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The dynamics of the environment where we live in and the interaction with it, predicting

events, provided strong evolutionary pressures for the brain functioning to process

temporal information and generate timed responses. As a result, the human brain is

able to process temporal information and generate temporal patterns. Despite the clear

importance of temporal processing to cognition, learning, communication and sensory,

motor and emotional processing, the basal mechanisms of how animals differentiate

simple intervals or provide timed responses are still under debate. The lesson we learned

from the last decade of research in neuroscience is that functional and structural brain

connectivity matter. Specifically, it has been accepted that the organization of the brain

in interacting segregated networks enables its function. In this paper we delineate the

route to a promising approach for investigating timing mechanisms. We illustrate how

novel insight into timing mechanisms can come by investigating brain functioning as a

multi-layer dynamical network whose clustered dynamics is bound to report the presence

of metastable states. We anticipate that metastable dynamics underlie the real-time

coordination necessary for the brain’s dynamic functioning associated to time perception.

This new point of view will help further clarifying mechanisms of neuropsychiatric

disorders.

Keywords: brain networks, multiscale modeling, metastable state brain dynamics, timing and time perception,

functional MRI, electrophysiology

THE VIEW

Timing is an umbrella term that encompasses a variety of processes based on the prediction and
estimation of temporal intervals across a wide range of scales, from hundreds of milliseconds to
seconds. Theoretical models, mainly based on the existence of an internal clock (Gibbon, 1977),
have been challenged by compelling behavioral findings that enhance suspects about its biological
plausibility (Karmarkar and Buonomano, 2007). Alternate models have been proposed, describing
timing as an ensemble of neural processes emerging from the activity of neural circuits inherently
capable of temporal processing as a result of the complexity of cortical networks coupled with
the presence of time-dependent neuronal properties (Buonomano and Maass, 2009). In this view,
neural systems can benefit from the temporal evolution of their states, caused by the variation in
neural and synaptic properties. The overall effect results in an adaptation of cerebral networks that
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could be tuned to discriminate temporal intervals (Bueno et al.,
2017). State-dependent models can be extended to be consistent
with the majority of timing models (Hass and Durstewitz, 2016),
with the different models indicating specific constraints on what
would collapse the state space. Although a route is traced toward
a comprehensive description of timing, it is still unclear whether
brain networks states are part of a coding scheme used to track
time or a by-product of other processes that could generate a
time-decodable signal. A possible theoretical framework could
be the multi-scale description of brain networks both in space
and time. On one hand it would be able to capture the local-
to-global properties of neural processes that give rise to timing,
on the other hand it would allow to grasp the integration
processes among brain regions responsible for timing by means
of metastability of network states (Friston, 1997; Fingelkurts
and Fingelkurts, 2004, 2017; Deco and Kringelbach, 2016).
Accordingly, our perspective view about the best strategy able
to provide a coherent and complete description of timing can be
divided in three steps: (1) the choice of tasks involving different
aspects of timing (Coull and Nobre, 1998, 2008; Coull, 2004;
Coull et al., 2013; Ciullo et al., 2018a) to be administered on
a steady-state fashion (Gonzalez-Castillo and Bandettini, 2018;
Tommasin et al., 2018) in order to saturate the activity of the
areas interacting during the specific task; (2) the brain activity
should be monitored by means of different techniques able to
highlight different temporal and spatial scales (e.g., fMRI, hd-
EEG, MEG). Specifically the different scales can be cast in a
common framework according to the multilayer representation
(De Domenico et al., 2013) (different spatial scales for the same
time scale or different temporal scales for the same spatial one);
(3) the temporal dynamics from each task will be finally analyzed
and fitted to theoretical models of neuronal synchronization
(Deco et al., 2017; Cavanna et al., 2018) in order to cluster the
dynamics of brain’s activity during time processing.

In the following paragraphs the core of each step is clarified
and a review of the state-of-the-art is proposed.

TIMING IN HUMAN AND NON—HUMAN
ANIMALS

The perception of what happens around us and the capacity
to respond to it are crucially based on our ability of keeping
track of time. Since both perception and action change over
time, timing is necessary to estimate environmental dynamics,
evaluate interplay between events and predict the consequences
of our actions. Throughout normal development we acquire a
sense of duration and rhythm that is basic to many behavioral
aspects (Allman et al., 2012). Even if there is no specific system
that senses time, human and non-human animals can estimate
temporal intervals across a wide range of scales (Mauk and
Buonomano, 2004; Buhusi and Meck, 2005). Intervals ranging
from hundreds of milliseconds to seconds are typically associated
with sensory and motor processing, learning, cognition and
emotional processing (Figure 1), while larger intervals include
processes that range from decision making to sleep-wake cycles
(Buhusi and Meck, 2005). There is experimental evidence that

timing is an intrinsic computational ability of every circuit in
the cortex and that it can be performed locally. This notion
implies that during perception tasks cortical networks can tell
time as a result of time-dependent changes in synaptic properties,
which influence any population response to sensory events in a
history dependent fashion (Karmarkar and Buonomano, 2007).
Furthermore, with the above mentioned sensory timing, motor
timing is supposed to depend on the activity of highly connected
cortical recurrent networks able to self-sustain activity (Mauk
and Buonomano, 2004).

Psychophysical experiments suggest that sensory timing
can be local (Johnston et al., 2006; Burr et al., 2007; van
Wassenhove and Nagarajan, 2007), even if other results suggest
that temporal performance variability in different contexts may
be better described by a hybrid model (Merchant et al., 2008).
Neuroimaging research suggests that a partially distributed
timing mechanism sustains contextual flexibility. It is supposed
to be integrated by core structures such as the cortico-thalamic-
basal ganglia (CTBG) circuit and regions that are selectively
engaged by different behavioral contexts (Buhusi and Meck,
2005; Coull et al., 2011). Cell activity changes, associated
with temporal processing in behaving monkeys, have been
described in areas composing different circuits responsible for
sensorimotor processing via the skeletomotor or oculomotor
effector systems (Perrett, 1998; Lebedev et al., 2007; Tanaka,
2007; Genovesio et al., 2009; Mita et al., 2009). Most of
these studies reported climbing activity during different timing
conditions: discrimination of time, time estimation, single
interval reproduction and delay related response. Specifically,
Merchant et al. (2013) showed a variable discharge rate of
cells of Medial Premotor Cortex (MPC) as a function of
interval durations with a synchronization-continuation tapping
task. This suggested the MPC might contain a representation
of interval duration, in the hundred of milliseconds, where
diverse populations of interval-tuned cells are typically activated
according to the duration of the produced interval. Ramping
activity of MPC cells encodes either the elapsed or the
remaining time for a temporalized movement such that
the dynamic organization of motor intentions and action is
sustained by ramping cells. Accordingly, interval tuning on the
overall discharge rate affects more cognitive facets of temporal
processing.

By moving to larger temporal and spatial scales, functional
magnetic resonance imaging (fMRI) studies in humans showed
that interval timing is regulated by distributed brain networks
whose involvement is flexibly adapted according to task
demands: timing emerges from the interaction among diverse
brain regions rather than from processing in a specific one
(Livesey et al., 2007; Coull et al., 2008; Harrington et al.,
2010; Fingelkurts, 2014). For example pattern of timing-
related activation in bilateral caudate and putamen was found
to be distinguished from that found for most other brain
regions in time-perception tasks. Only the anterior insula was
found to exhibit the same activation pattern. This region
crucially integrates processing from disparate domains (e.g.,
interoception, emotion, and cognition), including time (Kosillo
and Smith, 2010; Wittmann et al., 2010), via its dense pattern
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FIGURE 1 | Timing taxonomy. (A) Human and non-human animals have developed multiple systems able to perform different tasks that are based on timing

processing at different scales, that range over more than 10 orders of magnitude. (B) Explicit vs. Implicit timing. Explicit timing is engaged by tasks requiring either

motor production (motor timing) or perceptual discrimination (perceptual timing) of a timed duration. Implicit timing is engaged as a product of the temporal regularity

of either a motor output (emergent timing) or a perceptual input (temporal expectation). The latter can be established either incidentally via a temporally regular stimulus

structure (exogenous temporal expectation) or deliberately via informative pre-cues (endogenous temporal expectation). Adapted from (Coull and Nobre, 2008).

of connections with most association areas in the basal
ganglia and the occipital, temporal and prefrontal cortex. The
connectedness of anterior insula with frontal cognitive control
areas suggests that it supports the perceptual integration of
sensory information (Eckert et al., 2009). By stimulating the
supramarginal gyrus of the right hemisphere with transcranial
magnetic stimulation (TMS) a dilation of perceived duration
was induced because of its effect on interval encoding (Wiener
et al., 2012). This result indicates that the neural circuitry
that encodes time crucially includes the right supramarginal
gyrus, confirming the detrimental effect of right parietal
damage on time perception (Harrington et al., 1998). These
findings support also the hypothesis of a network of multiple
central clocks and distributed processes of timing mechanisms
(Merchant et al., 2008). The ability to organize behaviors
within periods in the range of seconds to minutes, depends
on a cognitive system that requires multiple neuropsychological
functions (Buhusi and Meck, 2005; Coull and Nobre, 2008),
consequently pathophysiological distortions in timemight reflect
neuropsychological deficits typical of definite neuropsychiatric
disorders as schizophrenia (Ciullo et al., 2016, 2018a), acquired
brain injury (Piras et al., 2014), Parkinson’s disease (Wearden
et al., 2008), Huntington’s disease (Beste et al., 2007) and
attention-deficit hyperactivity disorder (Zelaznik et al., 2012).
Thus, the understanding of timing mechanisms and of the
related cognitive processes may also allow the realization of
a model system aiming to characterize cognitive dysfunctions
in order to define novel tools for early diagnosis and to
develop novel targeted cognitive therapies. However, despite
intensive investigations and substantial progress, the absence of
a definitive framework encompassing the multifaceted nature
of timing processes indicate that our understanding of the
principles and mechanisms underlying brain functioning during

time perception remains still incomplete. Nonetheless, all the
results described above emphasize the role of interactions among
distributed neuronal populations at different spatiotemporal
scales in enabling flexible cognitive operations that give rise to
sense of time (Fingelkurts and Fingelkurts, 2006). Given the
functional specialization and integration that sustain the sense of
time, a promising framework able to provide a modeling of time
perception in the brain from an explicitly integrative perspective
is represented by complex network theory. Recent developments
in the quantitative analysis of complex networks, based largely
on graph theory, have been rapidly translated to studies of brain
network organization. Accordingly, the brain is described as
a network of nodes and edges, while analytic advancements in
network science and statistics allow us to represent and quantify
functional interactions among brain regions of interest in order
tomake inferences about its organizational properties both at rest
and as a function of cognitive demands. To our knowledge, a
network based description of brain regions integration in timing
is still largely incomplete and actually available only in Ciullo
et al. (2018b) and Ghaderi et al. (2018).

This kind of cerebral systems modeling (Bassett and Sporns,
2017), will be crucially beneficial in the close future to an
organic description of brain functioning during the estimation
of temporal intervals and eventually to a better description of
disorders characterized by impaired time perception.

MULTISCALE BRAIN NETWORKS

A tentative modeling of time perception processes necessarily
points to a description of brain functioning based on the interplay
ofmulti-scale brain networks (Fingelkurts et al., 2010; Bassett and
Siebenhühner, 2013). The meaning of “scale” can vary according
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to the context: (i) a network’s spatial scale, which refers to the
resolution at which its connected regions of interest (nodes) and
connections (edges) are defined, and can range from individual
cells and synapses size (Jarrell et al., 2012; Shimono and Beggs,
2015; Lee et al., 2016), to brain regions and fiber tracts (Bullmore
and Bassett, 2011) and (ii) temporal scales with precision ranging
from sub-millisecond (Burns et al., 2014), to lifetime (Betzel et al.,
2014; Gu et al., 2015). Although it is important to understand
the functioning of individual elements, at each scale it is crucial
to understand the sets of pair-wise relations that arrange the
elements into the larger description of a totally interconnected
system, namely the local and global topology of the network
(Fingelkurts et al., 2010; Barabasi, 2016). Together these scales
define a three-dimensional space in which the evolution of the
brain network complexity is reported, being each point identified
by three coordinates: space, time, and topology (Betzel and
Bassett, 2017). Most descriptions of time perception mechanisms
exist as single points in this space being based on analyses focused
on networks defined singularly at one spatial, temporal, and
topological scale. We anticipate that, while such studies have
proven illuminating, in order to better understand the brain’s
true multi-scale, multi-level nature, it is essential that analyses
begin to form bridges that link different scales to one another in
order to offer a comprehensive description of the mechanisms
that govern timing.

One promising approach to study a network that changes over
multiple timescales is to make use of multi-layer network models
of temporal networks (De Domenico et al., 2013; Kivelä et al.,
2014). The multi-layer network model can treat estimates of the
network’s topology at different points of the time-scale as “layers.”
This implies the necessity to integrate different modalities of
investigation spanning different time-scales. It could be done by
creating a multi-layer from different non-invasive neuroimaging
techniques: from high-density electroencephalography (hd-EEG)
(Liu et al., 2017), to magnetoencephalography (MEG) (de
Pasquale et al., 2010), fast fMRI (Lewis et al., 2016), classical fMRI
(Telesford et al., 2016) and combined EEG-fMRI (Mullinger and
Bowtell, 2010; Yu et al., 2016). On the other hand, invasive
approaches are able to detect multiple single neuron signals in
non-human animals (Logothetis, 2012) and in human patients
that need deep brain stimulation (Okun, 2014). Traditional
analysis would characterize each layer independently of one
another, while multi-layer network analysis treats the ensemble
of layers as a single unit, characterizing its structure as a whole to
explicitly bridge multiple temporal scales. Since the multi-layer
network model doesn’t depend on the timescales represented by
each layer, it can include any timescale made accessible using
neuroimaging technologies.

As well as for time, the space dimension can be also
investigated at multiple scales (Figure 2A). MEG and fMRI
analyses of human brain networks are limited by the accuracy
of the inverse source localization of signal generators (MEG),
and the spatial granularity of the individual voxel (fMRI).
Nonetheless, it is possible to probe multiple spatial scales by
appropriately aggregating the minimal units of interest into
parcels or regions of interest. Several parcellation approaches
have been proposed, distinguishing to one another according to

different criteria as spatial variation in functional connectivity,
myelination, cytoarchitectonics, etc. (Tzourio-Mazoyer et al.,
2002; Craddock et al., 2012; Wang et al., 2015; Glasser et al., 2016;
Gordon et al., 2016). Since the choice of parcellation conditions
the network’s topology (Wang et al., 2009; Zalesky et al., 2010), it
must be checked if any result is not driven by the specific choice
of parcellation, and is reproducible (at least qualitatively) using a
different set of parcels at the same resolution (Bassett et al., 2011).
A route for future research is to apply multi-scale topological
analysis to voxel-level networks during the execution of tasks. It
will allow identifying different parcels differentially involved in
different brain states in order to sub-divide specific brain areas
responsible for sustaining different cognitive engagements.

METASTABILITY: A RESOURCE OF BRAIN
NETWORKS FOR SUSTAINING TIME
PERCEPTION MECHANISMS

Large-scale brain networks have been showed to be organized
according to multiple segregated sub-networks of interacting
areas. It has been suggested that a dynamic, adaptable brain
network arrangement in response to environmental stimulations
underlies successful cognition (Bressler and Kelso, 2001; Fries,
2005). Dynamic combination of responses to sensory inputs, and
spontaneous processing is at the core of brain activity, where
task evoked responses should not be interpreted only in terms of
localized processing, but should also take into account distributed
processing occurring as activity flow across intrinsic networks
(Smith et al., 2009; Zalesky et al., 2014; Sadaghiani et al., 2015;
Cole et al., 2016; Shine et al., 2016). This allows a description
of brain functioning in terms of a continuous recruitment of
neuronal populations in a temporally coordinated fashion both
during tasks execution, and at rest (Fingelkurts and Fingelkurts,
2005). Recently, it has been found that the neuronal engagement
follows a precise hierarchy, according to two distinct sets of
networks, or metastates, that the brain tends to cycle within
(Vidaurre et al., 2017).

Metastates or metastable cerebral states are the core of
a prominent conceptual framework known as Metastability
(Scott Kelso, 1995; Fingelkurts and Fingelkurts, 2004, 2017;
Freeman and Holmes, 2005; Werner, 2007). It offers a
description of the reciprocal influence among interconnected
parts and processes when pure synchronization does not occur.
In coordination dynamics, such synchronization corresponds
to stable fixed points of collective states (Friston, 1997).
Metastability can be better understood by defining an energy
landscape for the ensemble of possible states experienced by
the brain: the phase space of the brain system (Fingelkurts
and Fingelkurts, 2004, 2017). Generally, a system dynamically
evolves attracted toward states of minimum energy, which can
be either local or global. After being temporarily attracted
toward a local state of minimum energy, an externally driven
system can flee the basin of attraction and experience other
equilibrium states. The dynamics of a metastable system
is characterized by states that only transiently attract the
dynamics. Since during its dynamic evolution the system
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FIGURE 2 | Multiscale and multistable nature of the brain. (A) Rather than considering the brain as a list of parts defined at a particular scale, brain network theory

take advantage of the complexity of the interactions between the parts, and identifies the dependence of phenomena across scales. Box dimensions give outer

bounds of the spatial and temporal scales at which relational data are measured and interactions unfold. Adapted from an image of neuroscience recording methods

(Sejnowski et al., 2014). (B) The concepts of energy landscape and metastability. Points of these landscapes correspond to particular states of the system. The

system at equilibrium (green) is perturbed (at t0) toward a state (red) that subsequently (at t1) relaxes. In (a) the system is stable and local minima (equilibrium points)

are deep: dynamics are rapidly restored and the effects of perturbation are short-lasting. In (b) the energy landscape is almost flat and the stability of local minima

decreases: the system can easily explore different (metastable) states without an external driving or endogenous fluctuation.

tends to linger around these metastable states, the idea of a
repertoire of conditions or configurations can be introduced
(Figure 2B). Consequently, components are able to influence
each other’s destiny without being caught in a sustained
state of synchronization, unable to create collectively new
information Scott Kelso, 1995; Tognoli and Kelso, 2014). The
emergence of metastable dynamics has been theoretically showed
to be contingent upon the coupling between modules of a
dynamical system (Friston, 1997; Strogatz, 2001; Shanahan,
2010; Cabral et al., 2011). Specifically, dynamic patterns of
functional brain networks, consistent with metastable dynamics,
come out when coupling is topologically characterized by
short average path lengths and high clustering (Wildie and
Shanahan, 2012) of modules. The efficiency of task-related
brain activity has been showed to depend on metastability of
spontaneous brain activity, which allows for optimal experience
of the dynamical repertoire (Cabral et al., 2014). Recently
metastability in brain networks has been investigated in aging,
consciousness and neuronal communication in healthy subjects
(Deco and Kringelbach, 2016; Deco et al., 2017; Naik et al.,

2017; Cavanna et al., 2018) and in Schizophrenia and Alzheimer’s
disease patients (Córdova-Palomera et al., 2017; Koutsoukos
and Angelopoulos, 2018). A variety of methods are described
in order to capture synchronization and metastability in brain
functioning.

Since metastability is a fundamental concept to grasp the
behavior of complex systems theoretically and empirically,
we anticipate that a form of metastability exists in time
processing systems that parallels the metastability observed
in many other aspects of brain functioning. The need for
metastability in time perception modeling follows right from
the definition. Metastability is the simultaneous occurrence
of two competing tendencies: the inclination of individual
components to exist as interacting entities and the propensity
for the components to be characterized just by their independent
behavior (Kelso, 2012). As a consequence metastability may be
thought as a dynamical condition that allows the coordination
of heterogeneous elements as it happens during time perception
(brain areas having disparate intrinsic dynamics or brain areas
whose activity is associated with different sensory, motor
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and cognitive processes) (Fingelkurts and Fingelkurts, 2006;
Fingelkurts, 2014). Metastable brain theory may ameliorate
timing modeling as it does not favor extremes, e.g., integrated
vs. segregated processes, but it tends to reconcile them. Since
metastability is a characteristic of the full complexity of the brain,
it reaches a maximum when the balance between segregative and
integrative forces is found. Furthermore, metastability doesn’t
need active induction since no disengagement mechanisms are
required, as it happens in timing processing (Kononowicz et al.,
2016). Finally, the crucial importance of time to perception and
action necessitates metastability, in order to explain the ease with
which timing can be performed by a range of different neural
architectures. Clustering the dynamics of brain’s activity during
time processing may unearth the presence of metastable states
associated with this specific aspect of cognition.

CONCLUSION

Here we propose that the route along which future research
will find novel insight into timing mechanisms is drawn in
the direction of brain investigation as a multi-layer dynamical
network whose clustered dynamics unavoidably reports the
presence of metastable states. This perspective paves the way

for future investigations into both the role of timing in other
cognitive domains, from learning to agency, and the role that
temporal dependency of brain network states has in cognition,
elucidating the general characteristics of human cognitive
activity that exists at a wide range of spatiotemporal scales. At
the same time, our better understanding of dysfunctional timing
processes will crucially allow us to develop novel diagnostics
of neuropsychiatric diseases, and to design personalized
therapeutics for rehabilitation and treatment of brain disorders
characterized by distorted time perception.
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