
ORIGINAL RESEARCH
published: 14 June 2018

doi: 10.3389/fncom.2018.00046

Frontiers in Computational Neuroscience | www.frontiersin.org 1 June 2018 | Volume 12 | Article 46

Edited by:

Evgeniy Bart,

Palo Alto Research Center

Incorporated, United States

Reviewed by:

Sadique Sheik,

University of California, San Diego,

United States

Timothée Masquelier,

Centre National de la Recherche

Scientifique (CNRS), France

*Correspondence:

Johannes C. Thiele

johannes.thiele@cea.fr

Received: 26 January 2018

Accepted: 28 May 2018

Published: 14 June 2018

Citation:

Thiele JC, Bichler O and Dupret A

(2018) Event-Based, Timescale

Invariant Unsupervised Online Deep

Learning With STDP.

Front. Comput. Neurosci. 12:46.

doi: 10.3389/fncom.2018.00046

Event-Based, Timescale Invariant
Unsupervised Online Deep Learning
With STDP
Johannes C. Thiele*, Olivier Bichler and Antoine Dupret

CEA, LIST, Gif-sur-Yvette, France

Learning of hierarchical features with spiking neurons has mostly been investigated in

the database framework of standard deep learning systems. However, the properties

of neuromorphic systems could be particularly interesting for learning from continuous

sensor data in real-world settings. In this work, we introduce a deep spiking convolutional

neural network of integrate-and-fire (IF) neurons which performs unsupervised online

deep learning with spike-timing dependent plasticity (STDP) from a stream of

asynchronous and continuous event-based data. In contrast to previous approaches

to unsupervised deep learning with spikes, where layers were trained successively,

we introduce a mechanism to train all layers of the network simultaneously. This

allows approximate online inference already during the learning process and makes our

architecture suitable for online learning and inference. We show that it is possible to

train the network without providing implicit information about the database, such as

the number of classes and the duration of stimuli presentation. By designing an STDP

learning rule which depends only on relative spike timings, we make our network fully

event-driven and able to operate without defining an absolute timescale of its dynamics.

Our architecture requires only a small number of generic mechanisms and therefore

enforces few constraints on a possible neuromorphic hardware implementation. These

characteristics make our network one of the few neuromorphic architecture which could

directly learn features and perform inference from an event-based vision sensor.

Keywords: spiking neural network, STDP, unsupervised learning, event-based learning, deep learning, online

learning, digit recognition, neuromorphic engineering

1. INTRODUCTION

Deep Learning has in recent years become one of the most popular and powerful machine
learning methods. In particular, convolutional neural networks (CNNs) in combination with
the backpropagation algorithm (Rumelhart et al., 1986) provide the state-of-the-art in image
recognition and deep neural networks are employed in an ever increasing number of demanding
applications (LeCun et al., 2015).

Although the main criticism for current deep learning methods comes mainly from their lack
of biological plausibility, we think that even from an engineering perspective, spike-based models
could offer advantages over standard, frame-based deep learning architectures, in particular for
energy critical applications. The main cause of the potential energy efficiency of spike-based
systems is the absence ofmultiplication operations (if implemented in the corresponding hardware)

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2018.00046
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2018.00046&domain=pdf&date_stamp=2018-06-14
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:johannes.thiele@cea.fr
https://doi.org/10.3389/fncom.2018.00046
https://www.frontiersin.org/articles/10.3389/fncom.2018.00046/full
http://loop.frontiersin.org/people/462701/overview

Thiele et al. Event-Based Online Deep Learning

and their event-driven nature, which processes information only
if it is provided to the network externally. This stands in contrast
to frame-based systems, which depend on a constant and energy-
consuming high-frequency stream of images to detect changes in
the environment.

Most recent spiking deep network models focus on the
energy efficiency aspect and have shown the ability to train
deep networks with spikes with increasing precision. A large
number of recent studies have focused on the implementation
of the successful backpropagation algorithm on a spike-based
architecture (see for instance Lee et al., 2016; O’Connor
and Welling, 2016; Neftci et al., 2017 for networks with
rate coding and Liu et al., 2017; Mostafa, 2017; Wu et al.,
2017 for spatio-temporal coding). Others have derived even
more general gradient-descent update rules for spiking neural
networks (Huh and Sejnowski, 2017; Zenke and Ganguli,
2017). Their preliminary results show good performance on
simple benchmark tasks such as the MNIST dataset and the
potential to learn complex spatio-temporal tasks. The spike-
based unsupervised deep architectures of Kheradpisheh et al.
(2017), Panda et al. (2017), and Tavanaei and Maida (2017)
use a simplified unsupervised STDP rule (Bi and Poo, 1998)
in combination with a winner-takes-all (WTA) mechanism to
extract hierarchical features in CNN-like architectures. This
enables them to process large scale natural images of natural
objects (for instance human faces). The best classification results
for this type of network are provided by Kheradpisheh et al.
(2017) and Tavanaei and Maida (2017), who use however a
supervised support vector machine classifier on the extracted
features to evaluate final classification performance. A supervised
spike based classifier based on reinforcement learning was tested
in the same framework by Mozafari et al. (2017). Yousefzadeh
et al. (2017) demonstrated the possibility to extract simple
features with competitive STDP in a FPGA implementation of
a spiking neural network.

Despite the success of these recent approaches, we believe
that they only partially exploit the potential strength of an
event-based learning approach. Almost all existing spike-based
deep networks are in a sense still based on the frame-based
learning paradigm, where classification performance is optimized
over a given, possibly fully labeled dataset with well separated
training examples of fixed presentation time. In contrast to
this previous work, we will focus on an event-based online
learning setting, i.e., a scenario where the network receives a
continuous and asynchronous stream of unlabeled event-based
data from which it extracts features and performs approximate
online classification. This requires a system which is able to learn
features from a constantly changing scene with objects appearing
at different timescales. Since supervised models fundamentally
rely on labeled training data to learn features, they are unsuitable
for an application where there is no clear relationship between
the input and a certain label. But also the aforementioned
unsupervised architectures are trained in a greedy-layer wise
fashion, where each layer is greedily optimized for unsupervised
feature extraction on the full data set before the next layer
is trained in the same way. This takes away the possibility
to perform approximate inference already during the learning

process. It also makes it impossible to use the output of higher
layers to influence the features learned in the layers below,
making it for instance difficult to combine the network with tools
such as reinforcement learning or any other mechanism which
involves feedback from higher layers to lower ones and therefore
enables complex multi-layer representations. Additionally, it
would be desirable not to depend on floating-point-based
classifier (such as a SVM) in the top layer since it violated the
spike-based learning paradigm. It also leaves it kind of unclear
how much of the classification performance is due to the quality
of the extracted features and how much due to the learned
parameters of the classifier.

Wewill try to approach several aspects of the abovementioned
problems by taking a bio-inspired engineering approach. This
means that our main concern will be the potential to implement
our network on an event-based neuromorphic hardware
platform, and we will considering biological plausibility mainly
where it could offer potential benefits to our architecture. By
introducing a mechanism to decouple winner-takes-all (WTA)
dynamics from spike propagation, all layers of our network
can be trained simultaneously. This enables us to perform
approximate inference during the learning process. Furthermore,
we introduce a learning mechanism which removes any notion
of absolute time from our network such that all spike times are
measured relative to the dynamics of postsynaptic spikes, making
our network fully event-based. In addition, we show that it is
possible to train the network without providing any information
about the structure of the input data (such as the number of
classes) and treating the training set as a continuous stream of
event-based input. This also includes implicit information, such
as the duration of image presentation. We demonstrate the high
convergence speed and robustness of learning with respect to
some of the typical problems which might occur in an online
learning setting. Despite these constraints, our network yields a
test accuracy of (96.58 ± 0.16%) on the spike-converted MNIST
benchmark after a single presentation of the training set, using
only a single neuron spike count classifier. This is the highest
reported score so far for a network where all connections up to
the final feature are trained solely with unsupervised STDP and
demonstrates the high specificity of neurons in the top layer.

2. METHODS

2.1. Network Architecture
The fundamental setup of our network is similar to other
competitive convolutional architectures trained with STDP (such
as Kheradpisheh et al., 2017; Mozafari et al., 2017; Panda et al.,
2017; Tavanaei and Maida, 2017). The network parameters
used for all simulations can be found in Table 1. We use
two convolutional layers with a varying number of neural
maps depending on the experiment. If not stated otherwise,
all simulations used by default 16 neural maps in the first
and 32 maps in the second convolutional layer, as well as
1,000 neurons in the fully connected top layer (see Figure 3).
Both convolutional layers use a filter size of 5 × 5 with a
stride of 1. The neuron firing threshold values are 8 (first
convolutional layer), 30 (second convolutional layer), and 30

Frontiers in Computational Neuroscience | www.frontiersin.org 2 June 2018 | Volume 12 | Article 46

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Thiele et al. Event-Based Online Deep Learning

TABLE 1 | Network parameters used for the simulations.

Description Parameter Value

CONV 1

Threshold STDP Tinh,STDP 8

Threshold propagation Tinh,prop 8

Inter-map inhibition radius STDP (in

nearest neighbors)

rinh,STDP 2

Inter-map inhibition radius

propagation (in nearest neighbors)

rinh,prop 0

Ration LTP vs. LTD α+/α− −8

Filter size dfilter 5

Stride sfilter 1

Initial weights with STD (normally

distributed)

winit 0.8± 0.1

CONV 2

Threshold STDP Tinh,STDP 30

Threshold propagation Tinh,prop 30

Inter-map inhibition radius STDP (in

nearest neighbors)

rinh,STDP 2

Inter-map inhibition radius

propagation (in nearest neighbors)

rinh,prop 0

Ration LTP vs. LTD α+/α− −8

Filter size dfilter 5

Stride sfilter 1

Initial weights with STD (normally

distributed)

winit 0.8± 0.1

FC

Threshold STDP Tinh,STDP 30

Threshold propagation Tinh,prop 30

Ration LTP vs. LTD α+/α− −8

Initial weights with STD (normally

distributed)

winit 0.67± 0.1

An inhibition radius of 0 indicates that only neurons at exactly the same position in other

maps are inhibited.

(fully connected layer) respectively. There is a intra-map WTA
inhibition mechanism which inhibits all other neurons in a
neural map at different position as soon as one neuron in the
map releases a spike (see Figure 1). Inhibition is performed
by resetting the integration variables and reference time of the
inhibited neurons (such that spike times are always measured
with respect to the last reset of the integration variable). This
mechanism prevents a single map from dominating the learning
competition at all position of an input image by learning a feature
which is too general. The second inhibitory mechanism acts in
an identical way between neural maps (inter-map) and inhibits
neurons neurons in a small neighborhood of the position of
the spiking neuron in all neural maps. This neighborhood will
typically be chosen such that all neurons whose filters overlap
with the filter of the firing neuron will be inhibited (in our
case the two next neighbors). This competitive mechanism is
essential to diversify the features learned by different neural
maps.

After each convolutional layer, the network performs a
pooling operation over non-overlapping windows of size 2 × 2

in each neural map to reduce the dimensionality of the input.
In contrast to the architecture introduced in Kheradpisheh et al.
(2017), where a form of max-pooling is performed which only
propagates the first spike in a pooling window, our pooling layer
propagates all spikes which are emitted in the pooling window.
This is necessary if the network should be defined independent
of the input timescale, since else we would have to define a
point at which the pooling neuron is unlocked again (which is
usually done when a new example is presented). Additionally,
this allows us to propagate a more flexible number of spikes to
the following layers, while reducing the size of the visual input. In
our implementation, the pooling neurons are not actual neurons
since they simply propagate all spikes from a certain input region,
but in principle the pooling neurons could be replaced by more
complex neuron model which has a more specific selectivity
or a threshold value. The basic module of convolutional layer
followed by pooling layer can in principle be arbitrarily copied
to form a multi-layer deep network.

Similar to frame-based CNNs, the convolutional layers are
followed by a fully connected layer, which is trained with the
same STDP mechanism as the convolutional layers. It merges
the features from all positions and features maps to learn global,
position independent representations of the classes present in the
input data. This distinguishes our architecture from the other
multi-layer competitive architectures mentioned above andmore
similar in spirit to the single layer networks of Diehl and Cook
(2015) and Querlioz et al. (2011). This type of representation
enables us to obtain spikes in the last layer which are direct
indicators of the class the network detects.

2.2. Dual Accumulator Neurons
To make our architecture suitable for online learning, several
paradigms have to be reconsidered which were present in
previous work. The main problem when training all layers
simultaneously comes from the WTA mechanism which is used
in lower layers. Although inhibition is necessary to diversify the
learned features in each layer, it significantly reduces the number
of spikes which are emitted by the neurons and prevents spikes
from different maps at the same input position. This limits the
amount of information which is received by the higher layers
and also prevents the propagation of spike codes which are a
combination of several features maps. In the layer-wise training
approach, this problem is resolved by disabling inhibition after
the layer has been trained and then training the next layer on the
output of all lower layers.

In our work, we take a different approach, which enables us
to keep lateral inhibition and still obtain sufficient spikes to train
higher layers. We introduce a second integration accumulator in
the neuron which receives the same input, but is not affected
by lateral inhibition and whose “spikes” do not trigger STDP
updates (see Figure 2). This corresponds to a separation of the
competitive learning dynamics from the inference dynamics.
Since the inference accumulator receives the same feed-forward
input as the learning accumulator, the spiking of the inference
accumulator is still a good representation of how well the input
matches the receptive field of the neuron. Both accumulators
can in principle have different threshold values. By tuning

Frontiers in Computational Neuroscience | www.frontiersin.org 3 June 2018 | Volume 12 | Article 46

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Thiele et al. Event-Based Online Deep Learning

FIGURE 1 | (A) Basic structure of a convolutional layer with inter-layer WTA. Each feature map (shown in different colors) detects features in an overlapping manner

over the full image. If a neuron spikes in a feature map, it inhibits neurons in all neural maps around a small neighborhood of its position. (B) Visualization of a

convolutional layer preceeded by a pooling layer. Neurons in the next layer connect to the pooling layers as they would to a two dimensional image, with the difference

that weights extend to a third dimension through all feature maps. This way the layer aggregates information from all features maps simultaneously.

the threshold of the inference accumulator, the firing rate of
the neurons can be adjusted without affecting the learning
mechanism. More spikes will generally lead to faster convergence
in higher layers and higher inference precision, but also require
more computational resources.

Additionally, our experiments show that it can still be
beneficial for learning in higher layers to enable some inter-map
inhibition between inference neurons. This mostly depends on
the need to have several features contributing to the emitted
spike code at a particular position or only the most salient
feature. It therefore enables us to smoothly switch between a
one-hot feature representation, where only one feature can be
active at a given position, and a more continuous representation,
where multiple features can contribute partially. As shown
by Maass (2000), lateral inhibition in neural circuits can
have powerful computational capabilities and depriving the
inference accumulators of this mechanism could therefore have
a detrimental effect on the representational capabilities of the
network. The dual accumulator neuron allows us to treat the
competitive aspects of learning and coding independently.

2.3. Online Learning Constraints
An additional objective of our approach is to make the system
completely event-driven and remove any notion of an absolute
time scale. In particular, this means that the network should not
be given any explicit or implicit knowledge about the timescale
of the input data, as for example when a training example is
exchanged for the next one. This has several consequences for
the setup of our network:

• No leakage currents: we use a simple integrate-and-fire neuron
• No refractory periods: the firing of a neuron is solely driven by

its integration, spike, and reset dynamics
• No inhibitory refractory periods: WTA inhibition directly

reduces the integration variable of other neurons to prevent
them from firing

• No reset of neuron values when a new training example
is presented, since this provides the network with implicit
information about the training set

• No restriction of neuron firing which relates to the
presentation of a training examples, for instance the restriction
of neuron firing to once per training example

• No homeostatic mechanisms which use implicit knowledge of
the training set statistics, for example constraining the neurons
in the last layer to have equal firing rates

• No additional pre-processing of stimuli (for instance input
normalization). The network has to be able to deal with
strongly varying numbers of spikes for each stimulus.

These changes allow our network to be only driven by the
timescale of its input, which can in principle even change during
the learning process, without affecting the network dynamics.
The only requirement for the network to be able to learn from
input spikes is that sufficient spikes are produced in the network
to trigger the STDP mechanism. Our network therefore fully
embraces the paradigm of asynchronous event-based processing
without depending on a clock-based mechanisms.

2.4. Learning Rule
As weight update rule, we use a version of the STDP learning rule
introduced in Querlioz et al. (2011). Every time a neuron triggers
a postsynaptic spike, its weights are updated as follows:

1w =

α+ exp
(

−β+
w−wmin

wmax−wmin

)

if tpost,last < tpre < tpost

α− exp
(

−β−
wmax−w

wmax−wmin

)

otherwise

(1)
with learning rates α+ > 0 and α− < 0 and damping factors
β−,β+ ≥ 0. Our experiments showed that this learning rule
works best if we use a rather strong damping of β+ = 3 for the
LTP (long-term potentiation) term and no damping (β− = 0)
for LTD (long-term depression). Additionally, we constrain the

Frontiers in Computational Neuroscience | www.frontiersin.org 4 June 2018 | Volume 12 | Article 46

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Thiele et al. Event-Based Online Deep Learning

FIGURE 2 | (A) Schematic description of the multi-threshold neuron. The neuron integrates all inputs it receives simultaneously in two accumulators, one for STDP

triggering and WTA, and the second one for inference (i.e., spike propagation). (B) Interaction between two neurons coupled via lateral inhibition. If the integration in

the WTA accumulator reaches the threshold value, no actual spike is propagated. However, the neuron will behave as if it had spiked, which includes a reset of its

integration value, a triggering of STDP and WTA lateral inhibition which affect only the WTA accumulators of the other neuron (by reseting them). (C) If integration

reaches the threshold value in the inference accumulator, a spike will be propagated and integration will be reset. The inference accumulators of other neurons are not

necessarily affected.

weights to be in the range [0, 1]:

1w =

{

α+ exp (−β+w) if tpost,last < tpre < tpost

α− otherwise
(2)

In contrast to Querlioz et al. (2011) we do not use an STDP
time window to decide between LTP and LTD. Every time a
postsynaptic neurons spikes at time tpost, synapses coming from
neurons which spiked since the last postsynaptic spikes at time
tpost,last are potentiated, and depressed if they did not spike.
Since the membrane potential of the postsynaptic neuron is reset
after each spike, this ensures that only neurons which directly
contributed to the current postsynaptic spike are potentiated.
A similar learning mechanism was used in Kheradpisheh et al.
(2017), however with a different weight dependence. The main
reason for adding the exponential weight dependence is the
tendency of STDP to converge too quickly to the minimal and
maximal weight values. As argued in Querlioz et al. (2011), the
computationally expensive exponential function in our learning
rule could be implicitly implemented by the device physics of a
memristive synapse. Besides these practical considerations, our
experiments show that the architecture does not depend too
strongly on the exact details of the STDP rule and also works with
minor performance losses with a simpler version, which does not
include the exponential weight dependency.

The rule (2) is qualitatively very similar to the optimal STDP
rule for stochastic neurons introduced by Nessler et al. (2013)
and explored in more detail by Habenschuss et al. (2012) and
Habenschuss et al. (2013). This similarity has been pointed out
already by Querlioz et al. (2015) in their analysis of rule (1) in the
context of a memristive hardware implementation. Although the

optimality condition does not strictly apply here due to the non-
stochastic firing dynamics of the spiking neurons, it is interesting
that this very similar rule seems to empirically yield the best
results in our network. Tavanaei et al. (2016) showed that this
learning rule has a probabilistic interpretation and converges to
weights which represent the log odds of the firing probability of
the neuron. Additionally, we observed that only the ration of α+

and α− seems to influence the quality of the learned features
(with the absolute values still guiding the speed of learning). A
similar behavior has been observed in Querlioz et al. (2015) and
Kheradpisheh et al. (2017) which indicates that this could be a
general feature of this class of simple postsynaptic STDP learning
rules. Another interesting feature is that the same learning rule
with the same ratios can be applied to all convolutional layers, as
well as the fully connected layer at the top of the network. Only
the magnitude of the factors has to be adapted to account for the
different learning speed of every layer, which is a consequence of
the different number of spikes which are triggered in each layer.
Since our rule is driven by postsynaptic spikes, the number of
spikes caused in a layer will strongly influence the learning speed.
We observed that the ration of the rates seems to depend strongly
on the threshold values of the neurons. Since our learning rule
only distinguishes between synapses which have spikes and those
who have not, a high threshold value will allow more synapses to
contribute before the postsynaptic spike is triggered. To obtain
a feature which is sensitive to spikes from those synapses which
actually spike more often, we will have to use a learning rate
with rather strong depression, since there will be statistically only
a few situations where a synapse did not spikes at all and is
therefore subject to LTD. The inverse is true for a low threshold
value, where only a few synapses will contribute on average to a

Frontiers in Computational Neuroscience | www.frontiersin.org 5 June 2018 | Volume 12 | Article 46

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Thiele et al. Event-Based Online Deep Learning

postsynaptic spike and depression is therefore the more common
scenario, which is why it should be rather weak. For our choice
of parameters, we found that a ratio of α+ = −8α− works best
in practice. This leads to a learning rule with high LTP for small
weight values which is strongly damped if the value increases.
Already for a weight value of w = −1/β+ log(−α−/α+) ≈

0.7, depression becomes stronger than potentiation, which will
effectively prevent weights from saturating. This behavior is
important for the online learning capabilities of our architecture,
since a saturation of weights could prevent the system from
learning on additional examples. At the same time, the learning
rule stays highly sensitive even if w is close to zero, which allows
the system to adapt to changing input statistics.

In contrast to Querlioz et al. (2011) and Diehl and Cook
(2015), our network does not use a homeostatic mechanism to
adjust the firing rates of the neurons. Although such amechanism
was shown to greatly improve performance on this task for one-
layered networks, we decided against such a mechanism since
it makes implicit assumption about the statistics of the training
set. For instance, enforcing equal firing rates for neurons over
long timescales, which is a typical objective for homeostatic
mechanisms, imposes that the features represented by each
neuron occur approximately equally often. This is in general not
true for an online learning task and in particular the intermediate
level features learned by the convolutional layers do not have
equal probabilities of occurrence.

2.5. Timescale Invariant STDP Learning
Intuitively, we can understand the STDP mechanism the
following way: the threshold of the neurons of a layer describes
a type of implicit timescale, which is the time until one of the
neurons has integrated enough information to emit a spike.
All neurons which are connected to this neuron by inhibitory
connections are subject to a reset of their integration variable
and their relative time scale. As long as the input dynamics
change much slower than this implicit timescale, there will be a
consistent causal relationship between a certain synaptic input
and the response of a neuron. Since the time until the threshold
is reached depends only on the total integrated input signal, this
implicit time scale is directly set by the timescale of the input. If
spikes arrive very rapidly, the threshold will be reached in a short
time. If spikes arrive rather slowly, also the absolute time until
the threshold is reached becomes longer. In a model which uses
a leakage current or refractory times, these times would have to
be adjusted to the timescale of the input signal. Since our STDP
rule depends only on the relative timing of postsynaptic spikes,
and therefore on this implicit timescale, we are able to use the
causality reinforcement properties of STDP without defining an
absolute reference time.

2.6. Input Encoding
The network is trained on a single randomly ordered presentation
of the full MNIST dataset of 60,000 digits (i.e., no digit was
shown twice to the network). No pre-processing is performed.
Each images is converted to noisy periodic spike trains with
mean firing rates proportional to the absolute value of the pixel
values, which are converted to lie in the range [0, 1]. Each spike

train is randomized by drawing the mean firing rate from a
Gaussian distribution and additionally multiplying the constant
inter-spike interval length with a random number in the range
[0, 1] every time an event is created. However, our experiments
show that the feature learning does not depend significantly on
this particular conversion of the images to firing rates, as long as
the firing rates grow approximately with pixel intensity. In the
standard experiment, all images are presented for a fixed time
to the network. Note that the timescale here is only necessary
for the spike generator and therefore only influences the number
and statistics of the spikes emitted by each training example. The
processing of the network only requires the relative timing of
spikes. If not stated otherwise, the presentation time is set such
that each training example emits approximately between 1,400
and 3,500 spikes in total, depending on the average value of all
pixels in the image.

2.7. Testing Procedure
After training, the 60,000 digits of the training set are used to
label the neurons and in a second pass the test performance
is evaluated on all 10,000 test images. Since our mechanism is
unsupervised, we still need a simple classifier to assign to each
neuron in the last layer the label of its preferred class. This is
simply done by presenting each training image to the network
and assigning to each neuron the corresponding label if it is the
neuron with the highest response for this image. The preferred
label of a neuron is the label which was most often assigned to
it via this process. For inference, we only check if the preferred
label of the neuron which fired the most during presentation
of the test sample corresponds to the label of presented image.
If this is the case, the classification is considered as correct.
This mechanism can be seen as a minimal classifier which uses
only the prediction of the most active neuron for classification.
It is therefore a valid measure for the class specificity of the
neurons in the last layer. In particular, it does not influence the
learned features themselves, but only their interpretation. This
distinguishes it for example from a more complex classifier such
as an SVM, which performs a classification based on a weighted
combination of neuron outputs of the last convolutional layer,
with parameters trained in a supervised fashion. Our approach
corresponds to the more realistic unsupervised learning scenario
where generally much fewer labels than training instances are
available and therefore the labels can only be used to assess the
networks performance, but cannot be used for feature learning.
An analysis of how the number of labels affects the classification
performance can be seen in Figure 6. We can see that a few labels
are sufficient for approximate classification, but usingmore labels
of the training set further improves the performance. This makes
it possible to train the network without providing many labels
and still use them to improve the classification in the final layer
if they become available. We restricted ourselves in this work to a
simple classifier to obtain a meaningful measure of the quality
of the top level features. Depending on the complexity of the
hardware implementation, a more complex supervised classifier
could be used for the top layer to improve inference performance
(see for example Stromatias et al., 2017 for a supervised classifier
trained with gradient descent on spike histograms).

Frontiers in Computational Neuroscience | www.frontiersin.org 6 June 2018 | Volume 12 | Article 46

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Thiele et al. Event-Based Online Deep Learning

2.8. Event-Based Simulation
All simulations were performed with a modified version of
the N2D2 open source deep learning library by Bichler et al.
(2017), using the embedded event-based spiking neural network
simulator.

3. RESULTS

In this section, we present the main results of our simulation and
investigate several properties of the architecture which could be
of interest for an unsupervised online learning application.

3.1. Feature Learning and Inference
Performance
Our first experiment tried to optimize the network for maximum
performance on a single run of the full MNIST data set.
The network configuration can be seen in Figure 3 and a
visualization of the final features can be seen in Figure 4.
As can be seen in Figure 5, all layers of the network do
indeed converge simultaneously and classification performance
increases continuously.

An interesting property of the final weight matrices is their
sparsity and basically binary weight configuration. The sparsity
of the weight matrices is caused by the sparse input and
sparse responses of each layer due to the WTA mechanism.
The binarization is caused by the STDP learning mechanism
which enforces correlations. Synapses which receive consistently
input that causes postsynaptic spikes will quickly saturate to the
maximal weight value. During learning, this effect is attenuated
by the exponential weight damping, which prevents a overly
fast convergence of the weights to their maximal value. The fact
that the final weights are almost binary leaves the possibility
to binarize the weights fully after the learning phase without

changing the representations significantly. Depending on the
concrete hardware implementation, this would fully binarize
the networks computations and may yield additional processing
efficiency.

Even without this homeostatic mechanism and despite the
similar learning rule, the maximal performance of our network
(Figure 7) is higher than for the network of Querlioz et al. (2015)
for all neuron numbers in the fully connected layer. By increasing
the number of features in the convolutional layers, the network
is able to yield (96.58 ± 0.16%) accuracy on the test set in
the configuration with 16 and 256 maps in the convolutional
layers. It is also better than the architecture of Diehl and Cook
(2015), which uses besides a homeostatic mechanism several
other mechanisms to stabilize learning and improve performance
(such as divisive weight normalization, tuning of the input firing
rates, and reset of neuron values for each example) as well asmore
synapses and iterations over the training set (4.2 Mio. adjustable
synapses vs. 5 Mio. and 1 presentation vs. 15 presentations of
the full MNIST data set). One main advantage of a convolutional
architecture, as we have chosen it for this work, is that in contrast
to shallow networks we can exploit translational invariance.
Networks consisting only of a fully connected layer will fail to
recognize a class if it is presented slightly shifted compared to the
training set.

We also tested how strongly the online learning constraints
affected the result. In the standard configuration, shown in
Figure 3, the performance of the network is (95.2 ± 0.2%).
If we reset the neurons after each example presentation, the
performance increases slightly but insignificantly to (95.24 ±

0.26%). The same is true if we use a layer-wise training approach,
where every layer is only trained on the full training set after the
lower layers have been trained, which yields (95.27± 0.23%) test
set accuracy. We can thus conclude that our network does not

FIGURE 3 | Configuration of the convolutional network architecture used for the experiment, showing all kernel sizes, strides and number of neural maps for each

layer.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 June 2018 | Volume 12 | Article 46

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Thiele et al. Event-Based Online Deep Learning

FIGURE 4 | (A) Visualization of the preferred features learned in the different layers of the network. For the first layer, the preferred feature corresponds simply to the

weight kernel. We can see that this layer learns filter patches which detect local contrast differences. The higher layer features are constructed by choosing for each

neuron in the feature map the feature in the lower layer to which it has the maximum average connection strength. Note that due to the overlapping nature of the

weight kernel of each position, the features have a somehow translational invariant appearance. As we can see for the second convolutional layer, the neurons

become sensitive to parts of digits. Finally, in the fully connected layer, each neuron has learned a highly class specific version of a particular digit (digits 0–9 from left

to right). (B) Weight distribution for the different layers of the network. Most weights converge to 1 or 0. In the higher layers, the weights become increasingly sparse.

FIGURE 5 | Demonstration of the simultaneous emergence of features in the different layers of the network. We can see that even if the features in the lower layers are

not fully converged yet, the higher layer is able to assemble them to a more complex feature. The error plot shows the development of the running average error on

the training set (averaged over the last 1,000 examples). We can see that even with the fuzzy features the top layer is able to perform an approximate inference, which

continuously improves with the quality of the features.

seem to be significantly affected by these constraints relating to a
database framework.

As other approaches which extract features with STDP
and a winner-takes-all mechanism, the representations which
are learned have some similarity with a k-means clustering
algorithm. As it has been demonstrated in Coates et al. (2011),
extracting features unsupervised with k-means and training a
classifier on these features can yield good inference performance.
However, modern deep learning architectures rarely make use
of this unsupervised pretraining. One of the main reasons is
that the type of features learned by such algorithms are so-
called one-hot representations. This means that for a given

input, only a few of the features will be activated, yielding
a sparse code. On the other hand, representations learned by
the backpropagation algorithm are typically distributed, which
means that for a given input a lot of neurons will typically be
activated and represent the input though their combined activity.
In the parallel framework in which ANNs are typically used and
with the ability to use high precision floating point numbers,
distributed representations are usually superior since they are
much more efficient from a coding perspective. In particular,
GPUs can process very well the dense matrix multiplications
which arise in this type of feature encoding. In a spiking network
however, a high precision output of a neuron can only be

Frontiers in Computational Neuroscience | www.frontiersin.org 8 June 2018 | Volume 12 | Article 46

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Thiele et al. Event-Based Online Deep Learning

obtained if we use a large number of spikes (at least as long as
we use a rate code). In this case, the highly representative and
sparse features of a one-hot representation enable us to encode
complex information with much fewer spikes. Also, due to the
event-based coding paradigm, a sparse code means that most
inputs can be represented with only a few active neurons, while
the other neurons remain completely silent (Kheradpisheh et al.,
2017 showed that at most one spike per neuron per image can be
sufficient). The price we have to pay for this sparsity is a kind
of inefficient representation, which requires a large number of
neurons (i.e., neural maps).We still think that it is a more suitable
way to encode sparse representations in event-based systems. In
such a system, neurons are only activated by external input and
a large number of neurons does not necessarily produce a higher
total activity, since most of the neurons will remain inactive. We
can thus profit from sparse activity and its computational benefits
even if the number of features (and therefore neurons) becomes
very large.

3.2. Robustness to Input Variation and
Sparsity
In a follow-up experiment, we tested the robustness of learning
to input presentation time variations. This feature is important
for a real-world application, where we cannot be sure that all
classes and objects will be presented to the network for the same
fixed time. We therefore varied the presentation time of each
digit randomly by a factor between 0.1 and 1.9, such that the
total presentation time is on average equivalent to our other
simulations. We observe that the final classification performance
of the network seems to be insignificantly affected by these
variations, yielding an accuracy of 95.13% compared to 95.33%
with the same parameters and constant stimulus duration.

Additionally, we learned the whole training set with
a constantly different presentation time and evaluated the
performance (while adjusting the learning rates to account for
the smaller number of spike events). We can see that as long as
the presentation time stays within a certain range, the result is
largely unaffected by the presentation time. This is in particular
true for the feature learning, which seems to be mostly unaffected
by the presentation time of a single image. We noted however
that the presentation time is important for the inference phase.
The performance of our spike count classifier drops significantly
if the number of spikes triggered in the top layer becomes only
a tenth of the original time (see Figure 6). If we use however
the standard presentation time for the labeling and testing phase,
the classification accuracy is still around 93.72%. It therefore
seems that the drop in inference performance is mainly due to a
failure of the classifier, which requires a certain number of spikes
to label the neurons and classify correctly. This indicates that
the network is able to learn features even with a presentation
time per image which is one order of magnitude lower than
the presentation time we chose for the other simulations. For
this presentation time, there will be only approximately 100–
500 input spikes for a single training example and the spikes
triggered in the top layer are only in the order of 10. The total
number of spikes triggered in the full network will be in the

order of 1,000–2,000 depending on the image (if pooling neurons,
input spikes and “pseudo-spikes” by the learning accumulators
are discounted). For an image size of 28 × 28 = 784, this
means that most pixels with a value significantly higher than 0
will spike only once or twice per examples and potentially very
asynchronously. If we half the presentation time again to 5% of
the original time, inference performance finally begins to drop
strongly, although the feature learning mechanism still extracts
meaningful features. For this presentation time, every images will
be represented by only 40–100 spike events, which seems barely
enough to give a meaningful representation of the 784 pixel digit.
The drop in performance is therefore probably also caused by this
discretization limit of the digit. Our results demonstrate that even
with this asynchronous and sparse input, our architecture is able
to extract useful features.

3.3. Scaling
We also analyzed the scaling behavior of our network, which
is an important property for the potential of the architecture
to be extended to more complex data. In a first experiment,
we investigated how the size of the fully connected top layer
affects the classification performance. Similar as Querlioz et al.
(2011) and Diehl and Cook (2015), we could observe that
an increase in the number of neurons in this layer leads to
a higher classification accuracy. However, for our network,
the performance increases substantially faster than for their
architectures and our network yields higher or equal scores
for all layer sizes (see Figure 7). This indicates that the pre-
processing done by the convolutional layers indeed helps the
fully connected layer to extract more general and useful digit
prototypes, as compared to the case where the layer is directly
connected to the input layer. Furthermore we trained on
far less iterations over the MNIST set and did not use any
homeostatic mechanisms in our fully connected layer. Querlioz
et al. (2011) have observed in their work that such a mechanism
substantially improves the performance of their network by
balancing the competition between neurons. The fact that our
architecture performs better even without this mechanism could
indicate that the pre-processing of the convolutional layers
produces a spiking output which is easier to process for the
fully connected layer and increases the stability of the learning
process.

In a next step, we also investigated the scaling properties
of the convolutional layers by increasing the number of neural
maps (see Figure 7), while leaving all other neuron variables
untouched (in particular also the threshold of higher layers).
Our results show that an increase in the number of maps in the
second layer consistently leads to an increase in classification
performance. This is not the case for the first convolutional
layer. We suspect this could be caused by the relatively
high redundancy between the maps of the first convolutional
layer (see Figure 4). Since the competitive mechanism for the
inference accumulators is rather weak, many similar maps
can release a spike for the same input position and trigger a
spike in the layer above (whose thresholds were not changed
in the scaling process). This reduces the complexity of the
features which can be learned in the higher layers and could

Frontiers in Computational Neuroscience | www.frontiersin.org 9 June 2018 | Volume 12 | Article 46

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Thiele et al. Event-Based Online Deep Learning

FIGURE 6 | (A) Increase of test set performance as a function of the training set labels used to label the top layer neurons. (B) Influence of presentation time on

training and labeling phase. Times are given relative to the presentation and labeling time we used for the other simulations. Green: test performance if presentation

time during labeling and testing phase is same as during training. Red: performance if labeling and testing time is independent of the training phase presentation time

and equal to the time represented by 1.0.

FIGURE 7 | Scaling behavior of different layers of the network. (A) Scaling of the network performance with fixed number of top layer neurons and variable number of

feature maps in the convolutional layers. (B) Increase in test set performance as a function of the number of neurons in the fully connected top layer (with number of

feature maps fixed to 16 and 32 in the convolutional layers). The last point of Querlioz et al. (2015) is not exactly reported but likely lies between 94 and 95%.

therefore be responsible for the slight decrease in classification
performance. Since the maps in the second convolutional
layer are more complex, redundancy is lower and can be
counterbalanced by the inter-map competition of the inference
accumulators, which is why scaling seems to be more beneficial
here.

It seems that our architecture can consistently profit from
scaling, in particular in higher layers, where feature complexity is
high. The competitive mechanism for learning will try to achieve
maximal diversity for any number of maps while the inter-map
competition of the inference accumulators can counterbalance
potential redundancies in the propagation. Note that for both the
fully connected and the convolutional layers we had to increase
learning rates since the training time scales approximately
linearly with the number of inhibited entities (i.e., maps for the
convolutional layers and neurons for the fully connected one),
which is a consequence of the winner-takes-all dynamics. This is
only necessary to achieve convergence on a single presentation
of the MNIST dataset and would not be a problem in an online
learning setting, where unlabeled training images are abundant.

3.4. Robustness to Learning Rate Variation
While adjusting the learning rate for the scaling experiments,
we observed that our architecture seems to be very robust to
a change in the absolute values of the learning rates (while
leaving the ratio between LTP and LTD constant). Figure 8 shows
the inference performance on the last 1,000 examples of the
training set and the test set as a function of the learning rate
variation. Our experiments show that the network performance
is remarkably stable with regard to the absolute value of the
learning rates. In a value range for the learning rate spanning an
order of magnitude, we can observe stable online training error
convergence. A learning rate which is too low will not converge
on a single presentation of the MNIST dataset (however if it is
presentedmultiple times or if there would be more images). If the
learning rate is very high, the online classification performance
becomes unstable after an initial steep increase. This is probably
mainly due to the online labeling mechanism which is used for
classification. A high learning rate will alter the learned features
of the neuron continuously and therefore the labelingmechanism
fails. This could explain why the test performance is only affected

Frontiers in Computational Neuroscience | www.frontiersin.org 10 June 2018 | Volume 12 | Article 46

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Thiele et al. Event-Based Online Deep Learning

FIGURE 8 | (A) Influence of the variation of the learning rate in the fully connected layer on the test performance, measured relative to the learning rate which enables

convergence over a single dataset iteration. A learning rate which is too low will not converge over a single presentation of the MNIST dataset, while a very high

learning rate leads to instabilities. (B) Online training performance for different learning rates (averaged over 1,000 last examples). Neurons are labeled online during

the learning process.

to a comparably small extend, since in the test phase, neurons are
labeled while learning is disabled.

In contrast to many ANN implementations, which are
optimized for classification performance, we did not implement a
learning rate variation policy, since this would violate the online
learning paradigm. Our results show that even a constantly high
learning can lead to robust convergence.

Depending on the specific application, the learning rate could
be very high, allowing a fast adaption to changing input stimuli,
or very low, which allows to include more information from
training examples into the weights and therefore might lead to
better generalization. We could also imagine a mechanism which
changes the learning rate depending on the online classification
performance. If the performance drops suddenly, the learning
rate can be set to a higher value to let the network adapt to
possibly unseen inputs.

Both the stability of the architecture for high learning rates
and the promising scaling behavior have beneficial consequences
for the parameter tuning process in a practical application. This
is true in particular if the optimal architecture can not be found
easily by an optimization process over a fixed training and test set.
Initially, we could set the learning rates very high and use only a
small number of neural maps to check if the neural maps quickly
converge to a meaningful solution, which requires only a small
unlabeled dataset with approximately the same properties as the
online learning data. Such a solution could be easily identified
given the intuitive local and hierarchical representations of the
network and the ability to assess classification performance with
only a few labels necessary for the spike-count classifier. If this
is the case, the learning rates can be set to a low value and the
network scaled up for the high precision online learning task.

4. DISCUSSION AND OUTLOOK

As other recent work in the field of spike-based learning rules,
our work can be seen as a proof of concept, which demonstrates

that multi-layer learning of hierarchical features with STDP is
possible. Our work extends current approaches by its ability
to train all layers simultaneously. This makes our architecture
suitable for online learning in systems which receive a continuous
stream of data from their environment and which have to
perform learning and inference at the same time. Since the basic
features of our architecture are not limited to any specific form of
input, the network should be easily extendable to more complex
natural images. As it has been shown in Kheradpisheh et al.
(2017), the mechanisms of the architecture can be used to detect
natural objects, such as faces or motorbikes.

Note that for the learning mechanisms used in this work,
inference performance could possibly be optimized by a layer-
wise training scheme as it was used in previous work. We
refrained from using such a mechanism to demonstrate how
a dual accumulator neuron can be used to provide sufficient
input to higher layers even with an active inhibitory mechanism.
The multi-layer nature of our architecture makes it accessible
to learning mechanisms which involve multi-layer top-down
feedback. In particular, the online predictions of our network
could be used for a reinforcement learning scheme, which
could modulate STDP learning with a reward signal which
is propagated through the network. Additionally, multi-layer
training is more compatible with an online learning paradigm,
where it is not possible to receive a stimulus a second time.
This could be problematic for a layer-wise training mechanism
since higher layers would be trained on different inputs than
the layers below. Finally, in contrast to other deep architectures
which perform the feature extraction in the final layer with a
more complex classifier to improve performance, the output of
our network is highly specific and could be used directly for a
higher level spiking processing stage (see for instance Eliasmith
et al., 2012; Diehl and Cook, 2016 for functional spiking models
of higher cortical processing).

As other systems trained purely with STDP, our network
underperforms compared to current state-of-the-art CNNs,

Frontiers in Computational Neuroscience | www.frontiersin.org 11 June 2018 | Volume 12 | Article 46

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Thiele et al. Event-Based Online Deep Learning

which easily yield classification accuracies beyond 99% (LeCun
et al., 1998) on the MNIST benchmark. We want to emphasize
here however that this difference in performance is to be expected
since these networks are trained in a supervised fashion and
with high precision activations (represented by floating point
numbers). Their weights are therefore directly optimized to
yield a high classification accuracy, which is not the case for an
unsupervised architecture as the one we presented in this work,
whose objective is merely to extract the statistically most relevent
features of the training set given the constraints imposed by the
architecture and the learning rules. As it has been shown recently
by Neftci et al. (2017), an event-based version of backpropagation
is able to yield performances much closer to frame based ANNs.
The large differences in classification performances between
networks trained with STDP and their frame based counterparts
may therefore be caused to a large extent by differences in the
training objective, and less by a general weakness of the event-
based learning mechanism.

In contrast to the precise but resource hungry frame-based
ANN approaches, our network is based on a spike code and
therefore potentially very energy efficient if implemented
on a neuromorphic hardware platform. Differences in
timescale between inputs and hardware can be a problem
for neuromorphic systems if they shall operate on natural stimuli
in real time and the timescale of a neuromorphic system is
often a design choice depending on the potential application
(see for instance Qiao et al., 2015; Petrovici et al., 2017 for
a real time and faster than real time analog neuromorphic
hardware framework). Due to the fully event-based nature of our
architecture, our network circumvents this problem and is able to

operate on any time scales with computations being only driven
by external input. Together with the simplicity of the neuron and

synapse model, our architecture could be easily scaled up and
implemented on a wide range of energy efficient neuromorphic
hardware architectures for robotics and Internet-of-Things (IoT)
applications. Its ability to extract features even from a strongly
varying potentially sparse spiking input could make it suitable
for feature extraction from a dynamic vision sensor (see for
instance Lichtsteiner et al., 2008; Posch andWohlgenannt, 2008).

AUTHOR CONTRIBUTIONS

JT designed the architecture, performed the simulations, and
wrote the manuscript. OB made conceptual contributions to
the architecture and the simulation and gave feedback on
the manuscript. AD provided feedback on architecture and
manuscript.

FUNDING

This work was partly funded by EU grant NeuRAM3 with project
number 687299.

ACKNOWLEDGMENTS

We like to thank Vincent Lorrain for the helpful discussions.
Parts of this work were presented (as poster) at the Datascience
Summer School at Ecole Polytechnique 2017 and in the NIPS
2017 workshop Cognitively Informed Artificial Intelligence:
Insights from Natural Intelligence (Thiele et al., 2017).

REFERENCES

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal

neurons : dependence on spike timing , synaptic strength , and postsynaptic cell

type. J. Neurosci. 18, 10464–10472.

Bichler, O., Briand, D., Gacoin, V., and Bertelone, B. (2017). N2D2 - Neural

Network Design and Deployment. Manual available on Github.

Coates, A., Lee, H., and Ng, A. Y. (2011). “An analysis of single-layer networks

in unsupervised feature learning,” in Proceedings of the 14th International

Conference on Artificial Intelligence and Statistics (AISTATS) (Fort Lauderdale,

FL).

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., and Cook, M. (2016). Learning and inferring relations in cortical

networks. arXiv:1608.08267v1.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.

(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.

doi: 10.1126/science.1225266

Habenschuss, S., Bill, J., and Nessler, B. (2012). “Homeostatic plasticity in bayesian

spiking networks as expectation maximization with posterior constraints,” in

Advances in Neural Information Processing Systems 25, 773–781.

Habenschuss, S., Puhr, S., and Maass, W. (2013). Emergence of optimal

decoding of population codes through STDP. Neural Comput. 25, 1371–1407.

doi: 10.1162/NECO_a_00446

Huh, D., and Sejnowski, T. J. (2017). Gradient descent for spiking neural networks.

arXiv:1706.04698v2.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2017).

STDP-based spiking deep convolutional neural networks for object recognition.

Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

LeCun, Y., Bengio, Y., and Hinton, G. (1998). “Gradient-based learning applied to

document recognition,” in Proceedings of the IEEE, Vol. 86.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Lee, J. H., Delbruck, T., and Michael, P. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128 × 128 120 dB 15 µs

latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ.

43, 566–576. doi: 10.1109/JSSC.2007.914337

Liu, T., Zihao, L., Fuhong, L., Jin, Y., Quan, G., and Wen, W. (2017). “MT-Spike: a

multilayer time-based spiking neuromorphic architecture with temporal error

backpropagation,” in IEEE/ACM International Conference on Computer-Aided

Design (ICCAD) (Irvine, CA), 450–457.

Maass, W. (2000). On the Computational Power of Winner-Take-All. Electronic

Colloquium on Computational Complexity (ECCC), 32.

Mostafa, H. (2017). “Supervised learning based on temporal coding in spiking

neural networks,” IEEE Transactions on Neural Networks and Learning Systems,

1–9.

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and

Ganjtabesh, M. (2017). First-spike based visual categorization using reward-

modulated STDP. arXiv:1705.09132v1.

Neftci, E., Augustine, C., Somnath, P., and Detorakis, G. (2017). Neuromorphic

deep learning machines. arXiv preprint arXiv:1612.05596v2.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 June 2018 | Volume 12 | Article 46

https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1126/science.1225266
https://doi.org/10.1162/NECO_a_00446
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1038/nature14539
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JSSC.2007.914337
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Thiele et al. Event-Based Online Deep Learning

Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian computation

emerges in generic cortical microcircuits through spike-timing-dependent

plasticity. PLoS Comput. Biol. 9:e1003037. doi: 10.1371/journal.pcbi.1003037

O’Connor, P., and Welling, M. (2016). “Deep spiking networks,” in

arXiv:1602.08323v2, NIPS 2016 Workshop “Computing with Spikes”,

(Barcelona).

Panda, P., Srinivasan, G., and Roy, K. (2017). Convolutional spike timing

dependent plasticity Based feature learning in spiking neural networks. arXiv

preprint arXiv:1703.03854v2.

Petrovici, M., Schmitt, S., Klähn, J., Stöckel, D., Schroeder, A., Bellec, G.,

et al. (2017). Pattern representation and recognition with accelerated analog

neuromorphic systems. arXiv preprint arXiv:1703.06043.

Posch, C., and Wohlgenannt, R. (2008). “An asynchronous time-based image

sensor,” in IEEE International Symposium on Circuits and Systems (ISCAS) 2008

(Seattle, WA), 2130–2133.

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128K synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Querlioz, D., Bichler, O., and Gamrat, C. (2011). “Simulation of a memristor-

based spiking neural network immune to device variations,” in International

Joint Conference on Neural Networks (IJCNN) (San Jose, CA), 1775–1781.

Querlioz, D., Bichler, O., Vincent, A. F., and Gamrat, C. (2015). “Bioinspired

programming of memory devices for implementing an inference engine,” in

Proceedings of the IEEE, Vol. 103, 1398–1416.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323, 533–536.

Stromatias, E., Soto, M., Serrano-Gotarredona, T., and Bernabé, L.-B.

(2017). An event-driven classifier for spiking neural networks fed

with synthetic or dynamic vision sensor data. Front. Neurosci. 11:350.

doi: 10.3389/fnins.2017.00350

Tavanaei, A., and Maida, A. S. (2017). Bio-inspired spiking convolutional

network using layer-wise sparse coding and STDP learning. arXiv preprint

arXiv:1611.03000v3.

Tavanaei, A., Masquelier, T., and Maida, A. S. (2016). “Acquisition of visual

features through probabilistic spike-timing-dependent plasticity,” in 2016

International Joint Conference on Neural Networks (IJCNN) (Vancouver, BC),

307–314.

Thiele, J. C., Bichler, O., and Dupret, A. (2017). “Using STDP for

unsupervised, event-based online learning,” NIPS 2017 workshop “Cognitively

Informed Artificial Intelligence: Insights from Natural Intelligence”

(Long Beach, CA).

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2017). Spatio-temporal

backpropagation for training high-performing spiking neural networks.

arXiv:1706.02609v3.

Yousefzadeh, A., Masquelier, T., and Serrano-Gotarredona, T. (2017). “Hardware

implementation of convolutional STDP for on-line visual feature learning,”

in 2017 IEEE International Symposium on Circuits and Systems (ISCAS)

(Baltimore, MD).

Zenke, F., and Ganguli, S. (2017). SuperSpike: supervised

learning in multi-layer spiking neural networks. arXiv:1705.

11146v1.

Conflict of Interest Statement: The dual accumulator neuron is protected under

EU patent EP17203159 “A STDP-Based Learning Method for a network having

dual accumulator neurons.

The authors declare that the research was conducted in the absence of any

commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2018 Thiele, Bichler and Dupret. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 June 2018 | Volume 12 | Article 46

https://doi.org/10.1371/journal.pcbi.1003037
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.3389/fnins.2017.00350
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Event-Based, Timescale Invariant Unsupervised Online Deep Learning With STDP
	1. Introduction
	2. Methods
	2.1. Network Architecture
	2.2. Dual Accumulator Neurons
	2.3. Online Learning Constraints
	2.4. Learning Rule
	2.5. Timescale Invariant STDP Learning
	2.6. Input Encoding
	2.7. Testing Procedure
	2.8. Event-Based Simulation

	3. Results
	3.1. Feature Learning and Inference Performance
	3.2. Robustness to Input Variation and Sparsity
	3.3. Scaling
	3.4. Robustness to Learning Rate Variation

	4. Discussion and Outlook
	Author Contributions
	Funding
	Acknowledgments
	References

