
ORIGINAL RESEARCH
published: 09 January 2019

doi: 10.3389/fncom.2018.00100

Frontiers in Computational Neuroscience | www.frontiersin.org 1 January 2019 | Volume 12 | Article 100

Edited by:

Florentin Wörgötter,

Georg-August-Universität Göttingen,

Germany

Reviewed by:

Rifai Chai,

University of Technology Sydney,

Australia

Joachim Hass,

Central Institute for Mental Health,

Germany

*Correspondence:

Thalita F. Drumond

thalita.firmo-drumond@inria.fr

Received: 14 February 2018

Accepted: 03 December 2018

Published: 09 January 2019

Citation:

Drumond TF, Viéville T and

Alexandre F (2019) Bio-inspired

Analysis of Deep Learning on

Not-So-Big Data Using

Data-Prototypes.

Front. Comput. Neurosci. 12:100.

doi: 10.3389/fncom.2018.00100

Bio-inspired Analysis of Deep
Learning on Not-So-Big Data Using
Data-Prototypes
Thalita F. Drumond*, Thierry Viéville and Frédéric Alexandre

Mnemosyne Team, INRIA Bordeaux, Talence, France

Deep artificial neural networks are feed-forward architectures capable of very impressive

performances in diverse domains. Indeed stacking multiple layers allows a hierarchical

composition of local functions, providing efficient compact mappings. Compared to

the brain, however, such architectures are closer to a single pipeline and require huge

amounts of data, while concrete cases for either human or machine learning systems

are often restricted to not-so-big data sets. Furthermore, interpretability of the obtained

results is a key issue: since deep learning applications are increasingly present in society,

it is important that the underlying processes be accessible and understandable to

every one. In order to target these challenges, in this contribution we analyze how

considering prototypes in a rather generalized sense (with respect to the state of the

art) allows to reasonably work with small data sets while providing an interpretable view

of the obtained results. Some mathematical interpretation of this proposal is discussed.

Sensitivity to hyperparameters is a key issue for reproducible deep learning results, and

is carefully considered in our methodology. Performances and limitations of the proposed

setup are explored in details, under different hyperparameter sets, in an analogous

way as biological experiments are conducted. We obtain a rather simple architecture,

easy to explain, and which allows, combined with a standard method, to target both

performances and interpretability.

Keywords: deep learning, not so big data, data prototypes, interpretability, transfer learning

1. INTRODUCTION

Deep neural networks have had a great success in many domains, especially in visual
recognition tasks. From AlexNet in 2012 (Krizhevsky et al., 2012) to Residual Networks in
2015 (He et al., 2016), this class of models has shown outstanding performances at the Large
Scale Image Recognition Challenge (aka ImageNet), motivating the use of deep learning in
multiple domains such as speech recognition and language processing (LeCun et al., 2015).
The key idea is that, at least for threshold units with positive weights, reducing the number
of layers induces an exponential complexity increase for the same input/output function
(Håstad and Goldmann, 1991). On the reverse, it is a reasonable assumption, numerically
verified, that increasing the number of layers yields an input/output function compact
representation1, as a hierarchical composition of local functions (Goodfellow et al., 2016c).

1Here compact means that adding a network layer allows a better input-output mapping approximation or a mapping

considering a higher functional sub-space for a number of units which would have been exponentially higher with decreasing

the number of layers.

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2018.00100
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2018.00100&domain=pdf&date_stamp=2019-01-09
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:thalita.firmo-drumond@inria.fr
https://doi.org/10.3389/fncom.2018.00100
https://www.frontiersin.org/articles/10.3389/fncom.2018.00100/full
http://loop.frontiersin.org/people/484664/overview
http://loop.frontiersin.org/people/769/overview
http://loop.frontiersin.org/people/783/overview

Drumond et al. Data Prototypes and Small Data

1.1. The Data Requirement Challenge
However, deep learning remains very inefficient concerning
data requirements. Most successful results are reported on large
databases. For the simple handwritten digit recognition task, on
the MNIST database we were already at 60 K images for 10
classes (LeCun et al., 1998). For the complex ImageNet challenge,
we reached more than 1M images for 1 K classes (Krizhevsky
et al., 2012). While large tech companies may have access to
large amounts of labeled and unlabeled data, this is not the case
in many domains, where the ability to generalize from only a
few tenths of examples per class is required. This limitation not
only concerns industrial application requirements but is also
a strong limitation as far as modeling cognitive processes is
concerned.

Elaborating over this necessity, Mouret (2016) argues for the
three basic precepts to deal with small corpus of data, also called
micro-data learning: (i) actively search about which is the most
relevant data to consider (active learning), (ii) exploit every bit
of information (detailed learning), (iii) use as much as possible
prior knowledge. In fact, the quick learning ability of humans and
animals is largely due to our prior knowledge about the world we
interact with and is referred to as transfer learning (Weiss et al.,
2016). This can be performed considering general knowledge,
beyond ad-hoc application dependent choices. In practice,
learning from limited data often requires embedding of prior
knowledge at some stage, be it at the input data pre-processing,
the architecture choice, cost functions, and regularization rules,
or even as smart training strategies. Following this track are
works focused in few-shot learning (Dong et al., 2017; Rahman
et al., 2017), which deals with very few learning samples (usually
less than ten), when not only one sample, or zero (i.e., only a
priori information).

We would like to study how to investigate a middle range of
a few tenths of samples. We may call this situation “not-so-big-
data.” The rational for this is two-fold: On one hand it appears
that learning entirely new concepts of forms in human (e.g.,
reading characters; Leroy, 1967) does not require one or a very
few number of samples, but more than 10. On the other hand,
several industrial applications are able to provide ten to hundred
samples for a given perceptual tasks, but not thousands. Such not-
so-big-data learning is an extension of few-shot and micro-data
learning, reusing several key features such as transfer learning, as
reviewed in the section 2.2.

1.2. The Interpretability Issue
A step further, we argue that in order to be able to introduce
prior knowledge at a general level (and not only using an ad-hoc
mechanism limited to a single application), the lever is to provide
an interpretable processing. Interpretable mechanisms can help
to better tune the architecture with small data set, as discussed
in this paper. Interpretability also requires a data description
easy to explain to a lay audience, and means to provide an
explanation for algorithmic decisions that may affect citizen life.
We have such requirement in mind in this contribution, as
already addressed in Drumond et al. (2017b).

When considering such an issue in the present literature
(e.g., Kim et al., 2016, or Zhao and Park, 2016) it appears

that interpretability is understood as “results are interpretable.”
However, if we really want to propose some easy-to-share and
explainable mechanism, in order to be able to state that the
process is transparent, we must not only look for interpretable
results. We also must attempt to consider easily understood
processes, i.e., interpretable mechanisms. This is the reason why
in this paper we are going to take the risk to study to which extent
a “non trivial but easy to explain” mechanism, used with a small
amount of data, can still provide performances close to the best
state of the art performances.

1.3. On Network Architecture
One of the intuitions behind the success of deep learning is
that stacking multiple layers induces learning of a hierarchical
representation, a successive composition of local functions that
ends up describing higher level concepts as reviewed (e.g.,
Bengio and LeCun, 2007). This includes, for convolutional
neural networks (CNN) with weight sharing, the capability to
take global, e.g., translational invariant, features into account
(Goodfellow et al., 2016b). That aspect of deep architectures has
a strong parallel with our current knowledge of representations
in the brain, especially in the visual pathway from retina
until the infero-temporal cortex, where object identification is
performed. This feed-forward pathway is indeed hierarchical
and is responsible for our primary (first ≈ 100ms) visual
identification capabilities (Fabre-Thorpe et al., 1998). When
considering, however, the complete visual system, a simple feed-
forward pipeline cannot represent all the computations taking
place in the brain. Identification is only part of our visual system,
namely the What ventral pathway, associated to the Where-
How dorsal pathway (Milner and Goodale, 1995). Furthermore,
there are dynamicmechanisms, feedbackmodulations, shortcuts,
lateral inhibition, to cite a few, that are often disregarded
(Medathati et al., 2016).

Concerning the connectivity patterns within the visual system
(Bullier, 2001), the capability to mix features from different
levels of the hierarchy, as observed regarding the role of
the pulvinar (Cortes, 2012), has to be considered. Integrating
focus of attention within certain regions of the feature space
(Saalmann et al., 2012), and other functionalities such as on-
the-fly adaptation to incoming data, in link with the few-
short learning paradigm (further discussed in section 2.2) is
also important to take into account2. All these functionalities
require rather general recurrent architectures (Medathati et al.,
2016). The possibility to provide a framework in which not
only feed-forward or specific recurrent architectures can be
taken into account is addressed by other works (Viéville
et al., 2017) and is beyond the scope of this paper. The
present proposal is mainly inspired on how the infero-temporal
cortex has a kind of prototypical representation, with neurons
tuned to respond to particular categories (Viéville and Crahay,
2004).

2Further aspects of feed-back functionality, such as on-line computations with

feed-backs, will not be considered here.

Frontiers in Computational Neuroscience | www.frontiersin.org 2 January 2019 | Volume 12 | Article 100

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

1.4. Hyperparameter Dependence
Automated machine learning3 is “the process of automating
the end-to-end process of machine learning,” because the
complexity of adjusting the hyperparameters, including selecting
a suitable method, becomes easily time-consuming when not
intractable. To this end, the general idea is to consider a
standard machine-learning algorithm and to add on “top of it”
another algorithmic mechanism, e.g., another machine learning
algorithm dedicated to automatic hyperparameter adjustment,
with the caveat of generating other hyperparameters for the
meta-learning algorithm and without formal guaranty that this
accumulation of mechanisms is optimal.

What corresponds to hyperparameters in the brain or for a
fully autonomous system is managed in three ways: It is either
modulated by other structures (such as the different cortico-
thalamic pathways through the basal ganglia; McHaffie et al.,
2005) and at different time-scales (such as short-term versus
long-term synaptic plasticity; Cooper et al., 2004), or integrated
as learning parameters, the system being able to learn new
parameters and to adapt also the way it learns as a coherent
process. A third track is to design robust processes in the sense
that hyperparameters precise values are not critical. A key issue
in a distributed system such as the brain, is that hyperparameters
are usually global while still implemented via local processes
(e.g., neuro-modulation). Some are also related to the network
construction (e.g., the number of layers).

Here we are going to carefully study these aspects,
in order to make explicit to which extents the proposed
method is related to robust hyperparameters, thus without
requirement about questionable value adjustment. If not,
the hyperparameter adjustment is going to be managed
using standard hyperparameter adjustment methods, and the
interpretability of the such meta-parameter adjustment is also
going to be made explicit.

1.5. The Present Contribution
Bio-inspired improvements of deep learning extend far beyond
the three issues reviewed here, as discussed recently in Marcus
(2018). The biological plausibility of deep-learning is another
issue, see Bengio et al. (2016) for a recent discussion. In a nutshell,
there is a clear correlation between deep-learning CNN states
and the primary visual cortex macroscopic activity as observed
in Mensch et al. (2017), while the contribution of deep-learning
as a tool to better understand the brain is not obvious as explained
in Medathati et al. (2016). Nevertheless, these issues are beyond
the scope of this paper.

Here we would like to revisit the notion of prototypes, as a
tool to improve deep learning on not-so-big data, considering
some aspects of the brain architecture and addressing also the
hyperparameter dependence issue. There are multiple definitions
and usages of what is called prototypes. Here prototypes are
centers of a k-means procedure over training samples, acting

3The notions of “automated machine learning,” “meta-learning,” including

“meta-optimization” and “hyperparameter” and the related “hyperparameter

optimization,” have precise meaning in machine learning, and we assume this is

known to the reader.

as data-representatives in the feature space. The present work
explores this notion of prototypes for interpretability and
classification under not-so-big datasets, building up on the idea
introduced in Drumond et al. (2017b) with more comprehensive
experiments on real datasets and including comparison with
few-shot meta-learning methodologies. This work focuses on
convolutional networks and applications to vision, although what
is proposed in this paper is general and applicable to other deep
learning frameworks.

Our main claim is that such data prototypes may help
address the not-so-big data issue in an interpretable fashion,
considering a few bio-inspired aspects made explicit in this
introduction. Proposing a solution to both aforementioned
issues—“not-so-big-data” learning together with data and
process interpretability—is the main contribution of the paper.
The key point of our proposal is the notion of data prototypes, as
made explicit in the sequel. In order to introduce this notion, we
need to discuss one aspect of network architecture and point out
issues regarding the hyperparameters.

In the next section we are going to review the literature related
to this subject, then formalize the model description, in order
to experiment the idea in the subsequent section, allowing us to
discuss based on these results how the issues quoted here can be
addressed, while proposing several perspectives of this work.

2. RELATED WORKS

2.1. Prototypes in Literature
The term prototypes can be found in the literature under
different meanings: a priori information, representation in
clusters, quantification of space, as we discuss now.

Jetley and Torr (2015) proposes a prototypical priors layer,
with a priori chosen prototype images of road signs, encoded
using a HoG (histogram of oriented gradients) descriptor, and
added as fixed units of the penultimate layer. Here, the network
is ultimately trained to match the HoG representation of the
prototypes but it is assumed to exist a standard representative
image per class in the input space to be encoded as a prototype
unit.

In prototypical networks (Snell et al., 2017), prototypes are
defined as class centroids in the feature space spanned by the
embedding CNN. In this simple approach, the nearest-prototype
is used to classify a given sample. This proved to be effective on
the considered datasets. However, this does not respond to the
scenario of metric learning proposed in Song et al. (2017). Also
derived from this work, Gaussian prototypical networks (Fort,
2017) predict a covariance radius for each prototype, yielding
some insight on the discriminating force of each of them.

Self-organizing maps, or the dictionary sparse representation
methods (Rubinstein et al., 2010), perform a prototypical
sampling on the data space (Hecht and Gepperth, 2016) and
allow to represent what is known about a data distribution,
using methods quoted in prototypical networks and known as
optimizing statistical criteria (Banerjee et al., 2005).

Bio-inspired models also consider the notion of prototypes, as
in e.g., (Serre et al., 2007) which introduce a general framework
for the recognition of complex visual scenes, that follows the

Frontiers in Computational Neuroscience | www.frontiersin.org 3 January 2019 | Volume 12 | Article 100

https://en.wikipedia.org/wiki/Automated_machine_learning
https://en.wikipedia.org/wiki/Meta_learning_(computer_science)
https://en.wikipedia.org/wiki/Meta-optimization
https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning)
http://neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

organization of visual cortex building an increasingly complex
and invariant feature representation and considering a redundant
dictionary of features for object categorization. Furthermore,
Viéville and Crahay (2004) has related the notion of prototypes
to a SVMmodel of the inferior temporal object recognition brain
area.

2.2. Few-Shot Learning and Learning to
Learn
The importance of learning new concepts from small data-
sets motivated the study of few-shot learning tasks. Few-shot
learning refers to the ability of learning to discriminate between
N unseen classes given k examples of each, with k usually below
5 (Triantafillou et al., 2017). This task is also referred to as k-shot
N-way learning. One-shot learning is a special case of this setting,
where the system must generalize from a single example for each
class. Slightly different is zero-shot learning, where no example
of a given class is available in the target domain (e.g., images)
whereas information on the categories originates from other
domains (e.g., textual descriptions) (Goodfellow et al., 2016d).

Learning a deep discriminative model for a large number of
classes has high data requirement, and is prone to overfitting if
applied directly in a few-shot data framework. For this reason,
usually some form of transfer learning is used to tackle this
problem: a model is trained on other classes before attacking the
N new ones. Since the model learned in this pre-training phase
will have to be adapted to the target classes, few-shot classification
can also be seen as a form of “learning how to learn,” which is a
very sensible framework when the goal is to learn whichever new
categories to come. In this spirit, pre-training is a meta-training
phase, where we learn a meta-model that can learn any set of N
classes given to it. Using the model on new k-shot N-way tasks
corresponds to a meta-testing phase, where for each task some
inner training may take place.

There are different ways of implementing this meta-learning
setting4, but any such should have a meta-training and
meta-testing phase, with their respective class-wise disjoint
datasets DMtrain and DMtest . Details on each phase vary
between propositions, but globally meta-training works like
some sort of pre-training, where the model is trained on some
discriminative task over the classes in DMtrain, while constructing
a representation that will be useful to generalize to new classes
in DMtest . In this sense, this methodology can still be seen as a
form of transfer learning. Later, meta-testing phase will consist
of actually performing the k-shot N-way task multiple times, for
different subsets ofN classes drawn fromDMtest . Each subset itself
has to be divided into training and test splits, in order to have
kN reference samples for the new classes from one and evaluate
performance on the other.

To give a clearer example, let us present a common
organization of meta-learning: episodic training. First proposed
by Vinyals et al. (2016), it has continued to be adopted in
other recent works (Santoro et al., 2016; Fort, 2017; Ravi and
Larochelle, 2017; Ren et al., 2017; Snell et al., 2017). Arguing that

4Not to be confused with meta-learning in the sense of hyperparameter tuning and

automatic machine learning.

approximating meta-training to meta-testing conditions could
enhance learning, they proposed that, during each step in the
meta-training phase, the model be trained on a different k-shot
N-way task, with new N classes drawn from DMtrain. Each such
task is called an episode, and demands not only kN examples as a
training (or support) set but also some examples of the N classes
to serve as a test or query set. During this phase, the error over
this query set can be used to adjust the model, while in meta-
testing only the support set will be used as a reference to classify
the query samples.

In line with the above discussion, many of the recent works
focused on this problem, seek to learn an embedding space over
the meta-training set that will hopefully generalize for unseen
classes in meta-testing. This common feature space allows to
compare test with training examples to decide on their class,
usually with some kind of nearest neighbors algorithm, but
sometimes resorting to more complicated models. Siamese nets
(Koch et al., 2015) are an early example of such models, in which
two identical networks are used to map a pair of examples into a
learned metric space so that they can be compared via a distance
function. The whole network is trained to predict whether an
input pair belongs or not to the same class, this being repeated
for multiple pairs. Matching networks (Vinyals et al., 2016) work
on a one-shot setting, also relying on learning a network that will
map support examples of each class to an embedding space, to be
later matched to the query example. The embedding is composed
by CNNs providing inputs to LSTMs, providing a context aware
embedding that models dependence between the CNN feature
vectors for each support point, and also between support points
and query point. Prototypical nets (Snell et al., 2017) also learn
an embedding based on a CNN, with the matching between
support and query samples performed by a nearest class means
classifier. The CNN is adjusted during meta-training, with a cross
entropy loss function over the points in the query set, for multiple
episodes.

This line of work is in close relation with metric learning,
which aims to adapt a metric function over feature vectors for a
given dataset (Bellet et al., 2013). If a significant metric is learned,
distance-based classification becomes a relevant alternative, as
exemplified by Mensink et al. (2013). They consider metric
learning methods for two distance-based classifiers, the k-nearest
neighbor (k-NN) and nearest class mean (NCM), and propose
new methods for NCM allowing to model more complex class
distributions with multiples centers per class. This possible
complexity in class distribution cannot be captured by local
metric learning methods, as is the case with current deep metric
learning. As discussed by Song et al. (2017) they are incapable
of identifying scattered classes, with multiple clusters in the
space. In response, they propose to learn an embedding function
that directly maximizes a clustering metric (normalized mutual
information).

Using memory augmented networks has also been explored in
the context of few-shot learning (Santoro et al., 2016). The idea is
to build on top of a Neural Turing Machine (Graves et al., 2014),
an implementation of a content-based access memory for neural
networks, adapting it to the one-shot learning task. This is yet
another meta-learning approach, where the recurrent network is

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2019 | Volume 12 | Article 100

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

not trained to predict directly a specific set of classes, but tries
to predict the right classification at each time-step based on the
sample-class associations it could learn and keep in memory on
the previous time steps. It still needs to see a large number (more
than 10 k) of episodes to make good predictions, incrementally
making better predictions as it sees up to 10 examples of the same
class. Compared to humanmemory, its functioning could be seen
as a working memory, that can match new samples to recently
seen examples but limited to a low amount of distinct categories.

2.3. Interpretability
Interest in the field of interpretable machine learning has
raised in the last years, partly inspired by the ever-growing
impact of machine learning systems in society. Nevertheless,
interpretability is a broad term still lacking a precise definition,
with open discussions on what it is and how to quantify
it (Lipton, 2016; Doshi-Velez and Kim, 2017). One common
understanding is to equate it to explainability—the ability to
provide explanations to a model’s predictions or, even better, the
reasoning process behind its predictions.

Understanding the reasoning behind complex models such
as deep neural networks is a difficult task. In visual recognition
applications, one common effort is to try to visualize what types
of features have been learned by certain units or layers of a
convolutional network. This is usually achieved by optimizing
network input to maximize the activations of the layer of interest.
Since the first visualizations produced with DeconvNet (Zeiler
and Fergus, 2014), there have beenmany propositions to improve
the quality of the input reconstruction, including the use of
regularization priors that enforce more “natural-looking” images
(see Olah et al., 2017, for a review). Another way of producing
such images is to search the training set for image patches
maximizing the activations. This approach has the advantage
of producing real examples, although not necessarily specifying
which features in the image led to it to be put in a particular
category.

In-between these feature visualization strategies is the
problem of attribution, where the goal is to identify which
regions of the input image were responsible for maximizing a
chosen activation (Bach et al., 2015; Sundararajan et al., 2017).
An example of attribution procedure is LIME, a method that
locally approximates the model around the output prediction
and goes back to the input image highlighting superpixels
most responsible for its predicted class (Ribeiro et al., 2016).
Other works are interested in generating some salience map
information over the input image (Bach et al., 2015; Shrikumar
et al., 2017). While feature visualization is still abstract and away
from verbal human-level explanation, attribution or salience
maps are grounded on real images and can provide some level
of justification.

Even though these methods were developed having deep
CNNs in mind, some of them can be generally applied to
explain other classes of models. The explanation procedure
itself can be seen as an explanation model, trained to provide
justifications given the inputs and outputs of the black-box
prediction model. Lundberg and Lee (2017) defines additive
feature attribution methods, a class of local explanation models,

unifying diverse approaches from literature (including Bach et al.,
2015; Ribeiro et al., 2016; Shrikumar et al., 2017). Another way to
use an accessory model as explanation is to distill the network
into a class of allegedly interpretable models—such as decision
trees—training the explanation model to mimic the networks
predictions (Frosst and Hinton, 2017).

3. MODEL PROPOSED

3.1. Model Architecture
Here we introduce a prototype matching layer as proposed in
Snell et al. (2017), after the embedding provided by a CNN,
defined by a set of prototypes sampling the input distribution in
the feature space. This layer is a softmax taking both the sample
features and the sample prototype proximity into account. This
allows grouping examples with respect to the induced metric
learned by the CNN layers, and taking the competition between
prototypes into account. Differing from Snell et al. (2017), this
output feeds an additional final softmax classifier layer, that
correlates the prototype’s matching to class labels. This allows to
introduce a soft but sparse prototype-to-class label assignment:
A given prototype is encouraged to represent a unique class,
but in ambiguous situations this mapping is not hardwired. It
also differs from alternative mechanisms such as support-vector
machines, Kohonen-like maps, or radial basis functions (such as
e.g., Lyu and Simoncelli, 2009).

Some specificity with respect to usual architectures using
prototypes are taken into account here:

• The prototype layer is not the final layer but an intermediate
upper-layer of the architecture, as a complementary
information to perform the perceptual task. Here classification
is the task, but this extends to other perceptual tasks.

• A prototype is a “data prototype” in the sense that its role
is not only to reveal if a neighborhood of the feature space
belongs to a given category of the classification task, but also
to represent at a macroscopic level the feature space itself
(e.g., which regions are to be taken into account, whether a
category corresponds to a connected region or not, whether a
region contains adversarial samples, etc). As a consequence, we
neither hard-wire sample to prototypematching nor prototype
to class label assignment, but let the estimation provide the
best description of the data, given the classification task, in an
interpretable way, as discussed below. This is quite different
from the related works reviewed in the previous section.

• Given a dataset, the final task-related layer is fed with two
alternative combined inputs: (i) The whole feature sample
vector, and: (ii) The data in relation with the prototype space.
With the former choice only, the prototype layer role is simply
to represent the data in the feature space but is not involved
in the classification task. With the latter choice only, the large
dimensional feature sample (here of dimension 2,048, see
details in the next section) reduces to a very low dimensional
space (<50 in our setup). This very likely introduces some bias,
but may limit overfitting.

Let us now turn to the formal detailed description of the model.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 January 2019 | Volume 12 | Article 100

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

FIGURE 1 | The three layer model. The input data is fed to a convolution neural network, transforming the original image into a set of feature vectors. Then the

information in this high dimensional feature space is summarized via a set of prototypes, in order to understand the landscape. Finally, the relation between a given

data point and the label to infer is calculated through their proximity to the prototypes.

3.2. Model Specification
We consider5 a set of labeled images {· · · (Ii, li) · · · }, i ∈ {1,M},
labels being finite li ∈ {1,N}. This input space I is embedded
in a feature space X of huge dimension D through a function
f : I → X, here defined by the CNN. We introduce the notion
of prototype in order to discriminate between twisted features at
the output of some CNN.

To this end, we propose to consider the estimation of a fixed-
size set of prototypes in the feature space pj, j ∈ {1, J}, J ≥ N. The
fact this set is fixed is going to be discussed at the experimental
stage, showing that the hyperparameter J is robust.

We are in a supervised learning paradigm considering samples
{· · · (xi, li) · · · } providing examples of association between
features and categories.

We proceed in two steps. First, qj(x) = p(x ∈ Qj) is the
probability for the feature vector x of a sample, to be associated
to the j-th prototype. This association is written as x ∈ Qj,
where Qj is the set of samples associated to the given prototype.
Interestingly enough, our model does not implicitly assume that
the Qj form a partition of the feature space, as discussed in
Appendix A5. These regions may overlap or uncover the whole
space. Furthermore a sample may be sparsely represented, thanks
to the softmax criterion, by several prototypes as in a dictionary
representation method (see e.g., Rubinstein et al., 2010). We
approximate qj(x) as a function of the proximity −‖x − pj‖ to
the prototypes, writing:

qj(x) = νj
(

−‖x− pj‖
2/2

)

, (1)

where νj(·) stands for the softmax distribution, the related
D × J weight matrix of this layer corresponding to prototypes

5Notations: Vectors and matrices are written in bold, the vector dot-product

writes xT x′, i.e., as a matrix product with the row vector transpose of the left

column vector. The Heaviside function writes H(u). Partial derivatives are written

in compact form, e.g., ∂xn f(x) means ∂f(x)
∂xn

. The notation δP stands for 1 if the

property P is true and 0 otherwise (e.g., δ2>1 = 1). The notation {a, b} stands

for an integer interval and [a, b] for a real interval. When considering a vector

x augmented by new dimension c we simply write (x, c) for the corresponding

element in the Cartesian product of the corresponding spaces.

coordinates in the feature space X. See Appendix A1 for a
detailed presentation of this equation.

Then, cl(x) = p(l|x) is the probability for a sample to be
associated to the label of index l. For the purpose of analyzing
different aspects of the given architecture, we consider two
alternatives: direct use of the prototypes and combined use of
prototypes and features.

3.2.1. Direct Use of the Prototypes
The label of sample is estimated by another softmax layer:

cl(x) = νl

(

wT
l q(x)

)

, (2)

the related J × N weight matrix corresponding to the prototype-
to-class association. This design choice introduces an important
dimensional reduction (see e.g., Shalev-Shwartz and Ben-David,
2014, Chapter 23) in the processing. It is a strong choice and it is
going to be numerically studied against a vanilla alternative made
explicit in the next subsection.

Considering an approximate cross-entropy criterion to adjust
the parameters given sample features xi and their label li yields
the following minimization:

C = −

∫

X

p(x) log
(

c(x)
)

+
1

C
|wl|d ≃

−
1

M

∑

i

log
(

cli (xi)
)

+
1

C
|wl|d, (3)

where d ∈ {1, 2} corresponds to the L1 or L2 norm, while C is a
hyperparameter weighting the regularization term.

A straightforward derivation (see Appendices A2, A3 for the
details) of the related normal equations leads to an estimation-
minimization method:

- The ∂pjC = 0 equation yields a k-means estimation of
the prototypes given the samples, weighted by the prototype
proximity. This deep relation between divergence estimation and
k-means algorithms is known (Banerjee et al., 2005) and will
allow us to derive an efficient implementation, and to minimize
the role of meta-parameters for this step. In our implementation

Frontiers in Computational Neuroscience | www.frontiersin.org 6 January 2019 | Volume 12 | Article 100

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

we have experimented that considering only a standard k-means
initialized by a k-means++ mechanism is numerically sufficient.
- ∂wl

C =
∑

i

[

δl=li − cl(xi)
]

q(xi) + R, where R stands for
regularization terms, yields a Hebbian-like interpretable 1st order
rule for adjusting the prototype-to-class association, as a function
of each training sample a priori class label.

3.2.2. Combining Prototype-Encoded and Original

Features
The combined model uses the probabilities for a given input
sample to correspond to the prototypes in order to predict
the class. The input sample is encoded via these numbers. It
is obvious to decode such information, i.e., to reconstruct the
predicted sample given this information:

x̃
def
=

∑

j

qj(x) pj, (4)

where x̃ is the simple Bayesian estimation of x given p(x ∈ Qj),
providing6 a simplified form of linear autoencoder mechanism
(Goodfellow et al., 2016a).

When D ≫ J, it might be the case that the prototype
information is insufficient to allow a good classification
performance. Conversely, using a large J may interfere with
interpretability, a large number of prototypes being harder to
analyses and eventually being less meaningful. To this end, we
are also going to also consider

cl(x) = νl

(

wT
l (x | x̃)

)

= νl

(

w
′T
l x | w̃

′T
l x̃

)

, (5)

in the upper classification layer, where | is a vector concatenation

operator andw
′T
l

= (w
′T
l
| w̃

′T
l
). This provides the following layer

with both features and prototype-encoded information to make

a classification decision. Additionally, comparing w
′T
l

with w̃
′T
l

allows to numerically evaluate the contributions of both paths
identifying to what extent the reduction of information from
the whole data features to a prototype-encoded representation is
relevant to the classification decision.

3.2.3. Relation Between Prototypes and Category

Information
Another issue with respect to the state of the art is, as proposed
in Rippel et al. (2016), to consider the prototypes as a mixture
between unsupervised information (sampling the feature space
without any knowledge) and supervised hardwired information,
each prototype being hardwired to a given category. In order to
further understand the relationship between the data prototypes
and the categorization, since in alternative approaches prototypes
are often “hard-wired” to a given category, we have also
investigated an extension of the k-means algorithm step on
the learning set, taking also the learning sample category into
account.

6Obviously, if the classification task is performed on x̃, i.e., if we consider

cl(x) = νl

(

w
′T
l
x̃
)

, this is equivalent to the previous form cl(x) = νl
(

wT
l
q(x)

)

,

with w
′T
l
pj = wT

l
, thus simply correspond to an over-parameterization of the

classification layer using D× N weights, but with only J × N degrees of freedom.

To this end the following extended metric for the k-means
algorithm applied on learning samples is considered:

d
(

(xi, li), (xi′ , li′)
)

= |xi − xi′ |2 + β
∑

j

δli 6=li′
(6)

In words we augment the feature space by new dimensions
corresponding to each categories in order to move apart samples
related to different categories. Clearly for β = 0 this reduces
to our original setup, whereas for large values of β , we make
explicit in Appendix A4 how this allows to hard-wire prototypes
to categories.

This complementary tool is not related to performances
but to only better understand this aspect of the problem.
Additionally, it is important to understand that there is a
deep relationship between a softmax classification layer and a
prototype representation, as discussed in details inAppendix A7.

4. EXPERIMENTS AND RESULTS

Here we perform a series of experiments to gain intuition about
the proposedmodel, test its performance under a few-shot setting
and demonstrate its potentialities as an interpretable alternative.
In summary we used two experimental methodologies: first a
k-means based implementation over fixed features, followed
by a second end-to-end implementation used in a meta-
learning setting. In both cases, we work under few-shot learning
conditions, exploring the performance of these models for not-
so-big data situations.

4.1. Datasets
A known benchmark dataset for few-shot learning is the
Omniglot dataset (Lake et al., 2011). It consists of images of 1,622
characters from 50 different alphabets, each drawn by 20 different
people. The small number of samples per class and the large
number of classes make it a challenging problem to learn all the
classes simultaneously. Therefore we will work on episodes: class
subsets of N classes randomly picked among the 1,622 characters
(see Figure 2: Left for an example).

To study the effect of increasing training set sizes, we will use
two larger standard benchmark datasets:MNIST7 and CIFAR108.
Both datasets comprise 10 different classes. MNIST has 28 ×

28 images of handwritten digits, 60 K samples in the training
set and 10 K in the test set. CIFAR10 has 60 K 32 × 32 color
images of 10 object categories, with 50 K in the training set and
the remaining 10 K on the test set. From these datasets, it will
be possible to sample training subsets ranging from few-shot to
many-shot situations.

4.2. Studying the Model Under Fixed
Features
Contrary to usual few-shot learning paradigms we do not
consider here meta-learning as discussed in section 2.2, but a

7http://yann.lecun.com/exdb/mnist
8https://www.cs.toronto.edu/ kriz/cifar.html

Frontiers in Computational Neuroscience | www.frontiersin.org 7 January 2019 | Volume 12 | Article 100

http://yann.lecun.com/exdb/mnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

transfer learning paradigm: by using a general purpose pre-
trained CNN, we skip any meta-training routines that allow
learning CNN filters on a particular few-shot dataset. We
use fixed features extracted with a standard CNN architecture

pre-trained on ImageNet data, namely Inception v3 (Szegedy
et al., 2015), that has successfully been used in transfer learning
settings (for instance Shin et al., 2016; Esteva et al., 2017).
Features are normalized in the range [0, 1]. Based on features

FIGURE 2 | (Left) Sub-sample of 10 classes from the Omniglot dataset, showing 5 samples per class (total is 20 per class). (Right) T-SNE visualization of the

Inception v3 features for the 200 samples of this subset, see text for details.

FIGURE 3 | Mean accuracy (with standard deviation bars) obtained during grid search for the inverse regularization parameter C and the number of clusters, under L2

regularization. (Top) Direct model. (Bottom) Combined model.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 January 2019 | Volume 12 | Article 100

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

extracted from the penultimate layer of this network, our model
has to learn to predict from very few samples (see Figure 2:Right
for a visualization example of this feature space for a sample
episode of Omniglot dataset). Fixing the embedding network
allows to isolate and assess performance variations due to the
final layers of the model, under equal input features. Assessing
whether the tested models allow learning of a more appropriate
representation is addressed in section 4.4.

Except for experiments with increasing training set sizes
(section 4.3), all experiments in this section are performed
on Omniglot dataset. In comparison to meta-learning
methodologies, we are skipping the meta-training phase,
where the embedded representation is learned, and going
directly to meta-testing, where for each independent episode,
the model is actually only learning to predict from few-shot
data, for a certain quantity N of classes. Thus we operate direct
learning on each episode, with a training data set for parameter
estimation and a test set for checking generalization. Each
episode is split in half, with 10N samples for training and 10N
samples for testing. When hyperparameter tuning is needed, 5×
2-fold cross-validation over the training set is used, leaving 5N
samples to train and 5N to validate. Once the hyperparameters
are chosen, the model is re-trained on the entire training set. To
see how the model performs over the entire dataset, observations
are repeated for a large number of episodes.

With those two simplified design choices (using fixed features
and performing direct learning), these results cannot be fairly
compared to other few-shot meta-learning approaches (this will
be addressed in section 4.4). More precisely, we withdraw from
learning the CNN layers, which are not adapted to the target
data to give a specific representation, relying on transfer learning
instead. Moreover, using the direct model only, it drastically
restrains the classification number of degrees of freedom from
thousands to a few tenths. This is done on purpose in order to
study to what extents this compromises the result. Nevertheless,
we also know how to also ensure performances, using the
so-called combined model. In both cases, we compare our
propositions to other classical classifiers tested in the same
setting, namely: softmax, SVM, and nearest centroids.

To visualize how data samples and prototypes are distributed
in space, we obtain a 2D non-linear projection using T-SNE
(Maaten and Hinton, 2008) over the data samples feature
vectors together with the prototypes coordinates pj in the
feature space, as shown in Figure 2: Right. Such mechanism
preserves local neighborhood of closed samples, whereas long
range distances can not be interpreted since skewed by the non-
linear projection: The map only reflects the similarities between
the high-dimensional inputs in a stochastic, but not metric way.

Code and further analysis for this section and section 4.3 are
available at https://gitlab.inria.fr/mnemosyne/data_prototypes.

4.2.1. Study of a Sample Episode
Hyperparameter adjustment is a key factor in the success of any
machine learning model. This first analysis focuses on gaining
intuition on the behavior of the model on a sample episode
with N = 10 classes (shown in Figure 2). The aim is to study
its hyperparameters, experiment with visualization of prototypes

and data samples in a common space and try to understand the
relation between prototypes and their attributed class. In this
section we consider only the hyperparameters introduced by the
formulation presented in section 3.2. More details on these and
other hyperparameters can be found in Appendix B.

In the current experimental setting, our base model has two
hyperparameters: the inverse regularization strength (C) and the
number of clusters, thus of prototypes (J). We explored 10 values
of C ∈ [10−3, 108], and 10 values of J ∈ [2N, 5N], where
N = 10 is the number of classes (see Figure 3). For the direct
model under L2 regularization, we can identify that average
performance is stable for C ≤ 10−1, and more sensitive around
larger C values in (102, 106], raising around C ≤ 102. For L1
larger values are preferred, presenting a stable score as soon as
C ≤ 102. For the combined model, we have a behavior similar
to direct-L1 under both regularizations, with any values above a
certain threshold being equivalently good (10−2 for L2 and 101

for L1). Since no clear preference could be stated between L1 and
L2 regularization, both regularizations keep being analyzed in the
following (and are included in the comparative analysis in section
4.2.3).

Regarding the number of prototypes J, as visible in Figure 3,
a higher number of prototypes is preferred by the direct model,
while the combined model does not seem to depend on it.
However, for the direct model, using a too large number of
prototypes would ultimately amount to a nearest-neighbors-
like algorithm and possibly counteract on their interpretability
purpose (too many prototypes representing too many base
concepts to support a simple explanation), while overfitting
and poor generalization performances are expected. With the
combined model, we can avoid this issue by choosing a lower
number of prototypes while keeping high performances.

Nevertheless, a minimal number of prototypes can be
important for interpretability, but can be ignored when looking
only at accuracies in cross-validation. This motivates using
another method for choosing the appropriate number of
prototypes. As far as data representation is concerned, we
can simply rely on usual k-means prototype count adjustment
methods. This is usually done by sweeping some range of values
for the number of clusters and keeping the one minimizing its
loss or, in case of saturation as J grows, keeping the lowest value
that reaches close to minimal loss. We exemplify this procedure
in Figure 4 for an Omniglot 10-shot episode, which suggests
a number of prototypes around 20. Statistical significance of
the observed elbow curve has been verified. More precisely,
considering a least-squares adjustment of a parametric elbow
model against a constant value model, the related Fisher ratio test
probability threshold is p = 0.2 on the non-normalized values.
It is only p = 0.3 on the normalized values, and it is more
than p = 0.001 (non-normalized) and p = 0.2 (normalized)
on the MINST data set reported on Figure 9 and only p = 0.3
for the CIFAR 10 data set. We have tested for several parametric
models (cubic, piece-wise linear, exponential) and obtained the
same results. We hypothesize this is due to due to very small
set of data used (10 samples by data point). However, as far
as interpretability is concerned it is still interesting to have an
estimation of a reasonable order of magnitude of the number of

Frontiers in Computational Neuroscience | www.frontiersin.org 9 January 2019 | Volume 12 | Article 100

https://gitlab.inria.fr/mnemosyne/data_prototypes
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

prototypes. We also are going to observe in the sequel that this
number is not critical regarding performances, so that this rough
estimate is sufficient.

In summary, we can choose the number of prototypes in
the clustering phase based directly on its unsupervised loss,
optimizing the number of prototypes for data representation.
Altogether, the key points here are that this hyperparameter is to
be considered more as a way to optimize the data interpretability
than the classification performances, with the possibility of being
automatically adjusted.

When using the extendedmetric described in section 3.2.3, we
have an extra hyperparameter β weighting the added class-aware

term. Based on the previous analysis for C and J, we decided to
constrain the search of C ∈ [102, 106] and reduce the number
of parameters searched to 3. For J, we still search on the same
range but limit the number of parameters to 5. Figure 5 shows
accuracy results on cross validation for different pairs of β and
J (with C fixed on the best value found by grid search). The
contribution of this term for a fixed value of J is not clear, at this
stage, but it is interesting to notice that when J = N = 10 there is
an improvement until a certain threshold, followed by a plateau
(β lower than ≈ 7.8 under both L1 and L2 regularizations).
This can indicate that for large enough β the class-aware term
has dominated the positioning of each cluster undermining the

FIGURE 4 | Average training loss on the k-means algorithm as a function of the number of prototypes. The mean square distance between samples and prototypes

decreases until a plateau (sometimes called elbow) and then either re-increases, as visible in this example, or do not significantly re-decreases as shown in Figure 9

for other datasets.

FIGURE 5 | Verification that the introduction of a priori information on the prototype category has no significant impact on the performances, as soon as the number

for prototypes is high enough. Graphs show mean accuracy (with standard deviation bars) obtained during grid search under the best regularization parameter found.

(Left) Under L1 regularization, C = 104. (Right) Under L2 regularization, C = 102.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 January 2019 | Volume 12 | Article 100

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

influence of the first distance-to-prototypes term. It could also
be that for small numbers of prototypes this additional term
(that encourages prototypes to cluster samples corresponding
to a unique category) has a positive influence on performances,
whereas it is no more the case when the number of prototypes
is high enough. We consider this result as a good indication
that the compromise between a good data representation good
classification performances seems possible with our so called
data-prototypes.

4.2.2. Interpretability of the Model
As previously discussed, prototypes in our model lie in the same
feature space as the data and correspond to virtual examples.
In this section we demonstrate how this fact can support
explanations about the model’s decisions. For such, we provide a
visualization for each prototype by looking at its closest training
samples, in Figure 6. To observe prototypes in the feature space,
we use T-SNE visualizations of training and test samples in the
feature space together with prototypes (Figure 7). Visualizations
in this section correspond to our main model combining features
and prototypes, under L2 regularization. With this model, since
the performance is not sensitive to the number of prototypes,
J = 10 prototypes was the value chosen by cross validation.

We observe the representative images obtained are coherent
with the prototype classes, except for prototype 7, which was
classified as class 2 but had a closest sample coming from class
7. This could be due to the fact explained by the fact that both
classes correspond to very similar characters (both look like a
lowercase “g” under different rotations, see Figure 2), and indeed
the T-SNE visualization shows these classes are very mixed in
the feature space. Additionally, class 5 is also mixed in and
corresponds to a similar character. Indeed, the top-2 most likely
classes for p7 predicted with close probability were c2 with

87% and c7 with 7% (see Figure 7), indicating p7 lies in a
slightly more ambiguous region of the feature space. In a scenario
with an adaptive number of prototypes, this prototype-to-class
association information could serve as an index for adding more
prototypes in the region.

Representation by the closest training sample illustrates
how each prototype can be represented by a corresponding
input, having the advantage of being a hyperparameter-free
method yielding real images. Of course feature visualization
methods based on input optimization could also be applied, but
appropriately tuning such models is fundamental for obtaining
realistic image representations and out of the scope of this work.

4.2.3. Comparison Over Multiple Episodes
Extending this analysis, we now compare test accuracies over 100
random episodes for different model variants, in order to obtain
results of statistical significance. As reference methods we have a
softmax regression layer (multinomial regression), an SVM and
a nearest class centroids classifier [like the classifier layer used
by Snell et al. (2017)]. From our proposal we test four variants:
both combined and direct models, using L1 or L2 regularization
(as defined in 3.2). Test accuracy results for 100 episodes are
displayed in Figure 8.

Statistical significance of the results are verified by a non-
parametric Friedman test with post-hoc Nemenyi tests (with
p ≤ 0.05, see Table 1) (Demšar, 2006). No significant differences
between both regularizations could be observed for the direct
model, while L2 is significantly superior for the combined model.
Between direct and combined, combined is significantly better in
both cases. Regarding the baseline comparisons, we highlight that
the combined model with L2 regularization differs significantly
from an SVM for N = 20, 30, although no significant difference

FIGURE 6 | The top-4 closest training samples visually illustrate what is being represented by each prototype. For each prototype p1, p2, .., its related class c2, c5,

.. is written, this “main” class being estimated as the most probable class proposed by our algorithm. The number of samples corresponding to the related cluster is

given.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 January 2019 | Volume 12 | Article 100

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

FIGURE 7 | T-SNE visualizations of dataset points (as Inception v3 features) together with learned prototypes, indicated by black markers. Each class is identified by

color, and the predicted class for each prototype is annotated. Misclassified points are over-marked by an “x” of the predicted class color. (Top) Visualization of the

training set; (Bottom) Visualization of the test set.

to softmax could be observed. Additionally, all models differ
significantly from nearest-centroids.

4.3. Comparison Over Different Training
Sets With Varying Sizes
In order to confirm our results we have considered two
different datasets: MNIST and CIFAR10. These datasets have

larger training sets, allowing to subsample training sets of
size larger than 20N (which was the case for Omniglot).
Additionally, they have a large standard test set (10 K samples)
over which to evaluate the performances. Class distribution in
these datasets is approximately balanced, and the distribution
is preserved when sampling the training subsets. We explored
training subsets of size 100, 200, 300, 500, 750, 1,000 (that

Frontiers in Computational Neuroscience | www.frontiersin.org 12 January 2019 | Volume 12 | Article 100

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

FIGURE 8 | Box plots for test accuracies over 100 episodes. Boxes extend between 1st and 3rd quartiles (IQR), with median value noted at the bottom and marked

by a green line. Bars mark a range of ±1.5 IQR from quartiles, with outliers as circles. Our models are marked with a ∗.

TABLE 1 | Statistical significance for all pairs of classifiers tested on Omniglot.

10 classes 20 classes 30 classes

Models L2 Combined L1 Combined L2 Softmax SVM Softmax SVM L2 Softmax SVM L2

L1 o ++ ++ ++ ++ ++ ++ o ++ ++ o

combined L1 ++ – ++ ++ o ++ + ++ ++ ++ ++

combined L2 ++ ++ – o o o ++ ++ o ++ ++

SVM ++ o o ++ – ++ – ++ ++ – ++

“++” and “+” mark all pairs which presented a significant difference (for p < 0.01 and p < 0.05, respectively), while “o”s mark those which did not. Non-reported pairs were found to be

significantly different with p < 0.01 (except for direct L1 vs. direct L2 at 30 classes, for which p < 0.05).

is, 10, 20, 30, 40, 50, 75, 100 samples per class on average).
The idea is to evaluate performances ranging from few-
shot data (here 10 samples per class) to not-so-big data
(here a few tenths of samples per class). For hyperparameter
selection we proceed exactly as done for Omniglot, by 5 ×

2 cross-validation. All models are retrained over the whole
training set using the best validation parameters. Statistical
significance is also evaluated in the same way (Friedman non-
parametric test + Nemenyi post-test). We report the mean
test accuracy, averaged over 10 different random training

subsets, all evaluated on the standard test partition for each
dataset.

We also have numerically studied for these new datasets
whether the k-means prototype count automatic adjustment is
still numerically valid, as reported in Figure 9, after Figure 4.
We thus have now observations for Omniglot (sample 10-shot
episode), and MNIST and CIFAR10 (training subset with 500
samples). Such a method indicates 20 clusters for Omniglot and
CIFAR10, but a larger number for MNIST (between 30 and 50
depending on a saturation tolerance). The optimal value does

Frontiers in Computational Neuroscience | www.frontiersin.org 13 January 2019 | Volume 12 | Article 100

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

not correspond to a minimum but is still detectable as an elbow
corresponding to the occurrence of a plateau. This result is not
always statistically significant. It is the case for MNIST but not
for CIFAR10.

A first evaluation of the means (and standard deviations, see
Figure 10) allows to observe that our combined models perform
best or similar to a softmax or an SVM classifier, all performing
better than nearest centroids or our direct models, which is
congruent with results obtained on Omniglot (but here on a
larger test set). Particularly for MNIST, the nearest centroids
classifier is considerably lower than the top performing methods.

Considering statistical significance of the comparisons,
on MNIST our combined model with L2 regularization is
consistently better than nearest centroids, although the same can
be said about softmax. In most cases, for both datasets, combined
models, softmax, and SVM are significantly better than either
of the direct models, but comparison between the two variants
(L1 and L2) is inconclusive. For CIFAR10 the significance
results are less conclusive, but we do observe some significance
in the superiority of the combined model (L1 regularization)
over nearest-centroids (between 200 to 1000 training samples).
Detailed results for statistical testing of all classifier pairs for all
training set sizes can be consulted in the code repository for this
paper.

4.4. Experiments in the Meta-Learning
Paradigm
To allow a fair comparison to usual few-shot learning paradigms,
we carried on end-to-end training of the model under meta-
learning conditions. We continue to use Omniglot dataset
described above, with 4 rotations per character used for data
augmentation (0, 90, 270, 360 degrees), and use episodical
training, following the methodology of Snell et al. (2017). We use
the same CNN architecture (4 layers, 3x3 kernels, resulting in a
64 dimension embedding) and experimental setup, based on their
publicly available implementation9.

In summary, the task here is to prepare a meta-model which
will be able to learn to classify N classes based on k training
samples, for different subsets of N classes. For this, the full
architecture is meta-learned over a some episodes sampled from
a meta-training set containing 1,200 characters, with episodes
from a meta-validation set containing 172 characters being used
to evaluate and early-stop the meta-training, while the remaining
423 characters are used to generatemeta-testing episodes (subsets
of N classes not seen in the meta-training phase).

More specifically, the meta-training phase is carried on 100
randomly chosen 5-shot 60-way episodes. Another 100 5-shot
5-way episodes are sampled to form a meta-validation set. Meta-
training is stopped after 200 epochs with no improvement on the
meta-validation set, keeping the best model so far. At meta-test
time, we apply the model to solve 5, 10, 20 and 30-shot learning
tasks on 1,000 episodes sampled from previously unseen classes.

9Code for prototypical networks available at https://github.com/jakesnell/

prototypical-networks, under MIT license. Our fork is available at https://github.

com/thalitadru/prototypical-networks

Since these experiments are more computationally intensive,
using cross-validation to choose hyperparameters becomes
prohibitive. We fixed J = 2N, i.e., 2 prototypes per class and
L2 regularization of 10−4 (via weight decay). Optimization of the
complete model, including CNN weights, is done with an Adam
optimizer with initial learning rate of 10−2 (and default moment
estimation parameters). For each episode the top two layers of
model need to be fitted on the new classes using the training
(or support) k-shot examples. This optimization was run for 200
iterations, with an initial learning rate of 0.1 (also using Adam).
The test (or target) examples serve to evaluate the model and,
when in meta-training phase, calculate the loss and gradients that
will adjust the bottom CNN weights.

We compare our accuracy results over 1,000 test episodes
to two other propositions in the literature: Matching networks
(Vinyals et al., 2016) and Prototypical networks (Snell et al.,
2017) (see Table 2). These are seminal works in the field of few-
shot learning and remain competitive compared to more recent
proposals (for instance Garcia and Brina, 2018 or Finn et al.,
2017). For prototypical networks, we re-ran the models using the
code released by the authors to obtain results for more values
of N classes. Slightly different results are normal, since we did
not do the final retraining step , where the model is retrained
in the full meta-training set (including the portion separated for
meta-validation).

Overall, we can observe that learning the CNN weights
through this meta-training approach yields better performances
in comparison to using fixed features, as expected. Considering
that no hyperparameter tuning was done, we still obtain good
results, a little lower than the state-of-the-art, even though they
degrade faster as the number of classes goes up. Some discussion
on this result is presented in the next section. Between combined
and direct model, we also observe that the former performs better
at a higher number of classes N = 20, 30, while the second is
better for N = 5, 10.

5. DISCUSSION

5.1. Performances and Use of the
Algorithm
We have proposed a simple three-step model, applied to
classification tasks on visual data under very small (few-shot
on Omniglot) to not-so-big datasets (subsets from MNIST or
CIFAR10). Let us now discuss the main questions presented in
the course of this work in the light of our experimental results.

- Is the setup able to properly learn such a task in an
interpretable way? Our models were capable of performing the
classification tasks, both under fixed features and under the
meta-learning paradigm, while profiting from the explainability
support that can be provided by our rather simple architecture.
Our “data prototypes” that can be used to provide a visual
explanation of the model’s internal representations, by
indicating ambiguous classification regions for example.
Some mathematical discussions on how the prototypes
induce a partition of the feature space are presented in
Appendices A5, A6. This explanatory power is however limited

Frontiers in Computational Neuroscience | www.frontiersin.org 14 January 2019 | Volume 12 | Article 100

https://github.com/jakesnell/prototypical-networks
https://github.com/jakesnell/prototypical-networks
https://github.com/thalitadru/prototypical-networks
https://github.com/thalitadru/prototypical-networks
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

FIGURE 9 | Performances on the k-means algorithm as a function of the number of prototypes, for training subsets with 500 samples from MNIST and CIFAR10

datasets.

FIGURE 10 | Mean accuracies over standard test sets for MNIST and CIFAR10 datasets, for increasing training set sizes. Results are averaged over 10 different

training subsets. Our models are marked with a ∗.

when using the combined model, since raw features are also
considered in prediction. Prioritizing interpretability by using
only the direct model yields reduced performances under fixed
features, indicating a trade-off between interpretability and
classification accuracy in this case.

Altogether, this is no more than a variant of the notions
of prototypes used in the field, but with the objective to
both represent the data in an unsupervised way and the

supervised information. The name “data prototype” is chosen
particularly because they may be considered as virtual samples
that summarize what has been learned during the learning
phase, acting as a local descriptor in the feature space. Being
virtual samples, they could be fed to feature visualization
techniques to provide a graphic explanation (here exemplified
by taking the closest training samples as a visualization
proxy).

Frontiers in Computational Neuroscience | www.frontiersin.org 15 January 2019 | Volume 12 | Article 100

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

TABLE 2 | Average test accuracy (%) for 5-shot learning on Omniglot over 1,000 episodes.

Method 5 classes 10 classes 20 classes 30 classes

Matching networks 98.9 – 98.5 –

Matching networks– fine tuning 98.7 – 98.7 –

Prototypical networks 99.7 – 98.9 –

Prototypical networks (re-run) 99.54 ± 0.07 99.17 ± 0.06 98.57 ± 0.06 98.01 ± 0.06

Direct - 2N prototypes 98.4 ± 0.2 97.2 ± 0.2 94.8 ± 0.3 92.6 ± 0.4

Combined - 2N prototypes 97.1 ± 0.2 96.3 ± 0.2 96.2 ± 0.1 95.9 ± 0.1

We compare to results reported by two other works: Matching networks (Vinyals et al., 2016) and Prototypical networks (Snell et al., 2017).

Another non negligible aspect is the fact that our proposed
architecture, schematized in Figure 1 is “easy to explain” to non-
specialists : (i) features are extracted (by the deeper layers), (ii) the
data is organized in regions (parameterized by prototypes), and
(iii) the classification is performed combining all information.
Our will to provide an interpretable and understandable process
is not only a wish but corresponds to real interaction with large
public targets, including providing didactic resources on these
subjects, as reported in Drumond et al. (2017a) or available in
Chraibi Kaadoud and Viéville (2016).

- To which extents does the prototype dimensional reduction
impairs the global performances? Under fixed features, indeed
we have a strong dimensionality reduction which impairs the
performance of our direct model, which justifies the use of a
combination of features and prototype information in our main
model. This way it is possible to both benefit from the prototype
layer and obtain optimized performances as good as or better
than a standard method.

In meta-learning paradigm, we also learn the features by
learning the weights of a CNN that feeds our model. In this
case, since the features are learned together with our prototype
model, the class representations should become more adapted to
a prototype-based discrimination, resulting in higher accuracies
than under fixed features even for the direct model. Moreover,
the dimensionality reduction was not as strong because we use a
64 dimension embedding and 2N prototypes.

Combining these two options allows the user to both obtain
state of art performances and interpretable results. With respect
to other comparable existing methods, we have obtained similar
performances, except when considering meta-learning with a
large number of classes. This is explained by the fact that we have
not optimized hyper-parameters in this case, which had already
been done in the fixed-features paradigm.

We can also hypothesize that our algorithm, since based on
a reduced set of prototypes that acts as support-vectors of the
classification (see Viéville and Crahay, 2004, for a development
of the link between support-vectors and prototypes), may have
good generalization properties, e.g., may limit overfitting which
is to be expected in a not-so-big data setup. This is indeed the
case for the direct model. For the combined model, as detailed in
Appendix A7, we may interpret the softmax layer as piece-wise
linear classifier considering O(L2) prototypes. As a perspective
of this work, going in depth in this interpretation may be an
interesting issue.

- Is the hyperparameter adjustment automatic at the end-user
level? The main hyperparameters we introduce are the number
of prototypes and a typical regularization strength, this last one
being not too critic (specially for the combined model). Even
if the number of prototypes is a non-negligible choice in terms
of data representation, with the combined model we eliminate
sensitivity to this hyper parameter in terms of performance.
However, in terms of interpretability, this leads to choosing a
small number of prototypes that might no represent so well
classes in the feature space. Conversely, with the direct model,
we are led to choose an always large number of prototypes
at the risk of overfitting, because at the limit (one prototype
by learning sample) the method reduces to a nearest-neighbor
classifier, known to be of poor generalization performances. Here,
we fix this issue by proposing to choose the number of prototypes
in the clustering phase based directly on its unsupervised loss,
optimizing it for data representation. We have experimentally
verified the feasibility of this method for the different data sets.
Comparing to other methods, this seems to be the main new
qualitative result to point out.

5.2. Perspectives and Future Work
Beyond these outcomes, general or application dependent
extensions of the method can be pointed out.

+ Consider incremental learning, where learning can continue
when given new samples, by updating the prototypes and the
related category prediction. This can be achieved for instance
through incremental k-means, which is a standard process (see,
e.g., Aaron et al., 2014). Applying cross-entropy minimization in
an incremental manner is also straightforward, iteratively adding
loss terms for newly arrived samples.

+ Consider prototype editing, where (i) redundant prototypes
within the same connected component can be deleted, while
(ii) learning samples detected as exceptions and generating
a classification error can be taken into account via a
new prototype. Additionally, and adaptive mechanism for
determining the number of prototypes could better explain the
data representation, improving interpretability of the feature
space, while eliminating one sensitive hyperparameter of the
model. In domain-specific applications where classes might be
composed of many different subclasses, a sensible number of
prototypes could better identify these subclasses and provide
means of representing the different subgroups.

Frontiers in Computational Neuroscience | www.frontiersin.org 16 January 2019 | Volume 12 | Article 100

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

+ Interacting with the deep-learning lower layers, since the
knowledge of the prototypes may help disentangling the lower-
layer feature extraction. A class disentanglement is a likely
cause behind the improved performances in the meta-learning
setting (when compared to using fixed features), since all
layers are trained end-to-end. In a transfer learning setting,
we could proceed to the fine-tuning of the upper layers
of the pre-trained CNN to try to achieve a similar result.
Moreover, disentanglement could be enforced implicitly via low
dimensional manifold regularization (Zhu et al., 2018), or using
generative latent factor models (Hoogeboom, 2017). Another
form of interaction could be the introduction of shortcuts from
lower layers to the feature layer in order to increase the prototype
components, analogous to other architectures incorporating
some form of forward shortcut (He et al., 2016; Shelhamer et al.,
2016; Huang et al., 2017).

+ Integrate knowledge from unlabeled examples is also a
possibility. These examples can represented in the same feature
space as other labeled samples and prototypes, using same
embedding CNN to extract this representation. These examples
then can be taken into account when computing the prototype
coordinates, analogously to what has been demonstrated by Ren
et al. (2017). Particularly when trying to solve ambiguous regions
where the system makes mistakes, a related track is to develop
some active learning heuristics and infer which new examples
could be of most help if labeled.

6. CONCLUSION

We analyzed how considering data prototypes at a different level
with respect to the state of the art allows to both reasonably

work with small data sets, and with an interpretable view of
the obtained results. The proposed architecture is minimal and
combine both the performances of a standard method and the
capability to observe the feature space representation.

At the methodological level, we also pay attention at
exploring in details the performances and limitations of the
proposed set-up, in an analogous way as biological experiments
are conducted, considering in details all hyperparameters
involved in the process. This is somehow different from
simply “winning the game” with respect to some deep learning
benchmarks.

AUTHOR CONTRIBUTIONS

TD is the main author at the origin of the data prototype
idea and has designed, developed and performed the
numerical experiments and their analysis. FA, TV, and TD
wrote sections of the manuscript. All authors contributed
to manuscript revision, read and approved the submitted
version.

FUNDING

Work partially developed under project FUI Sumatra (PIA and
Nouvelle Aquitaine Region fund).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2018.00100/full#supplementary-material

REFERENCES

Aaron, B., Tamir, D. E., Rishe N. D., and Kandel, A. (2014). “Dynamic

incremental K-means clustering,” in 2014 International Conference on

Computational Science and Computational Intelligence (Las Vegas, NV), 308-

313. doi: 10.1109/CSCI.2014.60

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., and

Samek, W. (2015). On pixel-wise explanations for non-linear classifier

decisions by layer-wise relevance propagation. PLoS ONE 10:e0130140.

doi: 10.1371/journal.pone.0130140n

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. (2005). Clustering with

bregman divergences. J. Mach. Learn. Res. 6, 1705–1749. Available online at:

http://www.jmlr.org/papers/v6/banerjee05b.html

Bellet, A., Habrard, A., and Sebban, M. (2013). A Survey on Metric Learning for

Feature Vectors and Structured Data. Research Report. Laboratoire Hubert

Curien UMR 5516.

Bengio, Y., and LeCun, Y. (2007). “Scaling learning algorithms towards AI,” in

Large Scale Kernel Machines, eds L. Bottou, O. Chapelle, D. DeCoste, and J.

Weston (Cambridge, MA: MIT Press), 321–360.

Bengio, Y., Lee, D.-H., Bornschein, J., and Lin, Z. (2016). Towards biologically

plausible deep learning. arXiv[Preprint]: 1502.04156.

Bullier, J. (2001). Integrated model of visual processing. Brain Res. Rev. 36, 96–107.

doi: 10.1016/S0165-0173(01)00085-6

Chraibi Kaadoud, I., and Viéville, T. (2016). L’apprentissage profond : une idée à

creuser ? Interstices.

Cooper, L. N., Intrator, N., Blais, B. S., and Shouval, H. Z. (2004). Theory of Cortical

Plasticity. Singapore: World Scientific Publishing. doi: 10.1142/5462

Cortes, N. (2012). The Role of the Pulvinar in the Transmission of Information in

the Visual Hierarchy. Ph.D. thesis, UMPC.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. J.

Mach. Learn. Res. 7, 1–30. Available online at: http://www.jmlr.org/papers/v7/

demsar06a.html

Dong, X., Zheng, L., Ma, F., Yang, Y., and Meng, D. (2017). “Few-

example object detection with model communication,” in IEEE Transactions

on Pattern Analysis and Machine Intelligence. doi: 10.1109/TPAMI.2018.

2844853

Doshi-Velez, F., and Kim, B. (2017). Towards a rigorous science of interpretable

machine learning. arXiv[Preprint]: 1702.08608.

Drumond, T., Viennot, L., Viéville, T., and François, V. (2017a). Jouez avec les

Neurones de la Machine. Blogs Le Monde - Binaire, 1–3.

Drumond, T. F., Viéville, T., and Alexandre, F. (2017b). “Using prototypes

to improve convolutional networks interpretability,” in Neural Information

Processing Systems: Transparent and Interpretable Machine Learning in Safety

Critical Environments Workshop (Long Beach, CA).

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., et al. (2017).

Dermatologist-level classification of skin cancer with deep neural networks.

Nature 542, 115–118. doi: 10.1038/nature21056

Fabre-Thorpe, M., Richard, G., and Thorpe, S. (1998). Rapid

categorization of natural images by rhesus monkeys. Neuroreport 9,

303–308.

Finn, C., Abbeel, P., and Levine, S. (2017). “Model-agnostic meta-

learning for fast adaptation of deep networks,” in Proceedings of the

34th International Conference on Machine Learning (Sydney, NSW),

1126–1135.

Frontiers in Computational Neuroscience | www.frontiersin.org 17 January 2019 | Volume 12 | Article 100

https://www.frontiersin.org/articles/10.3389/fncom.2018.00100/full#supplementary-material
https://doi.org/10.1109/CSCI.2014.60
https://doi.org/10.1371/journal.pone.0130140n
http://www.jmlr.org/papers/v6/banerjee05b.html
https://doi.org/10.1016/S0165-0173(01)00085-6
https://doi.org/10.1142/5462
http://www.jmlr.org/papers/v7/demsar06a.html
http://www.jmlr.org/papers/v7/demsar06a.html
https://doi.org/10.1109/TPAMI.2018.2844853
https://doi.org/10.1038/nature21056
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

Fort, S. (2017). Gaussian prototypical networks for few-shot learning on omniglot.

arXiv[Preprint]: 1708.02735.

Frosst, N., and Hinton, G. (2017). “Distilling a neural network into a soft decision

tree,” in Comprehensibility and Explanation in AI and ML (CEx Workshop) at

AI*IA 2017 (Bari).

Garcia, V., and Brina, J. (2018). “Few-shot learning with graph neural networks,” in

International Conference on Learning Representations (ICLR) (Vancouver, BC),

1–13.

Goodfellow, I., Bengio, Y., and Courville, A. (2016a). “Autoencoders,” in Deep

Learning (Cambridge, MA: MIT Press), 493–516.

Goodfellow, I., Bengio, Y., and Courville, A. (2016b). “Convolutional networks,” in

Deep Learning (Cambridge, MA: MIT Press), 321–362.

Goodfellow, I., Bengio, Y., and Courville, A. (2016c). “Deep feedforward networks,”

in Deep Learning (Cambridge, MA: MIT Press), 163–220.

Goodfellow, I., Bengio, Y., and Courville, A. (2016d). “Representation learning,” in

Deep Learning (Cambridge, MA: MIT Press), 517–548.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines.

arXiv[Preprint]: 1410.5401.

Håstad, J., and Goldmann, M. (1991). On the power of small-depth threshold

circuits. Comput. Complex. 1, 113–129.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (Las Vegas, NV), 770–778. doi: 10.1109/CVPR.2016.90

Hecht, T., and Gepperth, A. (2016). Computational advantages of deep prototype-

based learning. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9887

LNCS:121–127.

Hoogeboom, E. (2017). Few-Shot Classification by Learning Disentangled

Representations. Msc, University of Amsterdam.

Huang, G., Liu, Z., Weinberger, K. Q., and van der Maaten, L. (2017).

“Densely connected convolutional networks,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI), 4700–4708.

doi: 10.1109/CVPR.2017.243

Jetley, A., Romera-Paredes, B., Jayasumana, S., and Tor, P. (2015). “Prototypical

priors: from improving classification to zero-shot learning,” in Proceedings of

the British Machine Vision Conference (BMVC), eds X. Xie, M. W. Jones, and G.

K. L. Tam (Swansea: BMVA Press), 120.1–120.12.

Kim, B., Khanna, R., and Koyejo, O. (2016). “Examples are not enough, learn

to criticize! criticism for interpretability,” in Advances in Neural Information

Processing Systems 29 (Barcelona), 2280–2288. Available online at: http://

papers.nips.cc/paper/6300-examples-are-not-enough-learn-to-criticize-

criticism-for-interpretability.pdf

Koch, G., Zemel, R., and Salakhutdinov, R. (2015). “Siamese neural networks for

one-shot image recognition,” in ICML Deep Learning Workshop (Lille).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems, eds F. P. Weinberger, C. J. C. Burges, and L. Bottou (Lake

Tahoe, NV: Curran Associates, Inc.), 1097–1105.

Lake, B. M., Salakhutdinov, R. R., Gross, J., and Tenenbaum, J. B. (2011). “One

shot learning of simple visual concepts,” in Proceedings of the 33rd Annual

Conference of the Cognitive Science Society (CogSci 2011) (Boston, MA; Red

Hook, NY: Curran Associates, Inc.),2568–2573.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-

based learning applied to document recognition. Proc. IEEE 86, 227

8–2324.

Leroy, A. (1967). L’apprentissage de la lecture chez les jeunes enfants:

acquisition des lettres de l’alphabet et maturité mentale. Enfance

20, 27–55.

Lipton, Z. C. (2016). “The mythos of model interpretability,” in ICML Workshop

on Human Interpretability in Machine Learning (New York, NY: WHO).

Lundberg, S., and Lee, S.-I. (2017). “A unified approach to interpreting model

predictions,” in Advances in Neural Information Processing Systems 30, eds I.

Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett (Long Beach, CA: Curran Associates, Inc.), 4765–4774.

Lyu, S., and Simoncelli, E. P. (2009). Nonlinear extraction of independent

components of natural images using radial gaussianization.Neural Comput. 21,

1485–1519. doi: 10.1162/neco.2009.04-08-773

Maaten, L. V. D., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.

Learn. Res. 620, 267–284. Available online at: http://www.jmlr.org/papers/v9/

vandermaaten08a.html

Marcus, G. (2018). Deep learning: a critical appraisal. arXiv[Preprint]: 1801.00631,

1–27.

McHaffie, J. G., Stanford, T. R., Stein, B. E., Coizet, V., and Redgrave, P. (2005).

Subcortical loops through the basal ganglia. Trends Neurosci. 28, 401–407.

doi: 10.1016/j.tins.2005.06.006

Medathati, N. V. K., Neumann, H., Masson, G. S., and Kornprobst, P.

(2016). Bio-inspired computer vision: towards a synergistic approach of

artificial and biological vision. Comput. Vis. Image Understand. 150, 1–30.

doi: 10.1016/j.cviu.2016.04.009

Mensch, A., Mairal, J., Bzdok, D., Thirion, B., and Varoquaux, G. (2017). “Learning

neural representations of human cognition across many fMRI studies,” in

Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,

S. Bengio, H.Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Long Beach,

CA: Curran Associates, Inc.), 5883–5893.

Mensink, T., Verbeek, J., Perronnin, F., and Csurka, G. (2013). Distance-based

image classification: generalizing to new classes at near-zero cost. IEEE Trans.

Pattern Anal. Mach. Intell. 35, 2624–2637. doi: 10.1109/TPAMI.2013.83

Milner, D., and Goodale, M. (1995). The Visual Brain in Action, 2nd Edn. Oxford:

Oxford University Press.

Mouret, J.-B. (2016). Micro-data learning: the other end of the spectrum. ERCIM

News, ERCIM, 18–19.

Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature visualization. Distill.

2:e7. doi: 10.23915/distill.0000

Rahman, S., Khan, S. H., and Porikli, F. (2017). A unified approach for

conventional zero-shot, generalized zero-shot and few-shot learning. IEEE

Trans. Image Process. 27, 5652–5667. doi: 10.1109/TIP.2018.2861573

Ravi, S., and Larochelle, H. (2017). “Optimization as a model for few-shot

learning,” in International Conference on Learning Representations (ICRL)

(Toulon), 1–11.

Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K., Tenenbaum, J. B., et al.

(2017). “Meta-learning for semi-supervised few-shot classification,” in NIPS

Workshop on Learning With Limited Labeled Data (Long Beach, CA).

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why should I trust you?:

explaining the predictions of any classifier,” in 22nd ACM SIGKDD Conference

on Knowledge Discovery and Data Mining (San Francisco, CA).

Rippel, O., Paluri, M., Dollar, P., and Bourdev, L. (2016). “Metric learning with

adaptive density discrimination,” in International Conference on Learning

Representations (ICLR) (San Juan).

Rubinstein, R., Bruckstein, A. M., and Elad, M. (2010). Dictionaries

for sparse representation modeling. Proc. IEEE 98, 1045–1057.

doi: 10.1109/JPROC.2010.204055

Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., and Kastner, S. (2012).

The pulvinar regulates information transmission between cortical areas

based on attention demands. Science 337, 753–756. doi: 10.1126/science.12

23082

Santoro, A., Bartunov, S., Botvinick, M.,Wierstra, D., and Lillicrap, T. (2016). One-

shot learning with memory-augmented neural networks. arXiv[Preprint]: 160

5.06065.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., and Poggio, T. (2007).

Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern

Analys. Mach. Intell. 29, 411–426. doi: 10.1109/TPAMI.2007.56

Shalev-Shwartz, S., and Ben-David, S. (2014). Understanding Machine Learning:

From Theory to Algorithms. New York, NY: Cambridge University Press.

Shelhamer, E., Long, J., and Darrell, T. (2016). Fully convolutional networks for

semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651.

doi: 10.1109/TPAMI.2016.2572683

Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., et al. (2016).

Deep convolutional neural networks for computer-aided detection: CNN

architectures, dataset characteristics and transfer learning. IEEE Trans. Med.

Imaging 35, 1285–1298. doi: 10.1109/TMI.2016.2528162

Frontiers in Computational Neuroscience | www.frontiersin.org 18 January 2019 | Volume 12 | Article 100

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
http://papers.nips.cc/paper/6300-examples-are-not-enough-learn-to-criticize-criticism-for-interpretability.pdf
http://papers.nips.cc/paper/6300-examples-are-not-enough-learn-to-criticize-criticism-for-interpretability.pdf
http://papers.nips.cc/paper/6300-examples-are-not-enough-learn-to-criticize-criticism-for-interpretability.pdf
https://doi.org/10.1038/nature14539
https://doi.org/10.1162/neco.2009.04-08-773
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1016/j.tins.2005.06.006
https://doi.org/10.1016/j.cviu.2016.04.009
https://doi.org/10.1109/TPAMI.2013.83
https://doi.org/10.23915/distill.0000
https://doi.org/10.1109/TIP.2018.2861573
https://doi.org/10.1109/JPROC.2010.204055
https://doi.org/10.1126/science.1223082
https://doi.org/10.1109/TPAMI.2007.56
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TMI.2016.2528162
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Drumond et al. Data Prototypes and Small Data

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). “Learning important

features through propagating activation differences,” in Proceedings of the 34th

International Conference on Machine Learning (Sydney, NSW), 3145–3153.

Snell, J., Swersky, K., and Zemel, R. S. (2017). “Prototypical networks for few-

shot learning,” in Advances in Neural Information Processing Systems 30, eds

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett (Curran Associates, Inc.: Long Beach, CA), 4077–4087.

Song, H. O., Jegelka, S., Rathod, V., and Murphy, K. (2017). “Deep metric learning

via facility location,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (Honolulu, HI), 5382–5390. doi: 10.1109/CVPR.2017.237

Sundararajan, M., Taly, A., and Yan, Q. (2017). “Axiomatic attribution for deep

networks,” in Proceedings of the 34th International Conference on Machine

Learning, PMLR (Sydney, NSW), 3319–3328.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.

(2015). “Going deeper with convolutions,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Boston, MA), 1–9.

doi: 10.1109/CVPR.2015.7298594

Triantafillou, E., Zemel, R., and Urtasun, R. (2017). “Few-shot learning through

an information retrieval lens,” in Conference on Neural Information Processing

Systems (NIPS 2017) (Long Beach, CA).

Viéville, T., and Crahay, S. (2004). Using an hebbian learning rule

for multi-class SVM classifiers. J. Comput. Neurosci. 17, 271–287.

doi: 10.1023/B:JCNS.0000044873.20850.9c

Viéville, T., Hinaut, X., Drumond, T. F., and Alexandre, F. (2017).Recurrent Neural

Network Weight Estimation Through Backward Tuning. Research Report

RR-9100, INRIA.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. (2016).

Matching networks for one shot learning. arXiv[Preprint]: 1606.04080.

Weiss, K., Khoshgoftaar, T. M., andWang, D. (2016). A survey of transfer learning.

J. Big Data 3:9. doi: 10.1186/s40537-016-0043-6

Zeiler, M. D., and Fergus, R. (2014). “Visualizing and understanding convolutional

networks,” in Computer Vision – ECCV 2014, eds D. Fleet, T. Pajdla, B.

Schiele, T. Tuytelaars. Lecture Notes in Computer Science (Cham: Springer),

818–833.

Zhao, Y., and Park, I. M. (2016). “Interpretable nonlinear dynamic modeling

of neural trajectories,” in Advances in Neural Information Processing

Systems 29, eds D. D. Lee, M. Sugiyama, U. V Luxburg, I. Guyon,

and R. Garnett (Barcelona: Curran Associates, Inc.), 3333–3341. Available

online at: http://papers.nips.cc/paper/6543-interpretable-nonlinear-dynamic-

modeling-of-neural-trajectories.pdf

Zhu, W., Qiu, Q., Huang, J., Calderbank, R., Sapiro, G., and Daubechies,

I. (2018). “LDMNet: Low dimensional manifold regularized neural

networks,” in IPAM Workshop on New Deep Learning Techniques

(Los Angeles, CA).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Drumond, Viéville and Alexandre. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 19 January 2019 | Volume 12 | Article 100

https://doi.org/10.1109/CVPR.2017.237
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1023/B:JCNS.0000044873.20850.9c
https://doi.org/10.1186/s40537-016-0043-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Bio-inspired Analysis of Deep Learning on Not-So-Big Data Using Data-Prototypes
	1. Introduction
	1.1. The Data Requirement Challenge
	1.2. The Interpretability Issue
	1.3. On Network Architecture
	1.4. Hyperparameter Dependence
	1.5. The Present Contribution

	2. Related Works
	2.1. Prototypes in Literature
	2.2. Few-Shot Learning and Learning to Learn
	2.3. Interpretability

	3. Model Proposed
	3.1. Model Architecture
	3.2. Model Specification
	3.2.1. Direct Use of the Prototypes
	3.2.2. Combining Prototype-Encoded and Original Features
	3.2.3. Relation Between Prototypes and Category Information

	4. Experiments and Results
	4.1. Datasets
	4.2. Studying the Model Under Fixed Features
	4.2.1. Study of a Sample Episode
	4.2.2. Interpretability of the Model
	4.2.3. Comparison Over Multiple Episodes

	4.3. Comparison Over Different Training Sets With Varying Sizes
	4.4. Experiments in the Meta-Learning Paradigm

	5. Discussion
	5.1. Performances and Use of the Algorithm
	5.2. Perspectives and Future Work

	6. Conclusion
	Author Contributions
	Funding
	Supplementary Material
	References

