
ORIGINAL RESEARCH
published: 07 January 2019

doi: 10.3389/fncom.2018.00099

Frontiers in Computational Neuroscience | www.frontiersin.org 1 January 2019 | Volume 12 | Article 99

Edited by:

Rong Chen,

University of Maryland, Baltimore,

United States

Reviewed by:

Ryota Kobayashi,

National Institute of Informatics, Japan

Shaoyu Ge,

Stony Brook University, United States

*Correspondence:

Anthony J. DeCostanzo

anthony@ascent.ai

Tomoki Fukai

tfukai@riken.jp

Received: 09 July 2018

Accepted: 29 November 2018

Published: 07 January 2019

Citation:

DeCostanzo AJ, Fung CCA and

Fukai T (2019) Hippocampal

Neurogenesis Reduces the

Dimensionality of Sparsely Coded

Representations to Enhance Memory

Encoding.

Front. Comput. Neurosci. 12:99.

doi: 10.3389/fncom.2018.00099

Hippocampal Neurogenesis Reduces
the Dimensionality of Sparsely Coded
Representations to Enhance Memory
Encoding

Anthony J. DeCostanzo 1,2*, Chi Chung Alan Fung 1 and Tomoki Fukai 1*

1 Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan, 2 Ascent Robotics

Inc., Tokyo, Japan

Adult neurogenesis in the hippocampal dentate gyrus (DG) of mammals is known to

contribute to memory encoding in many tasks. The DG also exhibits exceptionally sparse

activity compared to other systems, however, whether sparseness and neurogenesis

interact during memory encoding remains elusive. We implement a novel learning rule

consistent with experimental findings of competition among adult-born neurons in a

supervised multilayer feedforward network trained to discriminate between contexts.

From this rule, the DG population partitions into neuronal ensembles each of which

is biased to represent one of the contexts. This corresponds to a low dimensional

representation of the contexts, whereby the fastest dimensionality reduction is achieved

in sparse models. We then modify the rule, showing that equivalent representations

and performance are achieved when neurons compete for synaptic stability rather than

neuronal survival. Our results suggest that competition for stability in sparse models is

well-suited to developing ensembles of what may be called memory engram cells.

Keywords: dimensionality reduction, hippocampus, pattern separation, neuromorphic computing, feed-forward

neural network, synaptic pruning, synaptic turnover, synaptic plasticity

1. INTRODUCTION

1.1. What Is Known
The hippocampal dentate gyrus (DG) is known to participate in the generation and maintenance
of spatio-contextual memories via groups of cells whose activity is causally responsible for the
recollection of particular associations (Josselyn et al., 2015; Tonegawa et al., 2015). The DG is noted
for a combination of distinctive properties, including adult neurogenesis of the principle granule
cells (Wu et al., 2015; Gonçalves et al., 2016) and extremely sparse activity (Jung and McNaughton,
1993; Leutgeb et al., 2007; Danielson et al., 2016; Diamantaki et al., 2016).

Sincemost adult-born neurons rapidly die, it has long been hypothesized that theymust compete
amongst themselves, and with mature neurons, for survival dependent upon their contribution
to behavior (Bergami and Berninger, 2012). Consistent with this notion, newly adult-born cells
integrate into the DG in an experience-dependent manner (Kempermann et al., 1997b; Gould
et al., 1999; Bergami et al., 2015; Alvarez et al., 2016; Zhuo et al., 2016), and numerous studies have
demonstrated that either ablation (Clelland et al., 2009; Sahay et al., 2011), or in vivo silencing of
activity (Danielson et al., 2016; Zhuo et al., 2016) or synaptic output (Nakashiba et al., 2012) of these

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2018.00099
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2018.00099&domain=pdf&date_stamp=2019-01-07
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:anthony@ascent.ai
mailto:tfukai@riken.jp
https://doi.org/10.3389/fncom.2018.00099
https://www.frontiersin.org/articles/10.3389/fncom.2018.00099/full
http://loop.frontiersin.org/people/474666/overview
http://loop.frontiersin.org/people/57141/overview
http://loop.frontiersin.org/people/22174/overview


DeCostanzo et al. Neurogenesis and Dimensionality Reduction in Sparse Codes

cells impairs discrimination of hippocampus-dependent
associative memories, while enhancing survival of these cells
can enhance such performance (Sahay et al., 2011). Similar
interventions that silence adult-born cells after learning have
shown that retrieval of recent memories is impaired (Gu et al.,
2012).

Experience induces synaptic competition among adult-
generated granule cells for contacts to CA3 neurons resulting
in axonal retraction by mature cells induced by young cells
(Yasuda et al., 2011). Elsewhere in both the central (Fitzsimonds
et al., 1997; Tao et al., 2000; Du and Poo, 2004) and peripheral
nervous systems (Sharma et al., 2010; Zhou et al., 2012), the
strength of a neurons output synapses can retrogradely adjust
the strength of its input synapses. It has been suggested that this
biological phenomenon could encode a neurons performance
errors to achieve a similar effect to the artificial backpropagation
of error so commonly employed in training neural networks
(Harris, 2008). Adult-born DG granule cells reach their targets
in CA3 after about 4–6 weeks (Toni et al., 2008), overlapping
with when they begin to participate in memory encoding
(Clelland et al., 2009; Sahay et al., 2011; Nakashiba et al.,
2012; Danielson et al., 2016; Zhuo et al., 2016), and thus
may begin to receive signals from CA3 that indicate the
success of their contribution to useful representations. The
combination of these results suggests that neurogenesis may
endow the DG with a kind of learning rule—DG neurons
compete with each other for target-derived factors through
their synaptic contact to CA3, in turn, influencing their
probability of survival. Such a learning rule is the focus of our
study.

In an apparently distinct thread of research, sparse activity
in recurrent Hopfield-like networks is shown to reduce the
interference between stored memories (Tsodyks and Feigel’man,
1988; Amit and Fusi, 1994) and, in models of vision, to enable
the efficient representation of naturalistic images as combinations
of statistically independent components (Olshausen and Field,
1996; Bell and Sejnowski, 1997), ideas that have roots in
the efficient coding hypothesis (Barlow, 1961). In cortical
models consisting of a single hidden layer multilayer perceptron
with random input weights, it has been shown that pattern
decorrelation (often called pattern separation in the neurogenesis
literature) is not sufficient to yield proper memory retrieval in the
presence of noise (Barak et al., 2013; Babadi and Sompolinsky,
2014). Instead, memory retrieval depends upon a balance
between decorrelation of input patterns and generalization of
those patterns to the correct class. In such models, sparseness
improves memory retrieval by reducing the tradeoff between
decorrelation and generalization (Barak et al., 2013). This
apparent tradeoff has been analytically expressed in terms that
reflect the counterintuitive amplification of noise by sparse
coding (Babadi and Sompolinsky, 2014). As a result, there is
a theoretical limit on the benefits provided by sparseness in a
hidden layer with random input weights (Barak et al., 2013;
Babadi and Sompolinsky, 2014). This limitation led some authors
to suggest that random weighting is at least partly responsible for
limiting the benefits of sparse coding (Babadi and Sompolinsky,
2014).

1.2. Our Contribution
One interpretation of these studies is that pattern classification
performance, rather than pattern separation, as it has been
defined in the neurogenesis literature, may be the appropriate
measure of memory performance. We hone our questions into
a framework similar to that employed in previous studies of
sparse cortical representations (Barak et al., 2013; Babadi and
Sompolinsky, 2014), a single-hidden layer, randomly connected
feedforward neural network.Within this framework we represent
the activities of the neurogenic cells of the dentate gyrus in the
hidden layer. With only minimal assumptions, such a network
can learn generalizable, nonlinear classifications (Barak et al.,
2013), while allowing us to implement sparse coding, synaptic
plasticity, and competition among DG neurons for contact with
CA3. By supervising the output, the network is trained and then
tested for discrimination between sets of input patterns.

We first demonstrate that our neuronal turnover rule,
employing randomly drawn input weights, markedly increases
the discrimination performance over the initial condition of
random projection that was previously studied (Barak et al., 2013;
Babadi and Sompolinsky, 2014). The rule exploits sparse coding
such that the longer neuronal turnover is allowed to proceed,
the sparser the optimal coding level. Since our input weights are
always drawn randomly, our results suggest that the sparsening
of the optimal code is due to the achievement of a particular
hidden layer representation rather than a structuring of the input
weights, as was the case explored by Babadi and Sompolinsky.
Thus our work complements theirs by suggesting a learning rule
via which very sparse codes are optimal for random input weights
without require fine tuning.

We show that our rule induces a contextual preference
among DG neurons, partitioning the population into ensembles
whose average activities are biased for their respective contexts.
This is equivalent to dimensionality reduction of the contextual
representations in the DG. The final classification performed by
the CA3 readout thereby suffers less errors during generalization.
We demonstrate that the final achievable discrimination between
contextual memories is constrained by the distribution of
singular values of the DG representation, such that the sparse
code can evolve to a greater difference in the representation
space. We then construct a more general model based on
evidence that the strength of a neurons output synapses
can influence that of its input synapses via internal signals
(Fitzsimonds et al., 1997; Tao et al., 2000; Du and Poo, 2004;
Sharma et al., 2010; Zhou et al., 2012). This rule similarly reduces
the dimensionality of the representation while shifting the
activity-dependence toward sparser levels, improving memory
performance. Our results suggest that axonal competition for
target-mediated stability in sparse models is a novel form of
encoding that does not require synaptic fine-tuning, and could
be employed across many sparsely coded systems of the brain.

2. MATERIALS AND METHODS

2.1. Representations of Contexts
We represent the activity state of a population of EC neurons
in response to a stimulus as a vector ξ , the elements of which
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neurons that are either spiking, ξj = +1, or not spiking ξj = −1.
Patterns are split evenly into two contexts representing the two
contexts that the network must learn. The synaptic current of a
given DG unit i for pattern µ is defined as:

g
µ
i =

M
∑

j

Jjξ
µ
j (1)

and its activity is given by a threshold function of the synaptic
current controlled by θ :

S
µ
i = sgn

(

g
µ
i − θ

)

(2)

The CA3 synaptic current is defined similarly as the weighted
sum of the input from DG:

hµ =
N
∑

i

WiS
µ
i (3)

For everyµ’th pattern we want the output of the trained network,
η̂µ = sgn(hµ) to be equal to a randomly pre-chosen target output
state for the CA3 unit, either spiking ηµ = +1, or not spiking,
ηµ = −1, for all patterns.

2.2. Training the Network With
Neurogenesis
The task of the network is to use the training patterns to find
a W such that when presented with patterns of a given class
to which the network has not been explicitly trained it can
correctly generalize, i.e., it will still output the correct class. We
train the CA3 output weights in a similar manner to Barak
et al. (2013). We assume that the activity of the EC consists of
random, uncorrelated prototype patterns, ξ , that determine their
corresponding current in the DG, gi =

∑M
j Jjξ

µ
j . We then

assume there is noise, or variability in the system such that each
prototype pattern is actually represented by a group of noisy
instances of the prototype that are generated by flipping the sign
of elements of the vector ξ with a fixed probability ν = 0.2. This
allows us to calculate the mean synaptic current of a given DG
unit i for pattern µ as:

g
µ
i = g

µ
i (1− 2ν) . (4)

Consider the difference between two noisy instances of a
prototype pattern, say g

µ
i (t) at the t-th iteration and g

µ
i

(

t′
)

at
the t′-th iteration:

g
µ
i (t) − g

µ
i

(

t′
)

=
∑

+1 entries flipped in t but not in t′
Jij × (+2)+

∑

+1 entries not flipped in t but in t′
Jij × (−2)

+
∑

−1 entries flipped in t but not in t′
Jij × (−2)+

∑

−1 entries not flipped in t but in t′
Jij × (+2)

Here the sign accompanying “2” will be absorbed into Jij to
simplify the calculation because Jij ∼ N (0, 1).

〈

[

g
µ
i (t) − g

µ
i

(

t′
)]2
〉

=
〈





∑

entries flipped in t but not in t′
Jij × 2

+
∑

entries not flipped in t but in t7′

Jij × 2





2
〉

= 4

〈

∑

Mν (1− ν) terms

J2ij +
∑

Mν (1− ν) terms

J2ij

〉

= 8Mν (1− ν) .

Here 〈J2ij〉 = 1 because Jij ∼ N (0, 1). On the other hand, let

g
µ
i (t) = g

µ
i + δg

µ
i (t), then we have

〈

[

g
µ
i (t) − g

µ
i

(

t′
)]2
〉

=
〈

δg
µ
i (t)2 + δg

µ
i

(

t′
)2 − 2δg

µ
i (t) δg

µ
i

(

t′
)

〉

=
〈

δg
µ
i (t)2

〉

+
〈

δg
µ
i

(

t′
)2
〉

= 2
〈

δg
µ
i (t)2

〉

.

Hence, the variance of each DG unit is given by

σ 2
g =

〈

δg
µ
i (t)2

〉

= 4Mν (1− ν) . (5)

Since the synaptic currents of the i-th DG unit for noisy instances
are sum of many randomly altered numbers, those synaptic
currents can be assumed to be Gaussian. The expected value of
the activity of the i-th DG unit can be deduced by

S
µ

i = −1×
∫ θ

−∞
dgf

(

g
∣

∣

∣g
µ
i , σ

2
g

)

+ 1×
∫ +∞

θ

dgf
(

g
∣

∣

∣g
µ
i , σ

2
g

)

= −F
(

θ

∣

∣

∣g
µ
i , σ

2
g

)

+ 1− F
(

θ

∣

∣

∣g
µ
i , σ

2
g

)

= erf

(

g
µ
i − θ√
2σg

)

, (6)

where f (g|gµ
i , σ

2
µ) and F(g|gµ

i , σ
2
µ) are probability density

function and cumulative density function, respectively, of a
normal distribution with mean g

µ
i and variance σ 2

g . To arrive at

the desired target output, e.g., η = sgn(
∑N

i=1WiS
µ
i ) for all µ, the

cost function

E =
P
∑

µ=1

(

ηµ −WTS
µ
)2
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should be minimized. We then find the linear least squared error
solution toW,

WT = argmin
W̃

[

P
∑

µ

(ηµ − W̃TS
µ
)2

]

, (7)

by taking the Moore-Penrose pseudoinverse of the matrix S,

WT = ηS
∗

(8)

= ηV6∗UT , (9)

where S∗ is the pseudoinverse of S, U and V are the matrices
of left and right singular vectors, respectively, and 6 is the
matrix of singular values. Here theMoore-Penrose pseudoinverse
enables us to look for the best approximation using column
vectors of S

µ

i . The approximation is also the best-fit solution
minimizing the cost function. More explanation about Moore-
Penrose pseudoinverse can be found in Appendix A.

To implement the synaptic competition underlying
neurogenesis we compare three different models. In Model 1
(Figures 1, 2, 3, 5), at each time step we kill DG units
corresponding to the bottom 30% of absolute values in vector
W, i.e., the input weights to those units are re-randomized. In
Model 2 we explore a multicontext case presented in Figure 6

in which each DG unit projects to multiple CA3 units, therefore
we take the sum of the absolute value of each DG units weight
vector and compare this value across all DG units.

In Model 3 presented in Figure 7, rather than re-randomizing
all input weights of selected DG units, we determine the
probability of synaptic turnover of each DG unit from a linear
transfer function of its DG-CA3 weight (Figure S3A). Results
presented in Figure 7 are from the mean of 100 simulations with
a slope = 2.5 for the linear transfer function.

2.3. Analyzing Performance of the Network
To evaluate the performance of the network, the signal-to-noise
ratio is introduced. The signal is defined by the square of the
expectation of the difference between CA3 synaptic currents
corresponding to (+) context, i.e., ηµ = +1, and (−) context,
i.e., ηµ = −1, among all the patterns.

Signal =
[

E
(

hµ
∣

∣ ηµ = +1
)

− E
(

hµ
∣

∣ ηµ = −1
)]2

. (10)

To progress, we define the context-bias of a given DG unit i, 9i,
as the difference between the fraction of (+) context patterns, f+i ,

and the fraction of (−) context patterns, f−i , to which it responds.

9i = f+i − f−i , (11)

where f±i is the fraction of (±) context patterns activating DG
unit i. On the other hand,

(

SηT
)

i
=

∑

active for a (+) pattern

(+1)× (+1)

+
∑

inactive for a (+) pattern

(−1)× (+1)

∑

active for a (-) pattern

(+1)× (−1)

+
∑

inactive for a (-) pattern

(−1)× (−1) (12)

= Pf+i − P
(

1− f+i
)

− Pf−i + P
(

1− f−i
)

(13)

= 2P9i . (14)

Note that S here is a matrix, whose column vectors are activities
of DG neurons for different input patterns. η is a label vector,
where entries are expected output (CA3) of the patterns. Then
we can then express the context-bias in terms of S and η in a
matrix-vector equation as:

9 = 1

2P
SηT . (15)

With this, the signal can be expressed as

Signal =
[

2
∑

i

Wi

(

f+i − f−i
)

]2

(16)

=
[

2WT9
]2

. (17)

On the other hand, we define the noise as the sum of variances of
this current for the (+) and (−) contexts respectively:

Noise = Var
(

hµ
∣

∣ ηµ = +1
)

+ Var
(

hµ
∣

∣ ηµ = −1
)

(18)

N→∞= 4
∑

i

W2
i

[

f+i −
(

f+i
)2 + f−i −

(

f−i
)2
]

(19)

= 4
∑

i

W2
i

[

f+i
(

1− f−i
)

+ f−i
(

1− f+i
)

−
(

f+i − f−i
)2
]

(20)

From these expressions we derive the signal to noise ratio (SNR)
in terms of f±i andWT .

Signal

Noise
=

[

2WT9
]2

4
∑

iW
2
i

[

f+i
(

1− f−i
)

+ f−i
(

1− f+i
)

−
(

f+i − f−i
)2
] (21)

=
∑

iW
2
i 9

2
i +

∑

i6=j Wi9iWj9j

∑

iW
2
i

[

f+i
(

1− f−i
)

+ f−i
(

1− f+i
)

−
(

f+i − f−i
)2
] (22)

N→∞=
∑

iW
2
i

(

f+i − f−i
)2

∑

iW
2
i f

+
i

(

1− f−i
)

+
∑

iW
2
i f

−
i

(

1− f+i
)

−
∑

iW
2
i

(

f+i − f−i
)2

(23)
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FIGURE 1 | Neurogenesis enhances generalization performance. (A) In Model 1, after a weight vector is assigned by training, DG units with weak weights to CA3 are

replaced with new randomly connected units. (B) At each day of training the network is tested with randomly generated patterns belonging to one of the two

contexts. This generalization error decreases as a function of the number of iterations of neural turnover. Single simulation (gray) and mean of many simulations

(black), before (red point) and after (orange point) neurogenesis. (C,D) CA3 Synaptic current distribution for all test patterns representing the two contexts before

(C) and after (D) 128 iterations (days) of neural turnover. Results are from a network of 200 EC, 500 DG neurons and a single CA3 readout. Each context consists of

50 EC patterns with input noise, ν, fixed at 0.2, and theta is chosen to yield a coding level of f = 0.04, turnover rate is fixed at 0.30 (See Experimental Procedures).

(E) Mean error is shown decreasing as a function of the number of iterations of neural turnover for three different coding levels. (F) Error is shown as a function of

coding level before and after 128 iterations of neural turnover. After neurogenesis the performance is improved at all levels of sparseness (all coding levels, f ). (G) The

coding level at which minimum error occurs (optimal f ) is plotted vs. the number of iterations of neural turnover. Neural turnover favor a sparser (reduced) coding level.

Mean error is calculated as the mean of 20 simulations.

This expression allows us to observe the intuitive relationship
between the context-bias of DG cells and the SNR. The second
term in the numerator of Equation (22) should vanish as N →
∞, as it sums random numbers centered at zero.
ForWT ,

WT = 2P9TU
(

6∗)2 UT (24)

In the presentation of our results it is useful to let 9̂T
i = 9Tuiu

T
i

where ui is the i-th column of U, so that

WT = 2P

N
∑

i

σ−2
i 9̂T

i (25)

observing the weight vector as a weighted sum of projected
context-bias vectors. The derivation of this equation can be found
in Appendix B.

2.4. Dimensionality of DG Contextual
Representation
From above, the weight vector is defined as:

WT = ηV6∗UT (26)

Permitting us to rewrite the weight vector as a linear sum of
coefficients producted with their respective left singular vectors:

W =
D
∑

i=1

αiui, (27)
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FIGURE 2 | Neurogenesis exploits the low noise of the sparse code to outperform dense DG coding. (A) Distribution of CA3 current at t = 0 (before) vs. t = 128

(after) for the dense activity case of f = 0.5 for a group of test patterns generated from a single prototype pattern belonging to the (+) context. Vertical dashed line at 0

represents the activity threshold of the CA3 neuron (B) Same as in (A), but for the sparse case of f = 0.04. (C,D) Normalized CA3 readout weight distribution in dense

(C) and sparse (D) cases. (E) Signal at CA3 vs. time for f = 0.5 (blue) and f = 0.04 (red). (F) Readout noise at CA3 vs. time for f = 0.5 (blue) and f = 0.04 (red).

(G) Signal to noise ratio (SNR), calculated as data in (E) over data in (F). Demonstrates the advantage given by slower scaling of variance in the sparse case of

f = 0.04. The results are plotted as the mean of 20 simulations.

where D is the dimension of the square matrix U. The
D dimensions are ranked from 1 to D according to their
corresponding coefficients. We define a cumulative weight vector
of a given dimensionality as:

Ŵd =
d
∑

i

αiui , (28)

where d takes a value from 1 to D, representing the number of
dimensions chosen for a given cumulative weight vector. We

then define the cumulative performance, perfcum = (0.5−err)
0.5 ,

where the error is calculated for every cumulative weight vector
(Figure S3C).

2.5. Model Parameters
All results in Figures 1–5 are from a network with 200 EC, 500
DG units and a single CA3 unit. Data in Figure 6 are from
the same size network except that the number of CA3 units
is increased to 3 to allow for multicontext discrimination. In
Figures 1, 2, 3, 4, 7 the network was trained with the mean
representation of each of 100 prototype patterns as described
above. In Figure 6 the network was trained with 8 groups
of 12 prototypes, to represent 8 subcontexts, by calculating

Frontiers in Computational Neuroscience | www.frontiersin.org 6 January 2019 | Volume 12 | Article 99

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


DeCostanzo et al. Neurogenesis and Dimensionality Reduction in Sparse Codes

FIGURE 3 | Neurogenesis clusters context representations in DG activity space. (A) Matrix of pairwise correlations between training patterns represented in the DG,

ordered by context so that patterns 1–50 correspond to the (+) context and patterns 51–100 correspond to (-) context. For a single simulation the correlation matrix of

patterns for f = 0.50 before (left) and after (right) 128 iterations of neural turnover. (B) Same as in (A) but for f = 0.04. (C) Training patterns from the two contexts are

projected onto the principal components. For visual clarity only the means of all training patterns for each of the 100 prototypes are projected. Closed and open circles

correspond to the (+) and (-) contexts, respectively. Dense coding, f = 0.50, before (left) and after (right) 128 iterations of neural turnover. (D) as in (C) but for sparse

coding of f = 0.04. (E) Mean correlation between patterns of opposite contexts (between) and patterns of the same context (within), calculated as mean of 20

simulations. (F) Schematic illustration of context discrimination by neurogenesis. Closed and open circles represent the patterns of the two respective contexts.

Intuitively, as neuronal turnover and retraining proceeds the patterns in DG space are shifted in dimensions that are mostly parallel to the weight vector, over time

leading to greater separation. All above results are from a single simulation.

the mean representation of each prototype assuming some
variability as described above. In Figure 5 the network is the
same size, however, training consisted of 100 noisy instances of
100 prototypes, rather than using the mean representation of
each prototype. This is because we wished to relate the results
of this training directly to the equations that we derived for the
SNR from the SVD as above. Both types of training gave similar
qualitative results, therefore they are not explicitly compared.

3. RESULTS

3.1. Network Model for Adult Neurogenesis
in the Formation of Associative Memories
We implement a feed-forward multilayer perceptron in
which pattern discrimination (classification) is the readout
of performance. The model consists of a three-layer network
including entorhinal cortical inputs (EC), dentate gyrus (DG),
and a CA3 output (Figure 1A). We assume that a given DG cell

receives a weighted sum of its inputs from the EC. Thus the
total current into the i’th DG cell in response to the µ’th EC
pattern, ξµ, is given by g

µ
i =

∑

M
j Jjξ

µ
j where the weights, Jj,

are drawn randomly from a normal distribution,N (0, 1), and its
activity is determined by the nonlinear function of this current,
S
µ
i = sgn(g

µ
i −θ) , where we refer to θ as the activation threshold,

which is a tunable parameter we use to control the coding level,
i.e., the expected value of the fraction of patterns to which a
given unit responds, defined as f = 1

2P

∑P
µ=1

1
N

∑N
i=1(S

µ
i + 1).

We define a context as a group of prototypical activity patterns
generated in the EC, where each pattern represents a stimulus
that is present in the given context. We assume that there is
random variability in the environment, or within the system
such that among these patterns each binary element may be
flipped with probability ν. Averaging for each prototype over
the input noise ν, we obtain corresponding mean input currents
for each DG cell for each prototype pattern, g

µ
i = g

µ
i (1 − 2ν),

with variance σ 2
g = 4Mν(1 − ν) (See Materials and Methods).

This gives us a set of mean prototype activity patterns in the
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FIGURE 4 | Dimensionality reduction due to neurogenesis. (A) Relative magnitudes of ranked singular values, λ(i)/λ(1). The singular values are calculated for the

centered DG activity matrix for a single simulation. In both cases the relative magnitudes of singular values drop after turnover of DG neurons. The sparse case

(f = 0.04) shows larger drops than the dense case (f = 0.50). (B) Color-maps of classification error comparing predefined coding level, f , and restricted dimension d

at different times, t = 0th day and t = 128th day. The number of dimensions used to calculateW is restricted to d, according to Equation (28). The error is the average

error measured from 20 simulations. Before neuronal turnover, the map is relatively flat. After neuronal turnover there is a large region of low dimensionality over which

the classification performance of the network maintains low error. Dashed line: contour for err = 0.15. Dot-Dashed Curve: contour for err = 0.20. Dotted line: contour

for err = 0.25.

space of DG activity, where each neurons activity is defined as
S = erf[(θ − g

µ
i )/(

√
2σ g)]. The network is said to perform

contextual discrimination when the CA3 output correctly reads
out the DG patterns according to the target label for the EC
context to which those patterns belong.

To train the network, we randomly assign to the µ-th EC
pattern, a CA3 target, ηµ , taking the value +1 or −1. Thus,
assuming that θ is held constant during training, the task of the
network is to find a input weight matrix , J, and an output weight
vector, W, such that WTS = η, where S is the matrix of DG
prototype patterns, and η is the corresponding vector of context
labels.

We hypothesize that neurogenesis provides a mechanism by
which biology breaks this problem into two steps. We assume
that, as in the brain, the time-scale of neurogenesis is much
slower than that for synaptic plasticity, allowing us to train the
output weights, W, independently of the input weights, J. Many
learning rules could be used to train W, such as Hebbs rule,
or Support Vector Machine (with a linear kernel), or Linear
Discriminant Analysis. We obtained qualitatively similar results
with all of these, therefore, to simplify later analysis, we use
the pseudoinverse rule yielding WT = ηS∗, where S∗ is the
Moore-Penrose pseudoinverse of the matrix of DG prototype
patterns, and WT is the transpose of the output weight vector,
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FIGURE 5 | Selection of context-biased DG units takes advantage of the singular value distribution of the sparse code. (A,B) DG-CA3 weight vs. context-bias of

individual DG neurons before and after neurogenesis for f = 0.50 (A) and f = 0.04 (B). Marginal histograms show the projected distributions. In both cases the

DG-CA3 weights and the context-bias of DG neuron evolve to a bimodal distribution in which they are correlated. (C) Inverse square singular values, σ−2
i

, sorted by

index, i. (D) The influence of the context-bias vector on the weight vector is determined by the relationship between 2Pσ−2
i

‖9̂i‖ and ‖9̂i‖ over time. Plot shows the

dense case (f = 0.50) and sparse case (f = 0.10) before and after neuronal turnover (128 iterations). (E) ‖W‖ grows more rapidly as a function of ‖9‖ in the sparse

case. Arrows label the direction of evolution. (F) WT9 grows more rapidly in the sparse case than in the dense case as a function of the product ‖W‖‖9‖. Arrow
labels the direction of evolution. (G) WT9 grows more rapidly in time in the sparse case, and determines the scale up of the SNR. All results are calculated from a

single simulation. (H) Dense coding (blue, top) results in a reduced contribution of separating components, σ−2
i

while sparse coding (red, bottom) results in less

reduction in the contribution of these components, promoting greater separation of contexts in DG activity space.

W, whose elements are the DG-CA3 weights of the population
of DG units (See Materials and Methods). Next we assume that
DG neurons compete with each other for connection to CA3
such that the absolute value of Wi determines their probability
of survival, i.e., neurons with large values will receive some
trophic signal allowing them to survive, while those with values
below some threshold will die, to be replaced by a new randomly

connected unit (Figure 1A). Thus training is summarized as
follows:

1. Initialize the matrix of random EC-DG weights, J.
2. Calculate DG-CA3 weight vector,W, byWT = ηS

∗
.

3. Eliminate DG units with the weakest |Wi|s at a predefined
percentage (to be stated in the following).
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FIGURE 6 | Neuronal turnover rule can be generalized to encode multiple contexts. (A) In Model 2, multiple context discrimination is performed by using multiple

readout units each with trained weights. The turnover rule sums the absolute readout weights of all units and eliminates the units ranking in the bottom 30%. (B)

Generalization error decreases with neurogenesis, and the sparse code is optimal for the multicontext case, shown as the mean of 20 simulations (input noise,

ν = 0.05, 12 prototypes per context). (C) For a single simulation, pairwise correlation matrix of patterns in DG space before neurogenesis. (D) Same as in (C) after

512 days of neurogenesis. Patterns evolve into correlated groups in DG space. (E) Projection of patterns in DG space onto PCs, before neurogenesis. (F) Same as in

(E) after 512 iterations of neurogenesis. Clusters emerge from a random arrangement, and move apart from each other. (G) As in (E) but projection of test patterns

onto PCs, day 0 before neurogenesis. (H) as in (G) but after day 512 of neurogenesis. Patterns representing distinct contexts cluster together, and become separated

from each other.

4. Those DG units are replaced by new DG units. The EC-
DG weights connecting to those new DG units are randomly
drawn from a normal distributionN (0, 1).

5. Repeat and start from Step 2.

Since the cell cycle in biology corresponds to about 24 h, and each
iteration of our model represents the death and birth of neurons,
one iteration corresponds to roughly one biological day (the time
axes is labeled “days”). One should note that the DG neurons
considered in this model are those mature enough to emerge into
the dentate gyrus and reach CA3. Those immature adult-born
cells unable to reach CA3 are not considered in this model.

We test the network by presenting EC input patterns with
a fraction of ν bits flipped (corresponding to input noise, or
variability) that belong to a known context, taking the CA3
output for the µ-th test pattern as η̂µ = sgn(

∑N
i WiS

µ
i ), where

N is the total number of DG units. Then we measure the error

on a given test pattern, errµ =
{

0, if η̂µ = ηµ

1, otherwise
, and mean

over all test patterns, 〈errµ〉µ, yielding the generalization error.
Neuronal turnover of the weakest 30% of DG neurons per day
results in a steadily decreasing mean error as a function of the
number of iterations (days) of contextual associative learning
(Figure 1B), thus increasing the performance of this framework
relative to the randomly initialized network corresponding to the
case studied by Barak et al. (2013) and Babadi and Sompolinsky
(2014). The choice of 30% may seem arbitrary, but further

clarification will follow. The error in Figure 1B is determined
by the overlap between the two underlying distributions of total
synaptic current into CA3 for the two contexts in the presence of
variability on the input (Figure 1C). The sign of the CA3 readout
should be opposite for each of the two possible associations,
positive or negative for a given pattern belonging to the context
with (+1) or (−1) context, respectively. After 128 days of neural
turnover the spread between the distributions increases such
that the overlap between them, is decreased (Figure 1D). From
Figure 1B we see that the initial drop in error occurs rapidly, i.e.,
most of the performance gain from neurogenesis occurs within a
week.

3.2. Neurogenesis Interacts With Sparse
Activity to Enhance Contextual
Discrimination
Sparseness of granule cell firing is likely induced via a
combination of cell-intrinsic and extrinsic properties (Marin-
Burgin et al., 2012). We control sparseness by adjusting θ which
represents the combination of these effects, determining the
cells coding level, f . Neurogenesis increases performance at all
coding levels (Figures 1E,F). The optimal code becomes mores
sparse and appears to plateau at around 4–5% of DG cells active
(Figure 1G). Thus, in contrast to the initial optimal coding level
of around 10–15% active, similar to previous reports in a similar
framework (Barak et al., 2013; Babadi and Sompolinsky, 2014),
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FIGURE 7 | A synaptic turnover rule generalizes neuronal turnover to allow prediction of biological rates. (A) In Model 3, the strength of a DG neurons weight to CA3

is used to determine the probability of turnover of EC-DG synapses onto that neuron. (B) Error vs. time for synaptic turnover model with slope set to 2.5, is similar to

Model 1 in which a fixed fraction of 0.30 DG units are turned over. (C) the optimal coding level is between 4 and 5% as in the prior model. (D) Fraction of synapses

turned over as a function of time for different coding levels, f. The sparsely coded DG requires greater synaptic turnover. Yet Model 3, for all f, requires less turnover

than Model 1 (dotted black line) for a similar level of performance. (E) Fraction of neurons turned over vs. time. The sparse case requires more DG units to be turned

over. (F) For each time point, the coding level at which optimal performance is achieved is evaluated, and plotted as optimal coding level. The optimal coding level

becomes more sparse in time as in Model 1 and 2. (G) The tradeoff between cumulative synaptic turnover vs. cumulative reduction in error is best resolved by the

sparse DG. (H) same as in G but for neural turnover. (I) Cumulative neuronal replacement of DG vs. time, corresponding well with experimental data suggesting

around 10% of the mature DG is replaced by adult-born cells (Imayoshi et al., 2008). All results are calculated as the mean of 100 simulations, with slope = 2.5 for the

linear transfer function (See Experimental Procedures). See also Figure S1.

our best performance is achieved at a very sparse activity level
that continues to sparsen with time (Figure 1G).

The error reduction depends on the turnover rate, i.e., the
fraction of neurons targeted for turnover per day (Figure S1A),
such that longer periods of learning (more iterations of
neurogenesis) favored lower turnover rates (Figure S1B). On
average, the optimal rate of turnover is a monotonically
decreasing function of the number of days learning (Figure S1C),
yielding an optimal turnover rate of around 0.3 at 128 days of
learning.

We next analyzed the dynamics of the population of DG
neurons. The survival rate of neurons during the time course
of encoding the contexts depended on their age, i.e., those born
more recently have a survival advantage (Figure S1D), indicating
the gradual replacement of existing cells with those that are
newly born. Neuronal replacement is highest at the beginning
of learning, with a fraction of around 0.7 of 1-day old neurons
surviving, but after 256 days of learning even 1-day old neurons
survive at a very low rate of around 0.04. Whenever there is a
sudden change of the contexts in the 2-class case, or addition of
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a context in the multiclass case, we would indeed see a sudden
jump in the survival rate of newborn neurons. Therefore the
survival rate of newborn neurons scales with the learning rate, or
the encoding of new information, consistent with experimental
findings (Kempermann et al., 1997a,b; Gould et al., 1999).

To explore the relationship between connectivity and sparse
coding, we tested the networks performance for varying degrees
of connectivity from EC to DG (Figure S2A). The performance
degrades as input connectivity is reduced, with the performance
of sparsely coded models suffering more than that of more
densely coded models (Figures S2A,B). Nevertheless the optimal
coding level is a steeply monotonically decreasing function of the
connectivity that is sparse above a connectivity of around 2.5%
(Figure S2C), suggesting that sparse models perform well over a
large range of connectivities.

We next analyzed the CA3 readout to determine why the
memory performance scales up more quickly in the sparse vs.
the dense coding case as a function of neurogenesis. We observe
the total synaptic current coming into CA3 from the DG for a
single test pattern that belongs to the (+) context. Accordingly
we see that neurogenesis causes a positive shift in the distribution
of total synaptic current into CA3 for both the dense (Figure 2A)
and sparse (Figure 2B) cases with the normalized output weights
shown in panels C and D, respectively. However, there is
an accompanying increase in the spread of this distribution
countering the performance gain given by the increased signal,
since the tail of the distribution causes errors when it crosses the
CA3 decision boundary (Figure 2A).

We define the Signal to Noise ratio (SNR) as:

〈Signal〉
〈Noise〉

def= 〈h+ − h−〉2
〈σh+ 2〉 + 〈σh− 2〉 , (29)

where h+ and h− are the total synaptic current into CA3 from the
patterns of the (+) and (−) contexts, respectively, and σ 2

+ and
σ 2
− are the respective variances of that current across patterns.

In both the dense and sparse cases neurogenesis contributes to
a scale-up of the signal (Figure 2E) and the noise (Figure 2F).
Yet, in the signal-to-noise ratio (SNR) we see the superior
performance of the sparse case (Figure 2G). Due to synaptic
competition, the distribution of DG-CA3 weights gradually shifts
to higher efficacy synapses for both the dense (Figure 2C) and the
sparse case (Figure 2D).

3.3. Neurogenesis, Synaptic Plasticity, and
Sparse Activity Cooperatively Facilitate
Dimensionality Reduction
We then ask how the representation in the DG changes over
time. Prior to neurogenesis there is no correlation among the
patterns representing the two contexts for either the dense or
sparse case (Figures 3A,B, left). After neurogenesis proceeds, for
both the dense and sparse case, patterns that belong to a given
context become correlated to each other, while those that belong
to different contexts become anticorrelated (Figures 3A,B, right).
Note that for the same amount of neural turnover, the sparse case
always achieves a more correlated representation (Figure 3E).
Figure 3E shows the mean correlations within the same context

and across different contexts shown in panels A and B. It suggests
that the representations in DG for different patterns in the same
context are similar, while representations for patterns in different
contexts are more different after training.

For a closer look of the representations before and after the
neurogenesis training, Principal Components Analysis (PCA)
was used for presentations. Principal Components Analysis
reveals that, initially the DG activity patterns are randomly
distributed (Figures 3C,D, left) but after neurogenesis proceeds,
patterns representing the two contexts become clustered, and
separated, for both the dense and the sparse case (Figures 3C,D,
right), while the sparse case clearly shows greater separation
along PC1 (Figure 3D, right). Note that, though we do not show
it here, the separation between clusters became observable after
only 10–15 days. Since it becomes clearer with a long simulation
time, we report the state at the 128th day for comparison.

We intuitively illustrate the effect of neuronal turnover
(Figure 3F). Synaptic plasticity, between the DG and CA3,
assigns a weight vector at a given time, t, Wt . This weight
vector defines a perpendicular hyperplane that separates the
patterns defining the two contexts from each other in the
space DG activity. Weak synapses, i.e., elements of the weight
vector that are near zero, lie in dimensions that are almost
perpendicular to the weight vector, and almost parallel to
the hyperplane. By killing and replacing those DG units that
have weak synapses to CA3 and mostly perpendicular to W,
neuronal turnover randomly shifts the patterns in a direction
that is mostly parallel to the hyperplane. On average, after
this shift, the contexts are easier to separate when synaptic
plasticity draws a new weight vector, Wt+1, and the cycle
continues as such. Though step-to-step improvement on a
single instantiation is noisy (Figure 1B, gray trace) the average
performance appears to monotonically decrease (Figure 1B,
black trace).

To observe the influence of neurogenesis and sparse coding
on dimensionality, we observe the singular values, λ(i), of the
centered DG activity matrix, S, corresponding to the standard
deviation of activity patterns in the i’th dimension. The ratio
of λ(i)/λ(1) decreases after neurogenesis for all components
in both the dense and sparse case, but the decrease is more
profound in the sparse case (Figure 4A). To see more clearly how
the number of dimensions affects classification performance we
observe the effect of restricting the number of components in
the weight vector. Observing Equation (28), the weight vector
can be decomposed into a sum of weighted components, Ŵd =
∑d

i αiui . We observe how the classification error varies as we
incrementally add back components to the weight vector up
to dimensionality d, plotting a color map of the number of
restricted dimensions vs. coding level. Before neurogenesis this
map is relatively flat (Figure 4B, left panel), indicating a weak
dependence of dimensionality on coding level. In contrast, after
neurogenesis the map exhibits a sharp drop in error after a only
around 20 components, especially in the sparse coding range
around f = 0.04 (Figure 4B, right panel). This indicates that
neurogenesis reduces the effective dimensionality required for
maximal performance at a fixed coding level, and that sparse
coding allows for a greater reduction in dimensionality.
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3.4. The Separation Between Contexts Is
Determined by the Context-Bias of
Selected DG Neurons
To simplify analysis in the next two sections it is useful to
consider training with the matrix of noisy prototype patterns,
S, rather than the matrix of mean prototype patterns, S
(See Materials and Methods). We next observe how neuronal
competition affects the organization of the DG neuronal
population. We define the context-bias of a given DG cell, 9i,
as the fraction of patterns it responds to belonging to the (+)
context minus those that belong to the (−) context:

9i
def= (f+i − f−i ) (30)

Therefore, the context-bias takes a value between −1 and +1
and is equal to 0 in cases where a DG cell responds to the same
number of (−) and (+) context patterns. For the entire DG
population, this can be expressed as the context-bias vector, 9 ,

9 = 1

2P
SηT , (31)

where each column of S is a pattern of DG activity, and η is
the vector of target CA3 activities (either −1 or +1) for each
respective input pattern and is the total number of patterns.
The derivation can be found in Equation (15). Note that 9 is
equivalent to the separation between the means of the patterns
representing the two respective contexts (See Materials and
Methods). Neurogenesis selects for neurons that are biased
for each of the two contexts (Figures 5A,B, Top histogram).
Therefore, the distribution of 9i partitions into 3 groups, those
that are biased to respond to context (−), those that are biased
toward context (+), and newborn randomly generated neurons
whose context-bias is centered on zero (Figure 5B). The two
biased groups of surviving neurons therefore form an ensemble
that can be thought of as memory engrams for their respective
contexts. Note that a DG cells context-bias is correlated with
its weight to CA3 (Figures 5A,B, scatter plot). On average, the
dense case (Figure 5A, top histogram) consists of DG cells that
are more biased between the two contexts than the DG cells
of the sparse case (Figure 5B, top histogram). This is because
the maximum difference between a neurons responsiveness to
the two contexts is limited by the total fraction of patterns
to which a neuron can respond, i.e., the coding level. With
neuronal turnover, in both cases, the average context-bias, and
the average CA3 weight increases (Figures 5A,B, top histograms,
right histograms, respectively).

We can express the SNR in these terms for a set of training
patterns as (See Materials and Methods):

Signal

Noise
=

(

WT9
)2

∑

iW
2
i f

+
i

(

1− f−i
)

+
∑

iW
2
i f

−
i

(

1− f+i
)

−
∑

iW
2
i

(

f+i − f−i
)2

(32)
The inner product between the DG-CA3 weight vector and
the context-bias vector, WT9 , determines the SNR between
contexts. With neuronal turnover, the increase in absolute

weight (Figures 5A,B, side histograms), and absolute context-
bias (Figures 5A,B, top histograms) results in increased inner
product,WT9 , for both the dense and sparse cases (Figure 5G),
accounting for the increase in the SNR. However, the SNR grows
more quickly in the sparse case (Figure 2G).

3.5. Extremely Sparse Coding Allows the
Context-Bias of Individual Units to More
Closely Determine the Output
We next address the dynamics with which the context-bias
and weight vectors change as functions of each other. The
purpose of this section is to give mathematical intuition for
how neurogenesis takes advantage of sparse coding. In particular,
we will discuss how the eigen-components of W and 9 are
interacting with each other in the dense coding case and sparse
coding case. Note, as described above that the SNR is determined
by the product of the weight vector, W, and the selectivity
vector, 9 . Furthermore, a DG cells synaptic weight determines
its probability of survival. The weight vector is defined as:

WT def= ηS∗, (33)

where S∗ is the pseuodoinverse of the matrix of patterns in DG
space. Using the Singular Value Decomposition (see Materials
and Methods) we can re-express this in a way that allows us to
intuitively understand the relationship between the context-bias
vector and the weight vector. First we define 9̂i as the projection
of the context-bias vector,9 , onto the respective i-th left singular
projection matrix, uiu

T
i .

9̂ i
def= uiu

T
i 9 (34)

As noted above, 9 is equivalent to the vector of mean separation
between the contexts. Therefore, each vector 9̂ i represents the
separation between the context means in the direction of a given
singular vector, ui, which expresses the direction of the ith largest
component of the activity patterns in DG space. 9̂ i can be
thought of as the contribution along the singular vector, ui, to
the mean separation between contexts, 9 . Note that the singular
vectors with large singular values represent the most important
dimensions of the distribution of patterns in DG space.

Above, we noted that the two contexts separate from each
other as neuronal turnover proceeds. Correspondingly, ‖9‖, the
euclidean length of 9 , increases over time (top histograms of
Figures 5A,B, and a summary in Figure 5E). However the dense
and sparse cases differ in the way dimensionality is reduced. To
observe this we now express the weight vector in terms of 9̂ i as:

WT = 2P

N
∑

i

σ−2
i 9̂T

i , (35)

where 2P is a constant scale factor equal to twice the total number
of patterns, and σi are the i-th singular values of the matrix S.
The derivation can be found in Appendix B. We see that the
weight vector is merely a weighted sum of 9̂ i. Here a tradeoff
emerges. Somewhat counterintuitively, the contributions of the
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9̂ i are scaled down by their respective σ−2
i . Thus, though certain

singular vectors may represent the mean separation between
contexts, their contribution to the weight vector is limited by
their singular values. In other words, the more a given 9̂ i

determines the mean separation, the more it is scaled down by
its respective σ−2

i .
In order to investigate the difference between dense coding

and sparse coding cases, let us look into the distributions of
singular values. In Figure 5C, the ranked reciprocals of the square
of singular values, σ−2

i , for different cases are presented. The
scale-down effect in the dense case is more significant than in the
sparse case for the ranks within a neighborhood of the rank 1.
Thus, the weight vector in the dense case is subject to more
shrinking of the 9̂ i by their respective σ−2

i and the elements
of the weight vector have a narrower distribution in the dense
case than in the sparse case prior to neurogenesis (Figure 5D for
individual contributions and side histograms of Figures 5A,B for
full distributions).

Due to the differences in scaling factors shown in panel C,
‖W‖ has a larger magnitude in the sparse case compared to the
dense case despite that ‖9‖ has smaller values, as shown in panel
E. In addition to the difference in the magnitude, the normalized
inner product

(

WT9
)

/ (‖W‖‖9‖) of the sparse case is larger
than that of the dense case (Figure 5F), implying that the cosine
distance between W and 9 is smaller in the sparse case. In
addition, neuronal turnover increases the inner product more
rapidly in the sparse case (Figure 5G). Because WT9 represents
the degree of separation between the presentations of (+) context
and (−) context, sparse coding is superior to dense coding in the
context separation. This situation is schematically illustrated in
Figure 5H.

3.6. The Neurogenesis Learning Rule
Generalizes to Multiple Contexts
We next analyze patterns of activity in a model with multiple
CA3 units to enable the encoding of an arbitrary number of
distinct contexts. We use a similar neurogenesis rule in Model 2,
in which the DG units compete for trophic signals, except now
a DG neurons survival is determined by the sum of the absolute
value of its output weights (Figure 6A, see section Materials and
Methods) such that those neurons with a sum ranking in the
bottom 30% of the population are turned over. In this case we
have a weight matrix, W in which the elements of each column
represents the DG-CA3 weights of a given output CA3 unit.
We train the network with 8 contexts and test the network as
before, by presenting a novel pattern, µ but now we compare
the pattern of CA3 activities represented in the vector η̂µ =
sign(WTS) to the vector representing the target CA3 pattern
specified by ηµ. Requiring a match between these patterns for
correct classification, we can then define the error for the µ-th

pattern at CA3 as errµ =
{

0, if η̂µ = ηµ

1, otherwise
. The mean error

across test patterns decreases similarly to the generalization error
of the two-context case, and again demonstrates the superiority
of the sparse case with a coding level of f = 0.04 (Figure 6B).
One may notice that the less-sparse case with a coding level of

f = 0.15 has a similar performance level with f = 0.04. The
setting with f = 0.15 may be benefited from the increase in
multiplicity in representations for this multiple-context case, c.f.,
Figure 1E. However, the superiority of sparse coding still holds
by comparing with the setting with f = 0.50.

Similar to the two-context case, the pairwise correlation of
the training patterns in DG space demonstrates a clustering
after neurogenesis (Figures 6C,D) in which patterns that are
members of the same context tend to be correlated. PCA is
used to observe the spread of the training patterns in DG
space. The training patterns are initially randomly distributed
in DG space (Figure 6E) but evolve into separated clusters
with neuronal turnover (Figure 6F). To observe the effect
of this separation on test patterns that the network has
never seen before we project them onto the PCs of the DG
representation of the training set, and mark any errors with a
gray x (Figures 6G,H). Before neurogenesis, patterns of a given
context are often misclassifed due to the lack of separation
between the contexts (Figure 6G). After neurogenesis, the
separation between training patterns of the contexts (Figure 6F),
reduces the probability of such errors on test patterns
(Figures 6B,H).

3.7. A Model of Synaptic Turnover Achieves
Similar Performance With Lower Material
Cost
The models analyzed above assume that when a DG neuron
has a weak connection to CA3, that neuron dies. However, the
turnover rate that yields the best performance is about 30% of DG
cells per day for 128 days of neuronal turnover (Figures S1B,C).
We therefore explored a model assuming that biology seeks to
conserve the material of synapses and neurons that might allow
us to predict a realistic rate of neuronal turnover. In Model 3, as
in the above models, the connections between DG and CA3 are
trained with the pseudoinverse rule. Instead of neuronal turnover
of units with weak DG-CA3 weights, we now implement synaptic
turnover. A strong connection from the DG to CA3 results
in a trophic signal that stabilizes that units EC-DG synapses,
while a weak DG-CA3 weight is destabilizing (Figure 7A).
We implement stability via the probability of EC-DG synaptic
turnover.We assume a linear transfer function (SeeMaterials and
Methods, Figure S3A) between a DG units output weight to CA3
and the probability of that units input EC-DG weights being re-
randomized, resulting in a random subset of that units EC-DG
weights being chosen for re-randomization at each iteration. A
slope of 2.5 was optimal in our simulations for the linear transfer
function (Figure S3B). This rule results in similar improvement
in performance to the prior rule that assumes that a fixed fraction
of neurons turnover (Figure 7B). The same geometric intuition
as the prior model applies (Figure 7F). The result as before
is a reduced dimensionality of the contextual representations,
such that reconstruction of an output weight vector that gives
maximal cumulative performance (See Materials and Methods)
can be achieved with far fewer dimensions (Figure S3C). Similar
to Model 1 and 2, the optimal coding level becomes sparser with
iterations of turnover (Figures 7C,F).
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We then ask, what is the difference among different coding
levels in terms of the cellular material turnover required to
enable encoding? The total number of synapses turned over in
this model is greatly reduced compared to the fixed turnover
model, for all coding levels (Figure 7D). Since synaptic stability is
thought to determine neuronal survival in several systems (Segal,
2010), including adult-born granule cells in the DG (Doengi et al.,
2016), we made a similar assumption in the model to allow us to
estimate the rate of neuronal turnover.We chose the conservative
assumption that a neuron dies only if all of its synapses are
targeted for turnover. With this assumption, the rate of neuronal
turnover relative to the previous model drops by two orders of
magnitude across all coding levels to range between 0.006 and
0.001 (Figure 7E), similar to the low rate of less than 1% that
has been reported in rats (Cameron and McKay, 2001), 0.03–
0.06% in the 2 month old mouse (Kempermann et al., 1997b),
or 0.004% in humans (Spalding et al., 2013). Our results provide
theoretical support to the findings that an extremely low rate of
day-to-day neuronal turnover is sufficient to significantly alter
memory performance.

The cumulative replacement of preexisting cells with newborn
cells is also very low, ranging between 10—22% after 128
days of turnover across all coding levels (Figure 7I) similar to
experimental results that have been previously reported in mice
(Imayoshi et al., 2008). We see that for the same level of total
synaptic or neural replacement, the cumulative error reduction is
greater for the sparse case than for the dense case (Figure 7G),
implying that sparse coding enables the learning rule to conserve
on material turnover.

4. DISCUSSION

4.1. Neuronal Turnover in a Sparsely Active
Dentate Gyrus
It is said to be paradoxical that the DG replenishes its neurons
daily even though activity levels are very sparse on average
(Piatti et al., 2013). Our results suggest that the sparseness of
the DG is actually exploited by adult neurogenesis to find low-
dimensional contextual representations that enhance memory
encoding (Figures 3C,D). Placing synaptic turnover upstream
of neuronal turnover performs similarly (Figure 7), suggesting
that similar underlying processes could apply in other systems.
As discussed below, such a model may help unify seemingly
disparate findings in the neurogenesis literature.

Prior computational models of neurogenesis have
implemented neuronal turnover by re-randomization (Chambers
et al., 2004; Deisseroth et al., 2004; Becker, 2005; Crick and
Miranker, 2006; Chambers and Conroy, 2007; Aimone et al.,
2009; Finnegan and Becker, 2015), or by adding new neurons
(Weisz and Argibay, 2012) with random synaptic weights. Here
we contribute by explicitly addressing the interaction between
sparseness and neurogenesis, and evaluating the consequences of
a learning rule based on competition for target-derived stability.

The DG is significantly more sparse than most brain regions
with a coding level estimated around 0.02–0.04 (Jung and
McNaughton, 1993; Leutgeb et al., 2007; Danielson et al., 2016;
Diamantaki et al., 2016). In our model, the optimal sparseness

for memory encoding evolves to a very sparse coding level as a
function of the total amount of time over which the network has
undergone encoding via neurogenesis (Figure 1G). This seems
to suggest that the sparse code found in the DG may be tuned
as such to make the best use of neuronal turnover in memory
encoding - though we don’t evaluate mechanisms of tuning
sparseness, it could be accomplished on a multi-synaptic level
such as by feedback inhibition, or by a homeostatic increase in
firing threshold.

During neurogenesis, new neurons compete for synaptic
contact (Figure 1A). As neurons compete and some replace
others, the DG neuronal activities evolve to a low-dimensional
representation of the two contexts that are to be learned
(Figure 3). In this low-dimensional representation the activity-
patterns representing the two contexts are grouped into distinct
clusters representing the contexts (Figures 3C,D, 6H).

In a similar framework to ours it was known that there is a
limit to how sparse a randomly connected network can be before
a tradeoff emerges such that further sparseness actually impairs
performance (Barak et al., 2013; Babadi and Sompolinsky, 2014).
Babadi and Sompolinsky (2014) demonstrated analytically that
the optimality of the sparse code is constrained by amplification
of noise by random input weights that is mitigated when a
hebbian learning rule is implemented on those weights. Given
that hebbian learning structures the input weights to represent
correlations among the inputs, they suggested that limitations
on the effectiveness of sparse coding might emerge due to the
unstructured nature of randomweights. We first show that either
neuronal (Figure 1B) or synaptic turnover (Figure 7B) improves
the performance over the initial condition of random projection
studied by Barak et al. (2013) and Babadi and Sompolinsky
(2014). Furthermore, we demonstrate that a very sparse code
can in fact be optimal even given random input weights
(Figures 1G, 7F), implying that fine-tuning, such as the hebbian
learning they employed (Babadi and Sompolinsky, 2014), is
not always necessary at very sparse coding levels. Instead, via
competition for target-derived stability, the sparse code facilitates
the search for randomly connected neurons that collectively
yield a low dimensional representation of the contextual inputs
(Figure 5H).

Decomposing the CA3 weight vector allows us to see the
higher correlation between the discriminative components, 9̂ i

and their contribution to the weight vector, σ−2
i 9̂i, in the

sparse case (Figure 5F). In other words, in the sparse case there
exist discriminative components with singular values sufficiently
small such that they can be strongly represented in the weight
vector.

As a result, with each iteration (day), the synaptic strength
of a DG neuron to CA3 can more readily grow in proportion
to its contribution to the mean separation between contexts
(Figures 5E,F). The overlap between these terms then scales up
more quickly in the sparse case (Figures 5F,G). This greater
coupling between the mean separation of contexts in the DG
and the weights to CA3 (Figure 5D) thereby allows neurogenesis
to more rapidly find separated contextual representations in the
sparse case (Figures 3C,D). This greater separation allows the
network to generalize better to new instances of the same context
(Figures 1E, 6B).
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4.2. Biological Predictions
The major prediction of this study is the dimensionality
reduction of contextual codes in the dentate gyrus (DG). This
prediction is in principle testable by recording the activity of a
population of DG cells that includes both mature and immature
neurons during contextual discrimination tasks. Then, analyses
similar to those employed in the present study will be applicable
to explore how the dimensionality of DG representation evolves
during learning and how the dimensionality reduction is affected
by the blockade of neurogenesis. Our results are also consistent
with several experimental findings. Adult-born neurons are
initially hyperexcitable, then gradually acquire the sparse firing
characteristics of their mature counterparts (Schmidt-Hieber
et al., 2004; Dieni et al., 2013). Correspondingly, input specificity
increases with time (Marin-Burgin et al., 2012). This is consistent
with the sparsening of the optimal coding level with time in
our model (Figures 1G, 7F). Furthermore, if we assume that
newborn DG cells initially have very few connections, greater
hyperexcitability (higher coding level, f) is necessary for optimal
performance (Figures S2B,C).

The preference in our model for an average sparse coding level
in the presence of neurogenesis (Figure 1F) is consistent with
findings that neurogenesis induces a sparser code in the dentate
gyrus (Ikrar et al., 2013) while blockade of neurogenesis results
in increased average activity in the dentate gyrus (Burghardt
et al., 2012; Lacefield et al., 2012). Meanwhile, increasing the
excitability of the DG while neurogenesis is intact may impair
contextual discrimination (Jinde et al., 2012).

The initial condition of our model, is equivalent to the
encoding of novel contexts. As the contexts become familiar over
time, the optimal neurogenesis rate decreases in the neuronal
turnover model (Figure S1C), as does the predicted neuronal
turnover in the synaptic turnover model (Figure 7E). This is
consistent with experimental findings that novelty increases the
neurogenesis rate (Kempermann et al., 1997b; Gould et al.,
1999). Correspondingly, as the contextual encoding proceeds,
their survival rate decreases with time, i.e., exceedingly few adult-
born cells survive (Figure S1D). Therefore, relatively few mature
cells are replaced and most of the cell death is replacement
of immature cells by other immature cells. This is because a
very old cell is already part of a favorable representation that
enables discrimination and it is improbable to find a new cell
that can better contribute. Thus newly adult-born cells have a
survival advantage during novel encoding such as would occur
during environmental enrichment, similar to what has been
found experimentally (Kempermann et al., 1997b; Gould et al.,
1999), while mature cells have the advantage under familiarity.
Contextual novelty may explain why axonal retraction of mature
DG cells results from a losing competition with adult-born
cells in the juvenile rat (Yasuda et al., 2011), but not in adult
mice in their homecage (Lopez et al., 2012). Since adults have
already sufficiently encoded their environment, it is perhaps
necessary to expose adults to enriched or novel environments
(Kempermann et al., 1997b; Gould et al., 1999) to observe
significant outcompeting of mature DG cells by new cells.
However, this prediction in survival rate should not be confused

with the overall survival rate of all new-born dentate gyrus
granule cells. The survival rate mentioned here considers only
those dentate gyrus cells able to reach CA3 for competitions.
For those newly generated dentate gyrus granule cells failed to
emerge into the system, we consider that they are invisible in the
model.

Our results are consistent with the presence of high-efficacy,
so-called detonator synapses, at the Mossy Fiber (MF) terminals
of DG axons to CA3 (McNaughton and Morris, 1987; Jonas
et al., 1993; Treves and Rolls, 1994; Henze et al., 1997, 2002;
Rollenhagen et al., 2007; Vyleta et al., 2016). The sparse activity
of the DG causes the output weights to be larger than in less
sparse systems, as the weights of sparse models are of greater
magnitude for equivalent context-bias (Figure 5E). Furthermore,
neuronal turnover during contextual learning leads to faster
growth of the weights in the sparse model compared to those
of the dense model (Figure 5E). This is consistent with the
experimental finding that contextual learning increases the
average synaptic efficacy of MF terminals of axons from the DG
to CA3 (Galimberti et al., 2006).

4.3. Neuronal vs. Synaptic Turnover
It has been estimated that only around 0.03–0.09% of granule
cells are turned over in the adult rodent DG (Kempermann
et al., 1997b; Cameron and McKay, 2001), or 0.004% in humans
(Spalding et al., 2013). These results have often raised the
question - how can such a small number of cells significantly
influence behavior (Piatti et al., 2013)? Indeed, there is a stark lack
of consensus on whether adult hippocampal neurogenesis always
positively correlates with DG-dependent learning (Frankland,
2013; Akers et al., 2014; Lipp and Bonfanti, 2016). Bats show
no adult DG neurogenesis for the majority of species studied
(Amrein, 2015), though bats clearly exhibit hippocampal place
cells, and spatio-contextual reasoning that is attributed to the
hippocampus (Finkelstein et al., 2016). Numerous comparative
studies have demonstrated heterogeneous adult neurogenesis
rates across mammalian species that does not seem to depend
on their need for spatial reasoning (Cavegn et al., 2013; Amrein,
2015; van Dijk et al., 2016).

Experimental interventions that suggest a lack of positive
correlation between neurogenesis rates and learning of DG-
dependent tasks (Wood et al., 2001; Bartolomucci et al., 2002;
Holmes et al., 2002; Bizon and Gallagher, 2003; Akirav et al.,
2004; Leuner et al., 2004, 2006; Van der Borght et al., 2005),
or that learning does not necessarily increase the number of
new neurons (van Praag et al., 1999; Döbrössy et al., 2003;
Ambrogini et al., 2004; Olariu et al., 2005; Pham et al., 2005;
Snyder et al., 2005; Van der Borght et al., 2005), suggest that
neuronal turnover is not always the relevant correlate of learning
in the DG. Substantial evidence that depletion of neurogenesis
does not impair such learning (Shors et al., 2001, 2002; Madsen
et al., 2003; Raber et al., 2004; Snyder et al., 2005; Meshi et al.,
2006; Frankland, 2013; Groves et al., 2013; Urbach et al., 2013)
suggests that molecular mechanisms modulating DG synaptic
processes can remain intact and support learning, without
requiring neuronal turnover.
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Placing synaptic turnover upstream of somatic turnover, as
in Model 3 (Figure 7A), may help unify these findings. Synaptic
turnover, rather than neuronal turnover may be the relevant
measurement with which to correlate DG-dependent learning
that is targetable by molecular and cellular interventions in
the neurogenic niche. DG neurons compete for CA3 target
factors, and those losing the competition have their input
synapses destabilized (Figure 7A). If the amount of synaptic
destabilization crosses a threshold (in our case, all input synapses
destabilized) then the neuron dies. With these assumptions, we
indeed find a very low optimal neurogenesis rate (Figure 7E)
in the biologically reported range of a fraction of a percent
(Kempermann et al., 1997b; Cameron andMcKay, 2001; Spalding
et al., 2013). This suggests that, via the same form of competition,
en masse synaptic turnover could underlie learning, while only a
minority of neurons actually turn over. Such a synaptic-turnover-
driven neuronal turnover rule is consistent with evidence that
activity-dependent competition among mature and immature
DG granule cells for CA3 targets (Yasuda et al., 2011), and
their input-synaptic stability (Tashiro et al., 2006; Doengi et al.,
2016) appears to promote neuronal survival. Furthermore, there
is a well-known overlap between factors that influence synaptic
plasticity, and those that influence neurogenesis in the DG (Vivar
et al., 2013), and many of these same factors influence synaptic
stability more generally throughout the central nervous system
(Vicario-Abejón et al., 2002). Future behavioral studies in animal
models of modulated neurogenesis may benefit from measuring
markers of synaptic stability, such as adhesionmolecules required
for synapse maintenance (Doengi et al., 2016), rather than
somatic markers of neurogenesis.

4.4. Concluding Remarks
Sparse coding is prevalent throughout many systems of the
brain (Barak et al., 2013; Babadi and Sompolinsky, 2014).
Our results suggest that neuronal or synaptic turnover in
sparsely active regions of the brain may embody a novel
learning rule that enhances the clustering of associated activity
patterns, and thereby memory encoding and retrieval. Sparseness
entails a lower metabolic cost since few neurons are active
at any time, and our results further suggest that learning in
a sparse layer via turnover conserves synaptic (Figure 7D) or

somatic material (Figure 7E), perhaps a previously unrecognized
metabolic benefit to sparse coding. The learning curves of all
implemented models suggest that differing degrees of sparseness
across systems may be found to correspond to the timescale over
which they are required to represent memories. Since the optimal
sparseness of these models increases as a function of encoding
time, we might think of the high sparseness of the DG as being
tuned to enable retrieval of episodes that are encoded over long
periods of time. Consistent with this timescale, amnesiac patient
H.M. lost not only the ability to encode novel information,
but also the ability to retrieve memories up to 11 years prior
to the removal of his hippocampus (Corkin, 2002). Further
investigation of the relationship between synaptic stability and
neuronal survival (Doengi et al., 2016) may yield insight into
how neuronal turnover and synaptic turnover are coupled. Our
work, and that of others (Marin-Burgin et al., 2012; Bergami et al.,
2015; Alvarez et al., 2016) suggests that local regulation of sparse
activity in the DG may be critical during the addition of new
synapses or new neurons that occurs during learning. Similar
processes may regulate brain development in general.
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APPENDICES

A. MOORE PENROSE PSEUDOINVERSE
GUARANTEES A LEAST-SQUARE
SOLUTION

Let us consider a linear system:

y = Ax . (A1)

For a given y and a given A, we would like to look for a solution
to xminimizing the square residual given by

‖r‖2 ≡
∥

∥y− Ax
∥

∥

2
(A2)

= yTy− yTAx− xTATy+ xTATAx . (A3)

The gradient of the residual is

∇x ‖r‖2 = −2ATy+ 2ATAx . (A4)

∇x ‖r‖2 = 0 implies

ATy = ATAx . (A5)

Suppose A is a matrix with linearly independent columns, we
have

x =
(

ATA
)−1

ATy . (A6)

Here A∗ ≡
(

ATA
)−1

AT is the Moore-Penrose pseudoinverse
of A. The solution to x deduced by the Moore-Penrose
pseudoinverse should be guaranteed to be the least-square
solution.

In our model, the output weights is solved by Moore-Penrose

inverse. One may consider replacing ηT with y, S
T
with A andW

with x in the linear system here. Since S is generated from linearly
independent input and random input weights, and θ is chosen to
match the coding level f , the rows of the matrix S should also be
linearly independent. The argument concerning Moore-Penrose
pseudoinverse in this appendix follows.

B. EXPRESSION OF W IN TERMS OF 9̂

Given that

WT = ηS
∗

(A7)

= ηV6∗UT , (A8)

where matrices U, V and 6 are the matrix given by singular-
value decomposition. Note that singular-value decomposition is
a generalized eigendecomposition. Diagonal entries of 6 stores
eigenvalues of the matrix S

∗
, while matrices V and U store

left-singular and right-singular vectors. On the other hand,

ηT = 2PS
∗
9 (A9)

η = 2P9T
(

S
∗)T

. (A10)

Therefore,

WT =
[

2P9T
(

S
∗)T

]

V6∗UT (A11)

= 2P9TU(6∗)2UT . (A12)

Let us consider the entries ofWT ,

(

WT
)

j
= 2P

∑

k

(

9T
)

k

∑

l

Ukl

∑

m

(

6−2
)

lm

(

UT
)

mj
(A13)

= 2P
∑

k

(

9T
)

k

∑

l

(

6−2
)

ll
Ukl

(

UT
)

lj
(A14)

= 2P
∑

l

(

6−2
)

ll

∑

k

(

9T
)

k
Ukl

(

UT
)

lj
. (A15)

Therefore, the matrix-vector form is given by

WT = 2P
∑

i

σ−2
i 9̂i, (A16)

where 9̂ ≡ 9Tuiu
T
i and ui is the ith column of the matrix U.
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