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Asynchrony among synaptic inputsmay prevent a neuron from responding to behaviorally

relevant sensory stimuli. For example, “octopus cells” are monaural neurons in the

auditory brainstem of mammals that receive input from auditory nerve fibers (ANFs)

representing a broad band of sound frequencies. Octopus cells are known to respond

with finely timed action potentials at the onset of sounds despite the fact that due to the

traveling wave delay in the cochlea, synaptic input from the auditory nerve is temporally

diffuse. This paper provides a proof of principle that the octopus cells’ dendritic delay

may provide compensation for this input asynchrony, and that synaptic weights may be

adjusted by a spike-timing dependent plasticity (STDP) learning rule. This paper used a

leaky integrate and fire model of an octopus cell modified to include a “rate threshold,”

a property that is known to create the appropriate onset response in octopus cells.

Repeated audio click stimuli were passed to a realistic auditory nerve model which

provided the synaptic input to the octopus cell model. A genetic algorithm was used

to find the parameters of the STDP learning rule that reproduced the microscopically

observed synaptic connectivity. With these selected parameter values it was shown that

the STDP learning rule was capable of adjusting the values of a large number of input

synaptic weights, creating a configuration that compensated the traveling wave delay of

the cochlea.

Keywords: octopus cells, spike-timing dependent plasticity, dendritic delay, auditory brainstem, cochlear nucleus

INTRODUCTION

A singular sensory event such as a flash of light, the sound of a clap, or the onset of a glottal pulse in
speech may create a neural response that is temporally diffuse. In the auditory domain this happens
as a result of the traveling wave delay in the cochlea for example (Greenberg et al., 1997; Elberling
et al., 2007; Ruggero and Temchin, 2007). This is an artifact of the frequency decomposition process
and introduces a differential delay across auditory nerve fibers (ANFs) of different characteristic
frequencies (CFs).
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Octopus cells are located in the posteroventral cochlear
nucleus (Harrison and Irving, 1966; Osen, 1969) and receive
excitatory input from a relatively large number of ANFs (>60)
with a broad range of CFs (Oertel et al., 2000). It has been
demonstrated that octopus cells are equipped to detect and
respond to coincident synaptic input (Golding et al., 1995). The
combination of input asynchrony combined with their intrinsic
capacity for coincidence detection appears to be paradoxical.
However this incongruity is resolved if octopus cells utilize
their dendritic delay to compensate for the artificial asynchrony
across ANFs (McGinley et al., 2012; Spencer et al., 2012). This
hypothesized configuration would require very accurately located
synapses so that the post-synaptic potential’s (PSP) propagation
delay along the dendritic tree matches the differential delay
between ANFs of differing CF. It has been noted (Golding and
Oertel, 2012) that the mechanism of development and regulation
of such a finely balanced synaptic configuration is yet to be
understood.

The topic of this investigation, a Hebbian rule (Hebb, 1949)
with a small number of assumed parameters could be capable of
generating the observed CF-specific arrangement of synapses of
ANFs on octopus cells. An advantage of a Hebbian rule is that it
is a closed loop process; the rule adjusts the circuit’s connections
based on the spiking activity in the circuit itself. While an open-
loop process would blindly make pre-determined connections,
a closed loop rule is more rubust, and fine tuning can be
achieved.

The particular rule that is hypothesized to organize the
synaptic connections in this case is Spike-Timing-Dependent
Plasticity (STDP) (Gerstner et al., 1996; Markram et al., 1997;
Song et al., 2000). Under this rule, it is the relative timing of
action potentials in the post-synaptic neuron and pre-synaptic
neuron that determines the modification to each synaptic
weight. If a synapse is activated immediately before the post-
synaptic neuron’s action potential then that synapse will be
strengthened. If the reverse occurs then that synapse is weakened.
This process has been observed in cortical neurons, but the
existence of such a rule in the auditory brainstem is more
speculative.

Detailed electrophysiological evidence shows that in adult
animals octopus cells receive ANF synaptic input in a systematic
fashion along their dendrites (Willott and Bross, 1990; Oertel
et al., 2000). This known configuration is shown schematically
in Figure 1B. In this anatomically observed configuration
the most proximal synaptic connections originate from the
lowest CF ANFs (those with the longest traveling wave delay),
and the most distal from the highest CF ANFs (with the
shortest traveling wave delay). For the octopus cell circuit
model examined in the present investigation the synaptic
input was initially established randomly (Figure 1A). This
assumes that initial synaptic connections are random. This is
a conservative test of the hypothesis given that microscopy
indicates that octopus cell dendrites are not random, but are
aligned in the direction required for compensation (Oertel
et al., 2000). It is hypothesized that under the action of the
STDP rule synapses that do create dendritic compensation for
the traveling wave delay would be strengthened by the STDP

FIGURE 1 | An illustration of the hypothesis to be investigated in this study.

The line thickness represents the strength of the synaptic connection. (A) The

model octopus cell was initially provided with a number of connections from

each auditory nerve fiber, each assigned a random longitudinal dendritic

location. (B) The hypothesized synaptic arrangement after the STDP learning

process. Although no synapse changes position, particular synapses have

been strengthened and others weakened. Under the hypothesis, this final

established configuration would provide for dendritic compensation for the

cochlear traveling wave delay.

process, a process illustrated schematically in Figures 1A,B.
The investigation will examine whether STDP is capable of
achieving the correct synaptic configuration, and if so, to discover
the “meta” parameters of the STDP rule that best achieve
this.

METHODS

Amodel was established consisting of the following components:

• A realistic model of the auditory periphery activated by click
sounds. Click sounds were chosen because these are known
to be effective at activating octopus cells and they have a
broadband profile.

• Amodified leaky integrate-and-fire (LIF)model of the octopus
cell used to recreate the firing behavior of octopus cells. This
is simpler than a Hodgkin-Huxley model, but adequate to
capture the relevant dynamics.

• A conventional STDP model of synaptic weight adjustments
used to adjust the weights of the connections between the
periphery model, and the octopus cell model.

Some parameters of the combined LIF/STDP system were
selected using experimental evidence. Those parameters without
sufficient basis in evidence were selected using a genetic search
algorithm. The genetic algorithm was not intended to replicate
any biological process. It was intended to find any set of
parameters for the STDP algorithm that: (a) conformed to
a physiologically plausible range of values and (b) recreated
the correct known connectivity of octopus cells. These two
requirements were sufficient to provide proof of principle that
STDP can play the hypothesized role in octopus cells. It was
not necessary to converge on a single unique set of optimal
parameters. The genetic algorithm may not converge to a local
or global optimum, however it was sufficient to meet the above
requirements.
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ANF Model and Stimulus Protocol
Synaptic input to the octopus cell was simulated by a realistic
model of the auditory periphery, the Zilany-Bruce model (Zilany
and Bruce, 2006, 2007; Zilany et al., 2009, 2014). A range of
sounds, including tones, clicks, and speech sounds were used
during validation of that model. The model has a middle ear
filter that gives realistic responses to broadband signals. It has
realistic cochlear tuning characteristics and produces appropriate
jitter statistics of phase-locked spike times. It also provides
physiologically realistic group delay and phase properties as a
function of sound pressure level and location on the basilar
membrane. In this model a sound signal is converted to action
potentials in auditory nerve fibers. Each fiber responds to a
different sound frequency, the fiber’s CF, and each fiber possesses
a different traveling wave delay corresponding to that CF.

The input likely to activate octopus cells are broadband clicks
(Oertel et al., 2000) and this signal was used as input to the
auditory periphery model (Figure 2A).

400 ANFs were modeled with each forming 3 synapses onto
the octopus cell model at random locations, a total of 1,200
synapses. The stimulus lasted 50 ms, and was simulated at a time
step of 10 µs. The period between ‘clicks’ in the sound stimulus
was 10ms, a time chosen for convenience andwhich is not critical
for the function of the rule. Each learning epoch contained 4 click
sounds. The frequency span of the auditory nerve fibers in the
model was 6–20 kHz, chosen so that the total traveling wave delay
asynchrony across the population of fibers was approximately 0.5
ms. This was tomatch the approximate transmission time of PSPs
in octopus cell dendrites (McGinley et al., 2012; Spencer et al.,
2012) (Figure 2B).

Simplified Octopus Cell Model
The octopus cell model is closely based on that developed in
Spencer et al. (2015) for the rat. A single octopus cell wasmodeled
using a LIF framework (Equation 1). This approach assumes that
the transmembrane voltage of the octopus cell can be modeled as
a single value Vm and evolves according to capacitive-resistive
dynamics (Dayan and Abbott, 2005). In the conventional LIF
model, when the voltage reaches some set threshold an action

potential is produced, and the voltage reset. However, in the
present investigation the voltage threshold is replaced by a
threshold (κ) in the rate-of-change of the membrane potential.
This was intended to recreate the known properties of the cell
(Ferragamo and Oertel, 2002). When combined with input from
a realistic auditory periphery this recreates the known functional
properties of octopus cells (Spencer et al., 2015). The membrane
voltage dynamics were described by the following equation:

Cm
dVm

dt
= gleak(VL − Vm)+ gex(Eex − Vm), (1)

where Cm is the membrane capacitance, gleak is the membrane’s
leak conductance, VL is the reversal potential of the leak
conductance, gex is the excitatory synapse membrane
conductance, and Eex is the excitatory reversal potential.
The synaptic input was modeled using a decaying exponential
function:

τex
dgex

dt
= −gex, (2)

where τex is the time constant of decay. gex is incremented
by an amount determined by each synapse’s weight at a time
determined by each synapse’s position in the dendrite. The
contribution from each synapse is multiplied by the value
“W” which is modified by the learning homeostatic and STDP
learning rules, and is initially set at 0. If the rate of change of the
membrane potential exceeds 10 mV/ms (κ) over one time step
then a spike is triggered and the membrane potential is reset to
the leak reversal value. The value of κ was chosen to approximate
the known value measured from octopus cells (Ferragamo and
Oertel, 2002). There is an absolute refractory period of 1.1 ms,
corresponding to a maximum firing rate of 900 Hz, the known
maximum rate for octopus cells.

The dendrite of the octopus cell was modeled as a simple
delay to the action potentials which were provided by the ANF
model. The precise delay depends on the modeled position of
the synapse on the dendrite. The maximum delay was chosen to

FIGURE 2 | The ANF input to the octopus cell model during learning. (A) The raster plot produced by the auditory periphery model in response to auditory click

sounds shown in schematic above. (B) A zoomed section of the raster plot highlighting the presence of the traveling wave delay.
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be of the same order as that in octopus cells, 0.5 ms (McGinley
et al., 2012; Spencer et al., 2012).

The values of the ANF and octopus cell model parameters are
provided in Table 1.

Spike-Timing-Dependent Plasticity and
Homeostasis
The STDP paradigm used additive adjustment to the synaptic
weights. As in the standard all-to-all STDP paradigm (Song et al.,
2000); if the presynaptic spike produced by the ANF precedes
a spike produced by the octopus cell then that synapse will
be increased in strength by an amount that depends on the
intervening duration (Figure 3), and if an input ANF produces
a spike that follows one produced by the model octopus cell then
that synapse was weakened.

Changes in weight of each individual synapse due to spike-
timing-dependent plasticity were governed by:

1Wj,STDP =

{

1w+.e
−(tj,pre−tpost)/τ−

: tj,pre − tpost < 0

−1w-.e
−(tj,pre−tpost)/τ+

: tj,pre − tpost > 0,
(3)

where1Wj,STDP is the change in a given synaptic weight resulting

from a post-synaptic action potential, 1w+ and 1w- are the
maximum synaptic weight changes of the STDP window, and τ+
and τ− are the time constants of the STDP window, tj,pre− tpost is
the key parameter involved in STDP Hebbian plasticity, the time
difference between the arrival of the pre-synaptic potential and
the post-synaptic action potential.

In general it is known that in real cells homeostasis establishes
a useful working-point for STDP to occur (Sjöström et al., 2001).

TABLE 1 | Assumed ANF and octopus cell model parameters and their values.

Parameter Value References

Membrane leak conductance

(gleak)

143 nS (7 M�) Oertel et al., 2000

Membrane capacitance (Cm) 43 pF (see caption)

Reversal potential (VL) −65 mV Standard value

Action potential threshold (κ ) 10 mV/ms Ferragamo and Oertel,

2002

Synapse conductance

increment

1 nS Cao and Oertel, 2010

Synapse reversal potential (Eex) 0 mV Cao and Oertel, 2010

Maximum dendritic delay 0.5 ms McGinley et al., 2012;

Spencer et al., 2012

Number of ANF fibers 400

Synapses per ANF fiber 3

Total number of input synapses 1,200

Unreferenced values are nominal assumptions chosen at the start of the investigation and

not subsequently tuned. The value of capacitance was calculated to provide a membrane

time constant of 300 µs (Golding et al., 1999; Oertel et al., 2000). It is unknown howmany

synaptic connections are initially made to octopus cells. The value of 400 ANFs making

1,200 connections is chosen to allow adequate opportunity for learning.

A homeostatic plasticity rule was used to establish a useful
working point for the activity of the STDP rule:

1Wj,homeostasis =

{

δ− :Npost > R
δ+ :Npost < R,

(4)

where Npost is the total number of spikes produced by the
cell during a single epoch (which is chosen here to have a
duration of 50 ms) and R was set to 4 to match the number of
expected spikes during each 50 ms epoch. The rule increments
the total synaptic drive if the cell is producing spikes at a rate
below the nominated rate, R, and reduces the total synaptic
drive if it is above the nominated rate. Note that, in the
absence of post-synaptic activity, the change in synaptic weight
due to homeostasis is positive. and so initiates post-synaptic
activity in the cell, which is something that is necessary for
STDP.

The specific components of the homeostatic plasticity rule
are not intended to represent particular physiological processes.
Rather, the rule is meant to be a phenomenological recreation of
the effect of homeostatic regulation of the total synaptic input to
the cell.

The total learning equation combines homeostasis and STDP:

1Wj = 1Wj,homeostasis(Npost)+ 1Wj,STDP(tj,pre − tpost), (5)

where W ∈ [0,Wmax]. These adjustments to synaptic weight
were not made continuously during learning, but once at the end
of each 50 ms epoch.

Parameter Optimization
Given that there is no experimental evidence of the particular
parameter values of STDP mechanisms in octopus cells it was
necessary to constrain the parameters of the STDP model by
selecting values that resulted in the expected final synaptic
configuration of the octopus cell. A metric was established that
was used to quantify the configuration of synapses after a period
of STDP learning. The metric was designed to return a high value
when the dendritic delay matched and compensated for cochlear
traveling wave delay.

Quality Metric
The basic form of the metric was chosen to be a sum of
Gaussians

∑

Wne
(T−xn)

2/2σ 2
, in which xn is the sum of the

traveling wave delay and the dendritic delay for each individual
synapse, and T is a constant (0.5 ms) and is the target delay
of the combined dendritic delay and traveling wave delay. So,
if xn = 0.5 ms then that particular synapse will contribute the
maximum value to the metric.Wn is the weight of each synapse.
The value of σ was chosen to penalize synapses for which
traveling wave delay did not compensate for dendritic delay
(70 µs).

With this metric, synapses that increase their value of Wn

increase the value of the metric. However, a synapse with value

of |T − xn| close to 0, leading to a high value of e(T−xn)
2/2σ 2

,
will increase the metric more than a synapse with a large value
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FIGURE 3 | Synaptic weight adjustment. (A) The form of the timing dependent function, “1w”, that defines the change in a particular synapse’s weight. The horizontal

axis shows the relative time between any pair of presynaptic and post-synaptic spikes. The vertical axis indicates the amount by which the weight of the synapse

associated with the presynaptic spike is incremented. The parameters are defined in Equation (3). (B) The homeostatic rule that adjusts synapses based on the overall

spike-rate of the octopus cell during a particular epoch. It adjusts all input synapses equally. The horizontal axis shows the number of spikes produced in a given

epoch and the vertical axis the resulting change in synaptic weights following that epoch. The parameters are defined in Equation (4).

of |T − xn|. A large value of |T − xn| indicates that the dendritic
delay is not optimally compensating for the traveling wave delay.

If total synaptic weight remained constant over time and
across models, as did connectivity, then this metric would be
sufficient. However this is not the case, and so it was necessary
to introduce normalization to compare models with different
total synaptic input and delay configurations. The normalization
factor had the same Gaussian form, with the mean weight and the
mean difference in the traveling wave delay and dendritic delay.
This final normalized metric η was:

η =

N
∑

n=1
Wn.e

−(T−tTW,n−tD,n)
2/2σ 2

N
∑

n=1
Wn

, (6)

where tTW,n is the cochlear traveling wave delay for synapse n,
and tD,n is the dendritic delay for synapse n.

This metric allows comparison across different epochs and
models. In practice, a homogenous weight distribution, whether
the synapses are strong or weak, was observed to produce a
metric value of approximately 0.40. A value of η higher than this
represents a synaptic configuration in which the dendritic delay
is compensating for the traveling wave delay.

Search Algorithm
In order to perform a multi-dimensional search efficiently a
simple genetic algorithm was used. This rule was not meant
to represent any real process in the animal, but simply to
discover values for the parameters of the STDP learning rule and
homeostatic rule that lead to the predicted final configuration of
synapses.

Initially a population of 15 models was instantiated with
random parameter values and evaluated. The two which
produced the highest values of η were copied without
modification to the next generation. Each parameter value of a
further 15 models was selected randomly from the 2 “parents.”
In addition, random variation was applied to each value (see
below for details). The process was repeated again with the next
generation, each time following the same process. In total 100
generations were completed, each consisting of 15 models each
of which were evaluated over 10 epochs of sound stimulus. Each
epoch consisting of 4 click sounds over the course of 50 ms, with
STDP applied at the end of each stimulus and the final value of η
is recorded.

Random Parameter Variation
As described, 15 “child” models were created by selecting
parameter values from one of the two “parent” models. Random
variation was then imposed on each value. This was done by
creating a random change from the inherited value. The variation
used white noise values between 0 and 1, and compressed by:
(4(x−0.5)3)+0.5 tomake frequent small changes, and infrequent
large changes.

RESULTS

Search for the Preferred Parameters of the
STDP Learning Rule
Initially all 1,200 synapses from the 400 ANFs were set to be 0
weight and themodel cell did not spike at all. The “genetic” search
algorithmwas used to find the parameters of the homeostatic rule
and the STDP rule that best achieved the observed configuration
of synapses for the octopus cell. The STDP parameters selected by
the search algorithm were limited to a certain physiological range
(Table 2).
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It was found that the algorithm could select synaptic weights
such that the dendritic delay compensates for the traveling wave
delay (Figure 4A).

A 100th generation model (Figure 4B) shows that initially
(<5 epochs), the homeostatic learning rule increased the strength
of the synapses uniformly resulting in higher values of dV/dt
until the octopus model began to produce spikes. At the 5th
epoch the STDP rule, driven by the initiation of post-synaptic
spikes, came into effect and synapses were differentiated based
on their contribution to the activity of the octopus cell. The final
distribution of weights was unimodal (Figure 4C).

The results of 4 separate parameter searches (Figure 4D) show
that all 4 searches resulted in a value of the metric (η) that
is consistent with a beneficial “ordering” of the synapses along
the dendrite (>0.4). This was despite the fact that some of
the parameters adopted disparate values (e.g., 1w-), and others
converged (e.g., τ+).

The “ceiling” synaptic weight parameter (Wmax) reduced to a
level that did intervene in synaptic weight growth but was not
highly restrictive (Figure 4D). This can be observed in the final

TABLE 2 | STDP model and homeostatic rule parameter values.

Parameter Value

STDP magnitude (1w) 0 −10 or 20

STDP window duration (τ ) 20 µs − 20 ms

Homeostatic increment/decrement (δ) 0–0.03

Weights maximum (Wmax ) 0.01–0.2

The physiological range of the STDP magnitude was either 10 or 20 (see Results for more

information).

distribution of synaptic weights (Figure 4C) which as noted, was
not bimodal, something that would occur with a highly restrictive
synaptic weight ceiling.

It can be seen in Figure 4D that the value of η fluctuates from
generation to generation, and does not simply monotonically
increase. This was because of the random element introduced by
the particular synaptic connectivity instantiated from generation
to generation.

The most notable feature of the parameter search was the fact
that in all 4 searches the temporal width of the positive part of
the STDP window, τ+, appeared to approach the lowest available
value of 20µs (4D). This result is explored in a further parameter
exploration later in the paper.

Octopus Cell Dynamics Before and After
Synaptic Weight Adjustment Through
STDP
The cellular dynamics of a 100th generation cell before and
after 10 epochs of STDP learning show the effect of synaptic
selection (Figure 5). After the 1st epoch and before STDP had
any effect, the octopus cell synapses have a homogenous synaptic
weight. Due to the fact that they have randomized input delays
and dendritic delays this led to a synaptic current changing
more slowly during a click sound than after STDP (Figure 5A).
This in turn led to a smooth membrane voltage compared to
after STDP learning (Figure 5B) and smooth rate of change in
membrane voltage compared to after STDP learning (Figure 5C).
Note that before the STDP learning process the instantaneous
rate of change in the membrane voltage did not reach the spike-
threshold and so did not produce a spike. After STDP learning,
the synapses with a dendritic delay that compensates for input

FIGURE 4 | Results of the STDP learning rule, and genetic search. (A) An example cell’s final synaptic weights shown as a function of their pre-synaptic and

post-synaptic delays. (B) An example of the results of a 100th generation cell, during 10 epochs of learning. The maximum rate of change in voltage (dV/dt), number

of spikes, η, the synaptic weights (gray), and mean synaptic weights (black) are shown as a function of 10 epochs of learning. (C) The distribution of the final synaptic

weights. (D) The genetic algorithm results of 4 separate parameter explorations as a function of the search generation.
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FIGURE 5 | The intrinsic dynamics of the octopus cell model before STDP learning (dashed line) and after (solid line) in a 100th generation cell. Two time periods are

shown. (A) The total synaptic current during the stimulus. (B) The cell voltage. (C) The instantaneous rate of change of the membrane voltage. The horizontal line

gives the threshold of spiking. Note that the dashed pre-learning curve does not reach threshold. (D) The time of action potentials produced by the model after

learning. Note that no output spike was produced in the pre-learning model.

asynchrony were strengthened, and others weakened. The effect
of this on the model cell’s response can be seen as a sharpening of
the total input synaptic current and membrane voltage (solid line
in Figure 5A,B). This in turn increases the rate of change in the
membrane voltage (solid line in Figure 5C) which exceeded the
spike threshold and produced action potentials.

The Effect of STDP Window Size on the
Synaptic Weight Profile
In the previous parameter exploration (Figure 4) the value of
the positive STDP window width (τ+) approached the value
considered to be the physiological minimum (20 µs).

In order to examine the effect of different physiological
minimums on the outcome of the STDP learning the value
of τ+ was systematically varied (Figure 6). In addition, the
other parameters that converged in the previous parameters
exploration δ+ and δ− were fixed to a value close to their final
value (0.01 and 0.03). This left 4 STDP parameters available for
exploration (Figure 6A). In addition, the maximum level of the
STDP magnitude (1w) was increased from 10 to 20 due to the
fact that it appeared to be saturated in the previous genetic search
(Figure 4D).

Note that while varying τ+ other parameters were allowed to
vary to “compensate” for the value of τ+. This was a deliberate
decision to discover the effect of τ+ in the presence of other
compensating changes, which is most like the situation in vivo.

The results of the search (Figure 6A) show an approximate
exponential dependence of the metric η upon the value of τ+
(Figure 6B). Higher values of τ+ are associated with lower values
of the metric η indicating a less realistic anatomical arrangement
of synapses. There is also a dependence of the value of Wmax

upon the value of τ+. Apparently, smaller values of τ+ led to a
compensating effect in the form of a higher “choice” of value for
Wmax.

By examining the final synaptic profile of 100th generation cell
models after 10 epochs of learning it can be seen that the longer
duration of the positive STDP window has predictable effects
(Figure 6C). The longer window associated with higher value of
τ+ lead to less selectivity of synaptic weights than a cell model
with the lower value of τ+ (Figure 6C). This lack of selectivity
was not completely compensated by any other parameter in the
parameter search. It might be thought that a lower value of 1w+,
for example would provide increased selectivity; however, this
was not reflected in the genetic search. This was likely due to the
fact that the temporal width of the STDP window would not be
modified by such a parameter change.

DISCUSSION

This study demonstrates that it is possible for a spike-timing
based synaptic plasticity mechanism to select synapses such that
their dendritic delays compensate for input asynchrony. This
was shown in a realistic model of the auditory nerve’s synapses
onto octopus cells in the ventral cochlear nucleus. Parameters
associated with a standard STDP window were selected to allow
the STDP to guide the selection of the correct subset of synapses.
Parameter selection of the STDP learning process was achieved
with a simple genetic search. The fitness function for this search
was developed to be maximum when the synaptic configuration
matched that known to occur in the cochlear nucleus.

Previously published experimental studies on the
arrangement of synaptic connections from ANFs to octopus
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FIGURE 6 | An exploration of the effect of the value of τ+ on the model results. (A) The evolution of the STDP learning rule meta-parameters and the metric η, as a

function of the search generation. (B) The mean values of generations 80–100 of each parameter as a function of the value of τ+. Error bars show the standard

deviation across these generations. (C) Final synaptic strengths associated with 3 models of STDP after varying value of τ+ (20, 100, 200 µs).

cells include detailed descriptions of their anatomical structures
(Oertel et al., 2000; McGinley et al., 2012). Specifically, the
experimental observations showed that octopus cell dendrites
lie perpendicular to the tonotopically ordered ANFs such that
octopus cell dendritic delay compensates for the traveling wave
delay. It has been implied that this perpendicular anatomical
arrangement is sufficient to provide for the traveling wave
compensation, without invoking a need for activity-dependent
plasticity. This may be because activity-dependent plasticity,
such as STDP, has been less well explored in the auditory
brainstem, where cells respond rapidly to stimuli and with
very high firing rates. However, activity-dependent plasticity is
known to occur throughout the brain and this paper provides
a proof-of-principle of how this mechanism may operate in
the case of octopus cells. Synaptic weights were adjusted in an
activity-dependent fashion, resulting in improved matching
between dendritic delay and input asynchrony. Consequently,
the observed anatomical organization may arise not only as a
result of the previously proposed developmental processes but is
also augmented and refined by activity-dependent plasticity.

Evidence suggests that it is dendritic back-propagation or
dendritic spikes of the post-synaptic neuron’s action potential
that provides the learning signal to individual synapses (Golding
et al., 2002). This signal would be delayed in its return to the

most distal synapses. Given that it appears that the dendritic
delay is an important component of the function of octopus
cells, further experimental investigation into the influence of
back propagation in octopus cells may be valuable. In particular,
perhaps the dendritic delay is a constant for small amplitude
PSPs, but after an action potential, nonlinear dendritic spikesmay
lead to faster propagation speeds. For recent work on nonlinear
dendritic processing see for example Xu et al. (2012).

This investigation hypothesizes that developmental plasticity
can provide synaptic tuning that allows for the detection of
simulated clicks. However, there is also evidence that plasticity
is maintained in the auditory brainstem of adult maternal mice
(Miranda et al., 2014). If this is the case for the circuit of octopus
cells with the auditory nerve then this may allow re-tuning,
perhaps providing for changes in the traveling wave delay with
age, or re-tuning if particular ANFs are no longer functional.

In the present investigation it was found that STDP windows
were required to be very brief. It has been shown that, in
theory, learning is optimum when the time constant τ for
the STDP window matched the time constant τ for the LIF
synapse (Kennedy et al., 2014). Cortical neurons investigated
in previous experimental work show long STDP windows
roughly corresponding to their longer membrane time constants
(Markram et al., 1997). In the present model, it is possible
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that this optimum is not selected by the genetic algorithm due
to the unique spike-initiation mechanism of the octopus cell,
which is dependent not on the value of V, but on the value of
dV/dt (Ferragamo and Oertel, 2002). This is a topic for future
investigation. Future experimental work should aim to discover
whether STDP windows much shorter than previously found do
exist in the auditory brainstem where membrane time-constants
are also much faster.

The number of synapses initially provided to the cell is
important. In particular, if there are too few then there will be
insufficient numbers of synapses for the final selected subset. In
this investigation we chose to provide 1,200 synapses from 400
different ANFs. A more thorough analysis of the exact numbers
may be a useful target of future work and may reveal a minimum
number beyond which convergence is not possible.

The results suggest that a large number of synapses will be
silent during selection using STDP. However, it is possible that
these synapses are present only during a critical period after
which structural plasticity would lead to their removal.

Like the theory of evolution through natural selection, STDP
is a simple rule that can create complex and sophisticated
results adapted to local circumstances. While evolution works
at the level of the gene (Dawkins, 1976) and time scales of
generations of individuals, Hebbian rules work at the level of
synapses and over the lifetime of a single individual. In the early

investigations into natural selection Charles Darwin collected
a multitude of examples of the function of evolution under
different circumstances (Darwin, 1859). Perhaps the exploration
of STDP and more sophisticated Hebbian rules will undergo
a similar history. If that is the case, then the result in this
investigation is a small contribution to that process and adds to
the number of systems that can potentially be explained using this
powerful hypothesis.
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