VAF upon
addition of another synergy (Roh et al., 2013). Four synergies
was the minimum number of synergies that met our criteria, and
therefore chosen to be utilized for further analyses.

Defining the Representative Set of Muscle
Synergies
A previous study has indicated that a representative set of
synergies might be modulated to represent different movement
direction in space by applying a cross-validation technique
(Israely et al., 2017). Here, the same cross-validation method
was applied, using a modified version of the NMF algorithm,
while presetting the optimal number of synergies to four. This

procedure yielded the 9X9 cross validation matrix (Figure 3).
The representative set of synergies was determined to be the
Wj synergy matrix that produces the highest mean VAF values,
among all j ∈ [1, 9]. Figure 3 demonstrates that the fifth row
received the highest mean VAF value of 91.977 ± 1.824 while all
the other rows received non-significantly lowermeanVAF values.
Based on these resultsW5 was chosen to be the representative set
of synergies.

The Representative Set of Synergies
Determining the representative set of synergies allowed a
simple implementation of comparing synergies between groups.
Additionally, a previous report has found that this set of
synergies, might be generalized to construct the EMG data from
different movement directions (Israely et al., 2017). Figure 4
illustrates the representative set of synergies. The percentile
and similarity values on the right side of the plot refer
to the mean similarity between individual synergies and the
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FIGURE 8 | The K-means algorithm. The K-means algorithm was applied for validating the application of a representative set synergies, using the full activation

coefficients (H matrices). For each group the cross validation procedure yielded 81 full coefficient matrices (H). A constant set of features (see also method section)

was extracted from each matrix. Each of the H matrices features was calculated as a data point (a single row), which composed of 44 features

(11 features× 4 synergies). The K-means algorithm was iterated 10 times, changing the number of clusters/ centroids (K) from four to nine. The clustering indices

were ordered to be aligned with the cross validation matrix (Figure 3) as illustrated in (A). Each row was assigned to a cluster index value given by the MATLAB

algorithm, according to the most common index in a row. The assigned indices are shown in the legend bar (A). The accuracy of classification was computed using

the purity index (see also method section) for each running of the algorithm with each K’s. In (A) for example the purity was calculated as follow:

((8+ 9+ 9+ 9+ 6+ 8+ 9+ 7+ 9)/81)*100, which resulted in 91.358% accuracy. (B) Illustrates the location of the indices ordered according to the target directions

as in Figure 1B. (C) The average accuracy from the 10 iterations for each K was computed and plotted, for each group separately.

representative set of synergies. The similarity values indicate
that three muscles mainly activated synergies two and four.
Synergy two was activated by the anterior deltoid, medial deltoid,
and the infraspinatus, and synergy four by the anterior deltoid,
medial deltoid and the triceps. Synergies one and three, on
the other hand were mainly activated by two muscles. Synergy
one was activated by the trapezius and biceps, and synergy
three by the anterior deltoid and the pectoralis. The anterior
deltoid muscle was significantly activated in three synergies. The
posterior deltoid was almost not activated as indicated by the
representative set of synergies of the healthy participants. The
representative set of synergies W5 (Figure 4) was further used
to decompose the EMG datasets of each participant from both
groups.

Comparing between Synergies of Different
Humans and between Different Groups
In method 1, the similarity between the synergies of each
participant from both groups and the representative set of

synergies was computed by calculating the Euclidian distance
between each of the synergies according to Equation (5). An
independent sample t-test revealed no significant differences
between groups. The synergies of study group and the
control group participants were similar to the synergies of the
representative, with mean similarity percentile of 87.606(7.627)
and 91.524(6.943) correspondingly. The mean similarity values
were 0.357(0.078) and 0.305(0.088) for the study and the control
group correspondingly. According our criteria for similarity,
three participants out of 12 from the control group and four out
of 13 from the study group demonstrated different synergies from
the representative set of synergies.

The representative set of synergies were extracted from the
NMF that was applied to target 5, as the cross-validation between
W5 and Vi yielded the highest mean VAF compared to Wj that
were extracted from other movement directions. Therefore, the
representative set of synergies represents the synergies that were
extracted from movements to the center of the hand reaching
space. Individual synergies, on the other hand extracted from
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FIGURE 9 | (A) The full activation coefficients matrix (H) for each movement direction, of participant 11 from the control group (A, Left) and the correlation matrix of

the activation coefficient matrices on the right. (B) The full activation coefficients matrix (H) for each movement direction, of participant 11 from the study group (B,

Left) and the correlation matrix of the activation coefficient matrices on the right. The four synergies demonstrated different time- patterns of activation for each of the

targets. Synergies were differently regulated by the time-coefficients for different targets. In each subplot on the left side (A,B) the x-axis refer to time and the y-axis to

the activation coefficient value. Therefore, the values of the y-axis were not normalized. The correlation matrices illustrate high correlations in the control group

between all pairs of movement directions, in contrast to the study group that illustrate high correlation values between targets at the same height (4, 5, 6 and 7, 8, 9),

but not between different heights (5 vs. 7, 8, and 9).

the pooled EMG data of each participant, including all the nine
movement directions. We assume that this non-compatibility
influenced the mean percentile of similarity to be dropped below
90 percent in one synergy in the control group and in two
synergies in the study group (Figure 4).

Another way of comparing the synergies between groups
is by directly analyzing the mean synergies of both groups
and then calculating the similarity between them. The bar
charts in Figure 5 illustrates the mean synergies of both groups.
The mean similarity and percentile of similarity between each
pair of corresponding synergies of each pair of participants
between groups are illustrated on the right side of the plots.
Figure 5 indicates that synergy two and synergy four were not
matched between groups according to our similarity criteria.
The differences between the muscle compositions of synergies,
however, were not significant between groups. Integrating
the results illustrated in Figures 4, 5, there is presumably
inconsistency in how synergy 2 in both groups had identical low

similarity values compared to the representative set of synergies
(Figure 4), but group synergies were also distant from each other
(Figure 5). A possible explanation for this finding is that synergy
2 from a representative set of synergies expressed the average
between synergies 2 of the groups, such that the distance of each
group synergies to the representative set was equal in opposite
directions.

Cluster Analysis
The third method for comparing between group synergies
employed hierarchical cluster analysis. Cluster analysis offers
a different perspective for comparing mutual synergies i.e., a
cluster, between groups, rather than comparingmean synergies as
applied in subsection Comparing between Synergies of Different
Humans and between Different Groups. Seven and 17 clusters
in the control and the study groups were the lowest number
of clusters partitioning the data according to our criteria. The
highest similarity between clusters from both groups were
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computed and illustrated in Figure 6C. Six out of seven of these
synergies were similar between groups. The validity of these
similarity values should be carefully considered especially for
cluster 6, which was found in only one participant in both groups.
Other clusters within the seven clusters that were compared were
found in at least four participants in at least one group.

Nine clusters in the study group were presented in only
one participant (Figure 6D), in contrast to the control group
in which a single cluster belonged to one participant. These
nine participants’ individual clusters were derived from eight
participants in the study group, which makes it difficult to
distinguish which properties of stroke (i.e., type, location, or
extent) might be associated with emergence of “singular clusters.”

The similarity between clusters (Figure 6) and synergies
(Figure 5) were also calculated for both groups. In the control
group synergy 1 was similar to cluster 5 (similarity of 0.054,
percentile of 99.996), synergy 2 was similar to cluster 4 (similarity
of 0.289, percentile of 99.096), synergy 3 was identical to
cluster 7, and synergy 4 was similar to cluster 1 (similarity
of 0.046, percentile of 99.991). In the study group, synergy
1 was similar to cluster 5 (similarity of 0.0525, percentile
of 99.956), synergy 2 was similar to cluster 6 (similarity
0.462, percentile of 97.492), synergy 3 was similar to cluster
8 (similarity 0.081, percentile of 99.99), and synergy 4 was
similar to cluster 1 (similarity of 0.195, percentile of 98.981).
The validity of these similarities, however, should be considered
with cautious, especially for clusters that were presented in only
few participants, such as clusters 1, 5, 6, and 8 in the study
group.

Validation for the Existence of a
Representative Set of Synergies
Besides comparing the synergies between groups that account
for different movement directions, we also aimed to investigate
how the two groups regulate the activation of synergies for
different movement directions. Two statistical methods were
applied to validate the existence of representative set of synergies:
the similarity index and the K-means algorithm. According to
the assumption, there exist a representative set of synergies that
are activated by different time coefficients during the execution
of reaching movements to different directions. The cross
validation matrix (Figure 3) confirms that synergies that were
extracted from different movement directions can accurately
reconstruct EMG’s from other movement directions. Specifically,
W5 received the highest mean VAF values of 91.977 ± 1.824
among the otherW matrices from other targets.

The similarity index was measured for each participant
independently, to compute the Euclidian distance between each
set of synergies from different directions and the representative
set of synergies. Figure 7A illustrates the mean similarity for each
group for different movement directions. Figure 7B illustrates
the p-values of paired t-test aimed to analyze the similarity
differences between the different targets within groups. For
example, it might be asked whether the distance of target 9 to
the representative set of synergies is different from the distance
of the 1st target from the representative set of synergies. Darker

colors indicate significant p-values while bright colors indicate
non- significant values.

When accounting for the geometric properties of the targets
relative to the 5th target at the center of the reaching space,
targets 1, 3, 7, and 9 should have the same distance from the
representative set, and targets 4, 6, 2, and 8 should have the same
distance from the representative set. Therefore, non-significant
p-values would be expected (i.e., all 7B matrices should be in
bright colors). This might explain why target 5’s distance from the
representative set of synergies was significantly different than the
distance of other targets from the representative set of synergies
(in both groups).

Figure 7B indicates that the similarities between synergies
that were extracted from different movement directions to the
representative set of synergies, were different between groups,
especially for target 6-9. In the study group, all comparisons
between targets were significant. This might imply that post-
stroke individuals explore the use of different activation patterns
for each different movement direction, specifically to targets that
are located in the higher portion of the reaching space. In the
control group, on the other hand, participants modulated the
activation of the representative synergy in the same manner
for different movement direction. Figure 9 illustrates this idea
clearly in the control group’s participant (9A), and less in the
study group’s participant (9B) where the activation-coefficients
of the four synergies of the representative set of synergies were
gradually modified for different directions.

An independent t-test was applied to compare the similarity
values between groups for each of the movement directions,
revealed significant differences between groups for targets 1, 2,
4, and 7 (p< 0.05). All comparisons of between-groups synergies
revealed greater similarity (lower similarity values) in the control
group than in the study group. This suggests that the synergies
that were extracted from different movement directions of the
control group were closer to the representative set of synergies
than the synergies of the study group.

Discrimination between Different
Movement Directions Based on the
Activation Coefficient Properties of
Synergies
Using an unsupervised learning approach, the K-means
algorithm was applied to cluster the data, based on the activation
of synergies. Accordingly, this allowed us to investigate whether
the different movement directions can be discriminated based
on the activations of four synergies. If it could, it may reinforce
the assumption that a representative set of muscle synergies are
modulated to control movement for different directions.

Figure 8A demonstrates the resulting indices received by the
algorithm for 6 clusters, ordered according to cross-validation
matrix in Figure 3. Each row in 8A was ordered in Figure 8B

according to the location of the target in space as illustrated
in Figure 1B. The mean accuracy of clustering is illustrated in
Figure 8C, showing decreased purity values as the number of
clusters increased. The mean purity scores were 78.395(7.321)%
and 79.382(6.269) in the study and control group, respectively,
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using nine clusters, 88.024(3.728)% and 86.419(5.672)% for
six clusters and 91.851(4.552)% and 91.728(2.732)% for four
clusters. High purity scores, with non-significant differences
between groups, reinforce the usage of representative set of
synergies yielded form the cross validation procedure to express
hand-reaching movement for different directions. This especially
applied when partitioning the data into four to six clusters.
Partitioning the data into higher number of clusters may results
in higher incidence of discrimination errors. Figure 8 illustrates
an example of six clusters from a single iteration of the K-
means of the study group. As Figure 8 illustrates, different
movement directions can be accurately discriminated by the
K-means algorithm.

Direction Modulation of Activation of
Synergies in the Time Domain
Another important property for comparing between groups is
the time-domain activation of synergies. EMG datasets of each
participant from both groups and for each movement direction
were decomposed by the representative set of synergies. This
was followed by plotting the full activation coefficient matrices
to further investigate the activation properties of synergies in
the time domain. We additionally calculated the correlations
between the chosen features of the full activation coefficient
matrices (H) that were factorized by the modified NMF, using
Vi , i ∈ [1, 9] and W5. Visual inspection of Figure 9A (left)
implies there exists high similarities between the activation
coefficients of synergies in the time domain between different
directions. The correlation matrix on the right side of A confirms
this assumption by indicating high correlation values between
all pairs of targets. Although subjectively there exists a gradual
regulation of the activation coefficient in Figure 9B in the left, the
correlation matrix on the right indicates that high correlations
exists mainly between targets at the same heights, but less
between targets that are in different heights.

DISCUSSION

Four muscle synergies optimally accounted for variances in
the EMG data, which were collected during hand reaching
tasks for multiple directions, both in control and in post-stroke
individuals. Previous studies also reported that the optimal
number of synergies post-stroke were between three and six
(Cheung et al., 2012; García-Cossio et al., 2014; Roh et al.,
2015; Li et al., 2017). Although it was argued that the number
of synergies depends on which and the number of muscles
that are monitored (Steele et al., 2013), these studies reported
consistent numbers of synergies, independent of the number of
muscles that were monitored. Previous studies suggested that
increased motor impairments were correlated with a decreased
number of synergies, due to merging of healthy synergies (Clark
et al., 2010; Cheung et al., 2012; García-Cossio et al., 2014).
The findings, however, were noticeable especially in moderate to
severely impaired post-stroke individuals (Cheung et al., 2012;
Roh et al., 2015) in their chronic stage (Clark et al., 2010; Cheung
et al., 2012; Roh et al., 2015). In mildly impaired post-stroke

individuals, on the hand, no reduction in the number of synergies
was observed compared to healthy individuals (Roh et al., 2012,
2015) or to the less affected hand (Cheung et al., 2012).

Comparisons between synergies of different participants,
or between healthy and post-stroke individuals, rely on two
assumptions: (A) the synergy control mechanism is valid post-
stroke; (B) synergies might be classified as similar or different
according to statistical analysis method that discussed earlier.
We accordingly applied these comparisons using two different
procedures: First, comparing between group synergies, which
account for different movement directions. This was applied
by three methods: (1) direct comparisons between synergies
from groups; (2) indirectly, by calculating the similarity of
participants’ synergies to the representative set of synergies, and
comparing these distances between groups, and (3) hierarchical
cluster analysis. Second, comparing the direction modulation of
synergies between groups. This was applied by two methods: (1)
the similarity index; (2) the K-means algorithm.

Between-group comparisons for synergies, accounting for
different movement directions, revealed significant differences.
First, the similarity values, between synergy 2 and the
representative set of synergies, in both groups, were high with
low percentiles values (Figure 4). These findings were also
reflected in the second similarity method, which was indicated
that the second and the fourth synergies were differed between
groups (Figure 5). Hierarchical cluster analysis was further
demonstrated successful portioning the data to seven clusters in
the control group, in contrast to poor portioning of the data in
the study group. These findings may reflect increased variability
in the modulation properties of synergies between post-stroke
individuals. The locations of stroke in study group participants
were varied among different cortical areas such as the motor
cortex in the frontal or parietal lobes, internal capsule, basal
ganglia, or thalamus. These findings emphasize the complexity in
grouping post-stroke patients as a single group. Accordingly, it is
suggested to analyze the synergies in more homogenous group,
in terms of the location of the stroke, or to analyze patients’
synergies individually.

Other studies found similar synergies post-stroke in mildly
impaired individuals, but changes in the structure of synergies in
more impaired individuals (Cheung et al., 2012; Roh et al., 2015).
Two studies reported that seven clusters partitioned the data,
both in healthy and post-stroke individuals (Cheung et al., 2009;
Roh et al., 2015). In this study, even though the study group
participants sustained mild to moderate motor impairments,
the reaching tasks were extremely challenging for most of them.
Other studies adjusted the level of exertion necessary to complete
the task by post-stroke participants, by reducing the resistance
on the hand (Roh et al., 2015), or by adding arm support (Li et al.,
2017). Others did not change the tasks between groups (Cheung
et al., 2009, 2012). We assume that difficulties in task execution
led patients to recruit synergistic muscles, which probably would
not have been recruited in less demanding tasks, or if any
antigravity support would be have given. Additionally, previous
report suggested that isometric contractions did not produce
abnormal coupling, indicated by EMG signals, in contrast to
dynamic movements (Roh et al., 2012). Accordingly, it might
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be considered that alteration in the structure of synergies, may
reflect the recruitment of additional synergistic muscles, as a
compensatory mechanism, which are necessary to complete that
task, and not an inherent property of the patient’s impairment
status.

The modulation of synergies for different movement
directions was based on validating the existence of a
representative set of synergies. A cross validation procedure
between different movement directions was applied to
characterize a representative set of synergies, as previously
reported (Israely et al., 2017). We further used two statistical
methods: the similarity index and the K-means algorithm.
These measures were calculated both for validating the
representative set of synergies, and also to compare the
modulation properties of synergies for different movement
directions between groups. The p-values in Figure 7B indicate
the differences in the distance to the representative set of
synergies between different targets. We assume these differences
between groups might indicate the deficits in modulating
the activation of synergies to different movement directions
post-stroke. Figure 9 illustrates this idea clearly in the control
group participant (9A), and less in the study group participant
(9B) where the activation-coefficients of the four synergies of the
representative set of synergies are gradually modified for different
directions.

The K-means algorithm revealed equally good classification
properties of synergies that were extracted in the cross-validation
procedure in both groups, implying that from this point of
view, but not as indicated by the cluster analysis, building
a representative set of synergies is valid also in post-stroke
individuals. It also illustrates that the K-means algorithm may
accurately discriminates between movement directions using
discrete number of features from the full coefficient matrices
post-stroke.

The results of the two indices for modulating synergies
between different directions emphasize the difference between
synergy analyses and analyses of muscle activation patterns
or clinical assessment of movement patterns post-stroke.
Post-stroke individuals exhibited stereotyped movement
patterns, and decreased capacity to isolate movements of upper
extremity segments from each other (Israely and Carmeli,
2016). Respectively, it would be expected to receive higher
similarities and higher correlations between synergies from
different directions, and decreased ability to classify synergies
based on the movement directions. Surprisingly, however, these
two measures consistently indicated the opposite. In terms
of movement control post-stroke, it might be speculated that
in some instances at the spinal level, similar mechanisms are
activated to modulate the muscle activity for different directions.
Possibly the clinical manifestations of stereotyped pathologic
movement patterns, often exhibited post-stroke, are less reflected
by the modulation of synergies for different movement direction,
but more in the synergy analyses that accounts for the movement
directions (As illustrated in Figures 4, 5). Previous studies
investigated the modulation of synergies for different direction
of isometric force production. Synergy analyzes aimed to
discriminate between different movement- directions revealed
that both in healthy and in post-stroke individuals synergies

were differentially modulated in a task-dependent manner to
meet the requirements of the task (Roh et al., 2012). No direct
comparisons of modulation properties between groups were
reported.

This study is unique in terms of investigating the modulation
properties of synergies for different hand reaching directions
post-stroke. Post-stroke individuals modulate the activation of
synergies differently than healthy individuals, however within
patients, a representative set of synergies might be generalized
to construct EMG data from different movement directions.
Discrete numbers of features, within the full activation coefficient
matrices were successfully discriminated between different
movement directions in both groups. Several issues should be
considered regarding the results of this study. First, the study
results may not be generalized for post-stroke individuals with
moderate to severe motor impairments. Second, a small number
of participants in the study group with large variability in terms
of location of stroke, made it difficult to deduce the impact of
damage to specific brain area on the modulation properties of
synergies. Considering this issue we decided not to construct a
representative set of synergies for the study group, but compare
synergies of post-stroke individuals to a “healthy” representative
set of synergies.

Using muscle synergies to enhance motor performances post
lesion to the CNS was previously suggested to be implemented
in several ways. Synergies were suggested to be useful for
individually tailored rehabilitation protocols (Cheung et al.,
2012; Roh et al., 2012). In terms of computational complexity,
modulating discrete number of synergies might be easier than
controlling large number of degrees of freedom inherent within
the nervous system. Accordingly, it was suggested to develop
synergy-based biofeedback devices (Safavynia et al., 2011; Roh
et al., 2015). Another possibility is to record “healthy” synergies
and utilize it to activate damaged extremity of the same person,
or to activate prosthetic devices (Roh et al., 2012).

CONCLUSIONS

Two methods for extracting muscle synergies, during hand-
reaching tasks for multiple directions, revealed that post-stroke
individuals, with mild impairments, differently modulate
synergies than healthy individuals. This was demonstrated both
when the synergy analysis either accounted or did not account
for different movement direction. In contrast to stereotyped
movement patterns and decreased ability to dissociate segmental
movement post-stroke, two indices unequivocally revealed
that post-stroke individual modulate synergies for different
movement directions. This demonstrates the differences
between analyzing the muscle activation pattern and clinical
manifestations of motor impairments and synergy analysis
derived by an underlying central control mechanism.
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