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The human nervous system is an ensemble of connected neuronal networks. Modeling

and system identification of the human nervous system helps us understand how

the brain processes sensory input and controls responses at the systems level. This

study aims to propose an advanced approach based on a hierarchical neural network

and non-linear system identification method to model neural activity in the nervous

system in response to an external somatosensory input. The proposed approach

incorporates basic concepts of Non-linear AutoRegressive Moving Average Model with

eXogenous input (NARMAX) and neural network to acknowledge non-linear closed-loop

neural interactions. Different from the commonly used polynomial NARMAX method,

the proposed approach replaced the polynomial non-linear terms with a hierarchical

neural network. The hierarchical neural network is built based on known neuroanatomical

connections and corresponding transmission delays in neural pathways. The proposed

method is applied to an experimental dataset, where cortical activities from ten

young able-bodied individuals are extracted from electroencephalographic signals while

applying mechanical perturbations to their wrist joint. The results yielded by the proposed

method were compared with those obtained by the polynomial NARMAX and Volterra

methods, evaluated by the variance accounted for (VAF). Both the proposed and

polynomial NARMAX methods yielded much better modeling results than the Volterra

model. Furthermore, the proposed method modeled cortical responded with a mean

VAF of 69.35% for a three-step ahead prediction, which is significantly better than the

VAF from a polynomial NARMAX model (mean VAF 47.09%). This study provides a novel

approach for precise modeling of cortical responses to sensory input. The results indicate

that the incorporation of knowledge of neuroanatomical connections in building a realistic

model greatly improves the performance of system identification of the human nervous

system.
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INTRODUCTION

The human nervous system is an integrated, large-scale system
consisting of connected neuronal networks. The coordination
of neural activity across networks, between the periphery and
the central nervous system, is essential for fulfilling our daily
functions including movement control and sensory perception.
Modeling and system identification of the human nervous
system helps us understand how the brain processes sensory
input and controls behavior. Efforts have been made through
previous studies on building a mathematical model of the
human nervous system from neurons and circuits to large-
scale neural networks. As yet, challenges remain, because of
substantial non-linearity and fast dynamics in the nervous
system (Breakspear, 2017). The non-linearity of the nervous
system enables the rich, task-relevant neural encoding, and
communication, while the fast dynamics (including both linear
and non-linear components) allow for efficient processing and
transmission of neural information (Friston, 2000). However,
these two basic properties of the human nervous system, as
well as the poor signal-to-noise of measured neural signals,
significantly increase the difficulty of building a precise model to
describe the behavior of the human nervous system.

A typical way to investigate the input-output behavior of the
human nervous system is to apply an external peripheral
input and to measure the neural response from brain.
Electroencephalography (EEG) is a non-invasive electro-
neurophysiological technique widely applied to measure
neural responses from the brain to external inputs. When
providing periodic stimulation with specific frequencies, a
linear system only generates phase-locked responses at the
stimulated frequencies while a non-linear system can produce
cross-frequency phase-coupled responses at non-stimulated
frequencies (Langdon et al., 2011; Billings, 2013; Yang et al.,
2016b). When applying angular position perturbations to the
wrist joint, a recent study demonstrated that more than 80%
signal power of brain activity resulting from the movement
stimulation occurs in the non-stimulated frequencies and only
10% of brain activity could be explained using the best linear
approximationmodel (Vlaar et al., 2017). As a result, a non-linear
approach is necessary for modeling the brain response to wrist
joint perturbations. Furthermore, previous EEG studies have
reported sub-harmonic responses (i.e., the response frequency
is a fraction of a stimulus frequency) in the brain activity
following joint perturbations, indicating complicated non-linear
dynamics of cortical oscillations (Yang et al., 2016a; Breakspear,
2017). Such an ill-posed non-linear phenomenon cannot be

explained by classical non-linear models such as a Wiener and
Hammerstein system configuration (i.e., a series connection of

static non-linear blocks with a dynamic linear block; Crama

and Schoukens, 2001; Paduart et al., 2012), though they have
been previously used for system identification and modeling

of the periphery system including human musculoskeletal
systems (Westwick and Kearney, 2001; Dempsey and Westwick,
2004).

The human nervous system comprised of multiple neuronal

circuits resulting in a complicated closed-loop non-linear system

with fast dynamics (in the order of millisecond). Previous
studies tried to use a simplified approach based on Volterra
series to model the brain response to joint perturbations. This
only explained around 40% of the measured EEG signal (Vlaar
et al., 2018). Volterra series is a polynomial functional expansion
similar to a Taylor series that provides an approximation of
input-output relation in a non-linear system (Brockett, 1976).
A serious limitation of Volterra series based approaches is that
it completely ignores the closed-loop behaviors of the nervous
system as they contain no autoregressive terms. To address this
limitation, we proposed to use the non-linear autoregressive
moving average with exogenous inputs (NARMAX) model
(Chen and Billings, 1989; Chen et al., 1989). The NARMAX
model is a powerful tool for black-box system identification
problems, in particular when limited knowledge about the
detailed model structure of the system is available. A wide
range of non-linear systems can be well represented using
the NARMAX method, including those with exotic non-linear
behaviors such as subharmonics, bifurcations, and even chaos, as
previously reported for the human nervous system (Breakspear,
2017).

The classical NARMAX model is based on polynomial
expansions, whichmakes it difficult to precisely mimic properties
of the nervous system such as the sigmoid function of a
synapse. The model error may cumulatively increase when the
neural pathway contains more than one synapse as in the
somatosensory afferent pathways from muscles to the brain. To
address this challenge, we replaced the polynomial non-linear
terms with a hierarchical neural network. The hierarchical neural
network is built based on known neuroanatomical connections
and corresponding transmission delays in neural pathways.
The proposed method is evaluated using an experimental
dataset, where brain responses to joint perturbations at
the wrist in able-bodied individuals were obtained by EEG
signals.

DATA ACQUISITION AND
PREPROCESSING

Data Acquisition
The experimental data were recorded from ten young
able-bodied individuals (age range 22–25 years old; 6 men; all
right-handedness). The experimental procedure was approved by
the Human Research Ethics Committee of the Delft University of
Technology, the Netherlands. All participants signed informed
consent before the experiments.

During the experiment, subjects sat next to a wrist
manipulator (WM), which is an actuated rotating device with
a single degree of freedom to exert flexion and extension
perturbations to wrist joint (Wristalyzer, Moog Inc., The
Netherlands). The lower arm (in the dominant side) of subjects
was strapped in the armrest while the hand closely touched
the handle of the manipulator and fixed with velcro. The
perturbations were applied as flexion and extension stretches to
the participants as the external input to the nervous system via
the handle of the manipulator. Participants were instructed to
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relax their arm and fingers, and not react to the perturbations
during the experiment.

The stimulation signals consisted of the sum of sinusoids
with the frequencies of 1, 3, 5, 7, 9, 11, 13, 15, 19, and 23Hz
and with the period of 1 s. Seven different sum-of-sinusoidal
signals (with the same frequencies) were generated based on
different relative phases between sinusoids. All stimulation
signals have similar statistical distributions with the same root-
mean-square (i.e., the square root of the arithmetic mean
of the squares of time series) that equals to 0.02 radians.
The simulation signal was applied to wrist joint as angular
position perturbations, therefore the unit of signal magnitude
is in radians. The signals were designed to have the equal
power on the first three frequency components (i.e., 1, 3,
5Hz) and a decaying power spectrum (−20dB/decade slope) for
rest frequency components. This design is a trade-off between
reduced predictability of signal (to prevent the anticipation
of participants during the experiment) and capabilities of the
human wrist joint and the manipulator (Vlaar et al., 2017). Each
signal was applied to stimulate the wrist joint for 7 trials of 36 s
per trial.

EEG was recorded from the nervous system, using a
128-channel cap (5/10 systems, WaveGuard, ANT Neuro,
Germany) with Ag/AgCl electrodes, using a common average
reference. The EEG and movement stimulation were digitalized
at 2,048Hz using a Refa amplifier (Twente Medical Systems
International B.V., the Netherlands) and stored for further
analysis. Three seconds in the beginning and the end of each
trial were removed from further analysis to reduce the effect of
transient dynamics, resulting in 30 × 7 = 210 periods for each
participant and each stimulation.

Data Preprocessing
We used Independent component analysis (ICA) (Makeig
et al., 1996) to extract the cortical source activities as
the output of the nervous system for modeling purposes.
Before applying ICA, the continuous EEG signals were
filtered by a 1–100Hz zero-phase shift band-pass filter to
remove possible high-frequency noise from neck muscles
and slow trends in the data (e.g., blood pressure, heartbeat,
breathing and sweat potentials). Notch filters implemented
in Fieldtrip toolbox (Oostenveld et al., 2011) were applied
to remove the 50Hz line power noise and its harmonic
distortions.

ICA was performed using the Infomax algorithm (Bell
and Sejnowski, 1995) to decompose filtered EEG signals into
independent source components by minimizing of mutual
information among the data projections or maximizing joint
entropy (Raimondo et al., 2012). Subsequently, all signals
were resampled to 256Hz (N = 256 samples) and then were
segmented into 1-s periods according to the perturbation
signal. The signal-to-noise ratio (SNR) of each ICA component
was calculated using the algorithm developed by Vlaar et al.
(2015). The ICA component with the highest SNR was
selected as the system output for each dataset for the
modeling. A dipole fitting algorithm implemented in the
Fieldtrip toolbox (Oostenveld et al., 2011) was used to

estimate the source locations of selected ICA components.
The procedure is the same as the previous modeling study
using Volterra model in the same datasets (Vlaar et al.,
2018).

MODELING BASED ON NARMAX AND
HIERARCHICAL NEURAL NETWORK

NARMAX Method
The non-linear autoregressive moving average with exogenous
inputs (NARMAX) method provides a generalized framework
for mathematical modeling of a non-linear closed-loop system
(Chen and Billings, 1989; Chen et al., 1989). The input-
output relationship of a non-linear dynamic system can
be generally represented using the NARMAX method as
follows:
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applied to complex real-world problems in various research fields
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FIGURE 1 | Structure of the proposed model. The signals p, v and y represent

position input, velocity input and feedback interaction, respectively. Node A

and B are in the first layer at the medulla, and Node C is in the second layer at

the thalamus. The pathway from A to C indicates the group Ia afferent pathway

which transmits both velocity and position information with a short time delay,

while the pathway from B to C indicates the group II afferent pathway which

transmits only the position information with a long time delay.
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+ . . .) as the non-
linear function. Although most non-linear functions can
be represented by this polynomial expansion, it is difficult
to precisely mimic the neuronal behavior of the nervous
system as the sigmoid function. Thus, we proposed to use a
hierarchical neural network to replace the non-linear polynomial
expansion in the NARMAX framework for modeling the neural
response.

NARMAX Framework Based Hierarchical
Neural Network (NARMAX-HNN) Model
The proposed model is built based on known neuroanatomical
connections and corresponding transmission delays in neural
pathways for processing the somatosensory information received
from the proprioceptors in the periphery during the movement
stimulation (Carpenter and Sutin, 1983; Standring, 2016). Both
position and velocity of the applied joint perturbations are sensed
by the muscle spindles and then transmitted by primary (group
Ia) and secondary (group II) afferents to the central nervous
system. Thus, we used both position (the perturbation signal)
and velocity (its first-order derivative) signals as the inputs in
the modeling. The Ia afferent pathway transmits both position
(p) and velocity (v) information, while II afferent pathway
transmits only position (v) information (Carpenter and Sutin,
1983; Standring, 2016). The NARMAX framework, therefore, is
extended as:
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for this dual-input-single-output model, where v(k) represents
the velocity signal and p(k) the position signal, d1 is the shortest
delay in the group Ia afferent pathway for transmitting the
velocity and position signals, and d2 is the shortest delay in
the group II afferent pathway for transmitting the position
signal. The parameters of n1 and n2 indicate the system
memory in group Ia and II afferent pathways, respectively.
The Ia afferent pathway has the fastest nerve conduction
velocity with the shortest delay from the periphery (wrist muscle
receptors) to the brain. Previously electric-neurophysiological
studies demonstrated that the shortest transmission delay of
brain response to the somatosensory stimulation is around 16–
20ms for young able-bodied individuals (Desmedt and Cheron,
1980; Buchner et al., 1995; Campfens et al., 2015). The nerve
conduction velocity for group Ia afferent pathway (80–120m/s) is
around twice of group II afferent pathway (33–75 m/s) (Buchthal
and Rosenfalck, 1966; Siegel and Sapru, 2006). Thus, we set the
d1 = 4 (around 16ms for sampling rate 256Hz), d2 = 8 (around
32ms), n1 = n2 = 2 (around 8ms).

There are two synaptic connections in the afferent pathways
from muscle spindles to the brain. The first synaptic connection
is in the medulla (nucleus cuneatus) and the second one is in
the thalamus (ventral posterior nucleus; Carpenter and Sutin,
1983). Thus, we built a hierarchical neural network with two
layers. The first layer represents the synaptic connection in the
medulla and the second layer represents the synaptic connection
in the thalamus. The position and velocity information is
thought to be integrated in the thalamus (Kandel et al.,
2000). The structure of the proposed model is provided in
Figure 1.

The synaptic behavior was modeled with a sigmoid function
S(u) = 1/(1+exp(-ρ(u-w))-1/(1+exp(ρw))) (Moran et al., 2007)
with slope parameters ρ = 0.8 and firing threshold w = 1.8 for
nodes A and B in the first layer, and ρ =1.6, w = 1.8 for the
node C in the second layer (see Figure 2), which was in line with
a previous neural modeling study in the human somatosensory

FIGURE 2 | Sigmoid functions for the nodes. Blue curve indicates the synaptic behavior in the first layer at the medulla and red curve indicates the synaptic behavior

in the second layer at the thalamus (Marreiros et al., 2008).
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pathway (Marreiros et al., 2008). The autoregressive terms y(k-1),
. . . , y(k-ny) was added to the second layer, which represents
the feedback interaction in neural circuits of the thalamocortical
radiation, where the ny was set to be 5 (around 20ms). The
total number of parameters in our model is 19, including 6
weights for p and v through node A, 3 weights for p through
node B, 5 weights for y and 2 weights for node A and B
through node C, and another 3 bias parameters for nodes
A, B and C.

The model was built and trained using Neural Network
Toolbox in MATLAB R2018a. The training function was selected
as the Scaled Conjugate Gradient (using MATLAB function
trainscg.m), and the performance function was selected as the
Mean Squared Error (using MATLAB function mse.m). The
signals p, v, and y, as well as output of the nodes, were
normalized to values between−1 and 1 tomake them in the same
scale.

Model Evaluation
Performances of the proposed model were evaluated by the
Variance Accounted For (VAF) in a cross-validation test:

VAF =

[

1−
var

(

ŷ− y
)

var
(

y
)

]

× 100% (3)

where ŷ represents the estimated output by our model and
y represents the measured output from the system. For each
participant, six trials were used to train the model and the rest
one trial was used to test the performance of the estimatedmodel.
For each trial, there is 30 periods of 1 s data with 256 points
per second (sampling rate: 256Hz). The training and testing
procedures were repeated seven times, using each trial as the
testing data in the cross-validation. The mean VAF across seven
repetitions was reported for each participant as the performance
of the proposed model.

The obtained results were compared with those from using the
polynomial NARMAX (Chen and Billings, 1989) and Volterra
(Vlaar et al., 2018) models. In the Volterra model, the output
depends only on the history of the input to the non-linear system:
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Thus, the Volterra model can be considered as a special case of
the NARMAXmodel, which does not contain any autoregressive
(e.g., y(k-1)y(k-1)) or interaction (e.g., y(k-1)u(k-d)) model
terms.

For the NARMAX models (both the proposed model and
the polynomial NARMAX model), we compared the estimated
outputs from one-step-ahead (OSA) and multi-steps-ahead

FIGURE 3 | Example of the input, measured output, estimated output, and residual error signals using our proposed NARMAX-HNN model. (A) A period of the input

signal, (B) Comparison between estimated and measured output time series, (C) Comparison between estimated and measured output power spectrum density (D)

Power spectrum density of the residual error.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 December 2018 | Volume 12 | Article 96

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Tian et al. Nonlinear Modeling of Neural Response

TABLE 1 | Comparison of model performances, evaluated by variance accounted for in percentage (%), for the proposed NARMAX-HNN model, polynomial NARMAX

(NARMAX-NP), and Volterra models.

Participants NARMAX-HNN (OSA) NARMAX-HNN (MSA, 3-step) NARMAX-NP (OSA) NARMAX-NP (MSA, 3-step) Volterra

P1 94.37 63.44 95.52 57.08 38.37

P2 92.83 56.85 94.74 39.53 29.12

P3 90.95 67.16 92.95 31.17 32.18

P4 91.02 74.89 91.94 32.26 28.10

P5 92.58 82.31 94.04 61.57 53.74

P6 93.76 75.55 93.72 49.18 61.07

P7 93.08 74.32 95.73 65.35 54.30

P8 90.23 43.40 91.90 32.57 39.95

P9 90.36 77.16 92.24 37.98 26.35

P10 94.15 78.44 96.28 64.21 65.19

Mean 92.33 69.35 93.91 47.09 42.84

Std. 1.57 11.90 1.54 13.28 13.78

(MSA) predictions. The step-ahead prediction is defined as
below:

(i) one-step-ahead model predicted output:
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In this study, we evaluated the NARMAX model up to the
three-step ahead prediction. Considering that dynamics of brain
activity is typically in the order of fewmilliseconds, the three-step
ahead prediction estimated 12ms ahead EEG oscillations (based
on the 256Hz sampling rate), which is sufficient for testing the
predictive performance of models. Noteworthy, for the Volterra
model, there are no autoregressive variables. Consequently, it is
not possible to generate the multi-step ahead prediction results
for the Volterra model. The statistical significance of results is
indicated by the paired t-test with p < 0.05.

RESULTS

In line with the previous modeling study on the same datasets
(Vlaar et al., 2018), only one ICA component with the highest
SNR was selected as the output of the nervous system for each
dataset for modeling. All selected components have their sources
located in the primary sensorimotor areas in the contralateral
hemisphere (i.e., left hemisphere as all participants are right-hand
dominant), indicating that the ICA results are neurophysiological
plausible. Figure 3 shows one period of the input and measured
output signals from a typical subject. The estimated output
signal from the multi-step (i.e., three-step) ahead prediction
using the proposed NARMAX-HNN model is provided for
comparison. The NARMAX-HNN captures the system’s behavior
well showing a similar waveform of the estimated output signal
as the measured one. The residual error mainly appears in
the high-frequency components, which is likely related to the
fast dynamics of EEG oscillation as background noise in the
system.

The model performances of NARMAX-HNN are summarized

in the Table 1 for all tested subjects. The results are compared

with those obtained by using the polynomial NARMAX and
Volterra methods. Both the proposed NARMAX-HNN method
(VAF: 92.33% ± 1.57%) and polynomial NARMAX method
(VAF: 93.91% ± 1.54%) generated significantly better results
(P < 0.0001 for both NARMAX-HNN vs. Volterra and
polynomial NARMAX vs. Volterra) than the Volterra method
for the one-step ahead prediction (VAF: 42.84% ± 13.78%).
Although the one-step prediction results are comparable for the
NARMAX-HNN and the polynomial NARMAX, the proposed
NARMAX-HNN (VAF: 69.35% ± 11.90%) method yielded a
significant better (P = 0.0015) long-term prediction (three-
step MSA) than the polynomial NARMAX method (VAF:
47.09% ± 13.28%). Furthermore, the NARMAX-HNN contains
19 parameters, which is less than the polynomial NARMAX
(25 parameters) and Volterra model (46 parameters). Finally,
the numbers of parameters, associated with the number of
model terms in the polynomial NARMAX and Volterra model,
are optimal numbers that were determined by using an
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orthogonal forward regression (OFR) algorithm (Chen et al.,
1989).

DISCUSSION AND CONCLUSION

This work proposes an advanced modeling approach based on
the NARMAX framework and a hierarchical neural network
to model cortical activity in response to flexion and extension
stretch perturbations at the wrist. As the human nervous
system is comprised of multiple neuronal circuits resulting in
complicated closed-loop non-linear behaviors in response to an
external input, a realistic model should contain autoregressive
variables to consider this closed-loop behavior. The NARMAX
framework contains autoregressive variables as well as the
interaction between the feedback and the input, which better
reflects the non-linear closed-loop behavior of the nervous
system than the Volterra model. As we demonstrated, both
the proposed method, i.e., NAMRAX-HNN, and polynomial
NARMAX method generated significantly better results than the
Volterra model.

As shown inTable 1, the long-memory effect of autoregressive
model increases the accumulative error of the long-term
prediction, which results in a drop in VAF for multi-step
ahead prediction using NARMAX. It has to be pointed out
that multi-step ahead prediction is still a recognized challenge
in the field of time series forecasting (Hussein et al., 2016),
especially for cortical activity due to its fast dynamics (as
shown in Figure 3) and a poor signal-to-noise ratio (Breakspear,
2017). Different from the commonly used polynomial NARMAX
method, the proposed approach replaced the polynomial non-
linear terms with a hierarchical neural network. Beyond the
classical non-linear system identification approaches based
on artificial neural network (Nelles, 2013), the hierarchical
neural network here is built based on known neuroanatomical
connections and corresponding transmission delays in neural
pathways [i.e., the dorsal columns, (Carpenter and Sutin, 1983)].
This biologically inspired innovation significantly improves the
long-term prediction of NARMAX modeling, showing better
performance than the polynomial NARMAX in the estimation
of 12ms ahead EEG oscillation. Furthermore, our results are
also better than the previous modeling study on the same
datasets using the Volterra model (Vlaar et al., 2018) as
demonstrated in Table 1. Finally, our proposed method has
lower model complexity with a smaller number of parameters

than the polynomial NARMAX and Volterra models. Although
one may improve the model prediction ability by using an
advanced machine learning approaches, such as deep learning,
the purely mathematical or data-driven approaches are not able
to generate a biologically realistic model with a reduced number
of parameters.

In conclusion, the proposed method provides a novel
solution to modeling of neural responses in the human nervous
system with greater precision than polynomial NARMAX and
Volterra models, in particular for long-term predictions. The
proposed method considers both neuroanatomical pathways
and physiological properties of the human nervous system.
Therefore, it allows for the generation of neuroanatomically
realistic models, which goes beyond purely mathematical or
data-driven approaches. This study therefore breaks new ground
in neurobiological system identification and modeling. In the
future, we will apply this method to investigate changes
in sensory and motor pathways following a unilateral brain
injury such as hemiparetic stroke or hemiparetic cerebral
palsy.
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