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We propose a computational model of vision that describes the integration of

cross-modal sensory information between the olfactory and visual systems in zebrafish

based on the principles of the statistical extreme value theory. The integration of

olfacto-retinal information is mediated by the centrifugal pathway that originates from

the olfactory bulb and terminates in the neural retina. Motivation for using extreme value

theory stems from physiological evidence suggesting that extremes and not the mean

of the cell responses direct cellular activity in the vertebrate brain. We argue that the

visual system, as measured by retinal ganglion cell responses in spikes/sec, follows an

extreme value process for sensory integration and the increase in visual sensitivity from

the olfactory input can be better modeled using extreme value distributions. As zebrafish

maintains high evolutionary proximity to mammals, our model can be extended to other

vertebrates as well.

Keywords: cross-modal sensory integration, statistical extreme value theory, classification, olfaction, vision,

zebrafish

1. INTRODUCTION

The brain perceives the external world through an integration of stimuli received from different
sensory modalities like vision, olfaction, and audition via the centrifugal pathway. A recent study
taking inspiration from Cajal’s original work on brain mapping (Gire et al., 2013) describes
current knowledge of the centrifugal olfactory and visual pathways in mammalian species as
being incomplete. While, for instance, the signaling pathways mediating brain feedback in human
olfaction have been characterized, the origins and effects of signals to visual system functions
remain to be examined. In this work, we seek to understand the modulation of the circuits between
sensory modalities. A crucial observation, yielding from our own work, points to how due to
olfacto-visual sensory integration, measures of visual performance or behavior in response to
multi-sensory input are enhanced, when a stimulus in onemodality is ambiguous or undetermined.
In fact, in all vertebrate species (e.g., teleost, reptiles, birds, rodents, primates) examined thus far, the
retina receives brain feedback through the centrifugal visual pathways (Harter and Aine, 1984;Mick
et al., 1993; Gastiner et al., 2004). Depending on the species under consideration, the centrifugal
pathways may originate from different parts of brain, such as the pre-tectal cortex, isthmo-optic
nucleus, thalamus, or olfactory bulb.
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In zebrafish (Danio rerio), the olfacto-retinal centrifugal
(ORC) pathway originates from terminalis neurons (TNs) in the
olfactory bulb (OB) and terminates in retina. TNs (Figure 1A)
synthesize gonadotropin-releasing hormone (GnRH) as a major
neurotransmitter. In the retina, TN fibers synapse with
dopaminergic interplexiform cells (DA-IPCs), retinal ganglion
cells (RGCs), and possibly other retinal cell types. Insights
from relatively recent research (Li and Dowling, 2000; Huang
et al., 2005) have shown that the function of the ORC pathway
is directly regulated by the olfactory input. TN input alters
GnRH signaling transduction and decreases dopamine release
in the retina, thereby increasing outer retinal sensitivity and
inner retinal activity (e.g., firing of ganglion cells). Specifically,
the olfactory input mediated by the ORC pathway decreases
the light threshold (i.e., the minimum light intensity required
to fire evoked action potentials) of retinal ganglion cells, and
thereby increases retinal sensitivity. Together, the olfactory input
amplifies behavioral visual sensitivity (Maaswinkel and Li, 2003).

Zebrafish maintain high evolutionary proximity to mammals,
and their retinas share great similarities to humans (e.g.,
structure, cellular organization, neural circuitry and signaling
transmission) (Li, 2001; Vacaru et al., 2014). While much
progress has been made to understand the anatomy of cross-
modal circuitry in zebrafish, our knowledge of the underlying
regulatory mechanism and physiological roles of centrifugal
input to the retina is still in its nascent stage. Interestingly,
Huang et al. (2005) demonstrate how the visual sensitivity
in zebrafish is increased in the presence of olfactory signals
whereas disrupting the ORC pathway impairs visual function. An
important observation found in that work reveals the importance
of olfactory signals for vision. According to Huang et al.
(2005), under normal conditions the minimum threshold light
intensity to invoke a retinal ganglion cell response (measured
in spikes/sec) in a dark-adapted zebrafish embryo may decrease
1–2 log units after olfactory stimulation. This demonstrates the
dramatic impact of olfactory signals on vision.

Such a sudden gain in visual sensitivity through olfactory
stimulation is an intriguing target for a computational model.
We argue that visual sensitivity follows the statistical Extreme
Value Theory (EVT). The mean visual sensitivity does not clearly
explain the increased sensitivity due to olfactory signals since
that scenario is able to sense a stimulus that is an extreme
aberration from the norm, i.e., retinal ganglion cell responses
without any olfactory stimulation. EVT lays solid groundwork
for modeling as it is independent of the underlying distribution
of data (all of the cell responses) and is only applicable to the
tails of the distribution (the extremes) such that samples which
have the least, or no possible, probability of occurrence under
a central tendency model are distinguished, providing greater
discrimination while requiring few statistical assumptions.

At a deeper level, one can ask the following question: is there
a theoretical justification for using EVT for neural modeling?
Our key insight is that the characterization of the firing behavior
of a neuron as repeated integration/thresholding within a
circuit suggests positive answers to these questions. Neurons
are generally modeled as an electro-chemical process integrating
input (ions) and eventually crossing a threshold whereby they

fire and release ions. We posit that this inherently leads to
an EVT-based model because the distribution of samples that
exceed a threshold T likely yields an extreme value distribution
(EVD). If all neurons use a fixed threshold T, the inputs to
subsequent neurons in the circuit must follow an EVD, with
each neuron integrating data from such a distribution and
thresholding it. Thus, EVT can provide a plausible consistent
multi-layer neuron model.

Beyond the merits of cultivating a better understanding of
the operation of cross-modal sensory information integration in
vertebrates, there is the possibility that an accurate computational
model for this phenomenon could translate into a general
algorithm for pattern recognition tasks in computer science. A
direct application of this method lies in the development of novel
information fusion algorithms that leverage inputs frommultiple
sensory modalities, i.e., vision and audition (Nagrani et al., 2018).
Another practical application is the invention of innovative
sensors capable of detecting changes in the environment and
then re-configuring on the fly to change operational parameters
and power consumption requirements. Currently, sensors are
typically designed to sense a single type of physical property such
as temperature, pressure, radiation, motion or proximity. But
with a biologically-consistent model they could be remodeled
to use multiple observations from the environment for more
agile operation. The work presented in this article is in this
spirit of leveraging biological observations to forward engineer
algorithms that can operate in a general context.

In the following sections, we provide a detailed explanation
of our work. Section 2 describes the single unit cell recording
procedure from which our analysis is derived and the definition
of EVT from which the proposed model is based. Section
3 goes on to describe the exact specification of that model.
Section 4 describes our experiments and Section 5 presents the
corresponding results. Finally Section 6 concludes by putting this
research into a larger biological and computational context.

2. MATERIALS AND METHODS

In this section, we explain the methods we use that are crucial for
understanding our computational model of cross-modal sensory
information integration. This includes the physical experiments
that were conducted to collect the source data, as well as the
formal elements of EVT.

2.1. Single-Unit Recordings and Odor
Stimulation
This research builds upon the previous work of Huang et al.
(2005). An overview is provided in Figure 1B. Traces of RGC
are recorded before and after odor stimulation (the sites of odor
treatment are indicated by numbers 1 and 2 in Figure 1B),
or when dopamine and/or GnRH signaling transduction
is manipulated by the application of receptor agonists or
antagonists (indicated by numbers 3–8 in Figure 1B). For
electrophysiological recordings, zebrafish were anesthetized with
0.04% 3-amino benzoic acid and immobilized by intraperitoneal
injections of 3 5 µl of 0.5 mg ml−1 gallamine triethiodide
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FIGURE 1 | (A) A fluorescent image of zebrafish brain (dorsal view, anterior is up) showing the terminalis neurons and axons (arrows). (B) A schematic diagram

showing the experimental setup for RGC recordings in response to olfactory and TN stimulation. The numbers correspond with the following conditions: 1, 2–sham or

odor stimulation; 3, 4–activation or inhibition of dopamine receptors; 5, 6–activation or inhibition of GnRH receptors; 7, 8–manipulation of both dopamine and GnRH

receptors. (C) An overview of EVT. Prior work (Tanaka, 1996; Leopold et al., 2006; Freiwald et al., 2009) suggests that it may be the extremes (red dots), and not the

mean (black dots near the center of the circle), that produce strong responses in the brain.

dissolved in phosphate-buffered saline (PBS), and then placed
on a wet sponge with most of the body covered by a wet paper
towel. A slow stream of system water (distilled water with ocean
salt added, 3 g gal−1, pH 7.0) was directed into the mouth
to keep the fish oxygenized. The eye was slightly pulled out
of its socket and held in place by glass rods, thus exposing
the optic nerve. Single-unit RGC responses (determined by the
spike waveform) were recorded from the optic nerve by using a
Tungsten microelectrode (resistance, 5 10M�). Electrical signals
were filtered with a band pass filter between 30 and 3, 000 Hz.

To test the effect of olfactory stimulation on visual sensitivity,
we measured the light threshold required to evoke RGC
responses before and after olfactory stimulation. Each fish was
dark adapted for 30 min before the first RGC recording was
made. The light stimuli (full-field dim white light, generated by
a halogen bulb) were directed to the fish eye via a mirror system.
The intensity of the unattenuated light beam (log I = 0) measured
in front of the fish eye was 670 µW cm−2 (Optical Power Meter,
UDT Instruments, MD, USA). To determine the threshold, the
light intensity was first set below threshold level (e.g., log I =
−6.0) and then increased by 0.5 log-unit steps until the first light-
evoked RGC responses were recorded (criteria, 20% above or

below the rate of spontaneous firing). This light intensity was
noted as the threshold. For each recording, 10 stimuli (600 ms
flashes) were delivered at 3 s intervals.

Amino acids (methionine) were chosen to stimulate the
olfactory neurons to activate the ORC pathway. Previous studies
have demonstrated that amino acids are strong odors for
zebrafish (Edwards and Michel, 2002). Among the amino acids
tested in zebrafish, methionine produced the most obvious
and dose-dependent responses on visual function (Maaswinkel
and Li, 2003). In this study, odors (methionine, 0.5, 2,
and 5 mM; total 8 10 µl per stimulation) were delivered
to the nostril through a glass pipette. The light threshold
required to evoke RGC responses was measured before the
application of methionine, and was measured again within
10 s following the application of methionine. Thereafter, the
measurement was repeated at 1 min intervals for 10 min.
In total, 24 cells were recorded. 24 animals were used in
this process with 1 cell/animal for the recordings. Among
these 24 animals, in response to odor stimulation, 17 showed
increased visual sensitivity. In the remaining 7 animals, 6
showed no changes in visual sensitivity and 1 showed decreased
visual sensitivity.
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2.2. Extreme Value Theory
The extreme value theorem (Coles, 2001) that underpins EVT
(Figure 1C) is very similar to the central limit theorem (Jaynes,
2003). Both theorems involve limiting behaviors of distributions
of independent and identically distributed random variables
as n, the number of random variables, tends to ∞. However
while the central limit theorem is concerned with the behavior
of entire distributions of random variables, the extreme value
theorem only applies to the random variables at the tails of
those distributions.

To state this difference precisely, if x1, x2, ... , xn represent the
i.i.d. random variables from a distribution, then the central limit
theorem describes the limiting behavior of x1, x2, ... , xn while
the extreme value theorem describes the limiting behavior of the
extremes: max(x1, x2, ... , xn) or min(x1, x2, ... , xn) (Coles, 2001).
It encompasses a number of distributions that apply to extrema.

An extreme value distribution is a limiting model for the
maximums and minimums of a dataset. A limiting distribution
simply models how large (or small) the data to be modeled will
probably get. It is widely used in applications where there is
interest in not only estimating the average, but also the maximum
or minimum (Weibull, 1951, 1952; Galambos, 1994; Castillo
et al., 2005). For example, when designing a dam, engineersmight
not only be interested in the average yearly flood which foretells
the amount of water to be stored in the reservoir, but also in the
maximum flood, the maximum intensity of earthquakes in the
region during the past decade, or maximum strength of concrete
to be used in building the dam to mitigate the possibility of a
disaster. Castillo et al. (2005) list a number of applications where
extreme value distributions can be used.

Now that the preliminaries have been covered,
we can formally define an extreme value theorem
(Fisher and Tippett, 1928):

Let (s1, s2, ..., sn) be a sequence of independent and identically
distributed samples and let Mn = max(s1, s2, ..., sn). If a sequence
of pairs of real numbers (an, bn) exists such that each an > 0 and

lim
x→∞

P

(

Mn − bn

an
≤ x

)

= F(x) (1)

then if F(x) is a non-degenerate distribution function, it belongs
to one of three extreme value distributions: Gumbel, Fréchet or
Reverse Weibull.

In contrast to the Gumbel or Fréchet distributions which
are used for unbounded data, the Weibull distribution applies
to data that are bounded from below and when the shape (k)
and scale (λ) parameters are positive (the Reverse Weibull is
simply the opposite of the Weibull’s non-degenerate distribution
function). Moreover, the Weibull is used for modeling minima.
In order to use it for modeling data that fall in the upper tail of
a distribution, a minor adjustment needs to be made by flipping
the data such that maxima become minima before applying the
Weibull distribution. The probability distribution function of the
two-parameter Weibull distribution is given as:

f (x; λ, k) =

{

k
λ
( x
λ
)k−1e−( x

λ
)k , if x ≥ 1

0, if x < 0
(2)

Note that there are other types of extreme value theorems
one can make use of, such as the Pickands-Balkema-de Haam
Theorem (Pickands, 1975). We limit ourselves to the theorem in
Equation (1) in this work for the modeling of explicit tail data,
but we will invoke the Pareto distribution, which is derived from
the Pickands-Balkema-de Haam Theorem, in the modeling of the
overall distribution. This is described below in the next section.

3. A MODEL FOR CROSS-MODAL
SENSORY INFORMATION INTEGRATION

Now that the relevant background has been introduced, we
formally define our computational model for cross-modal
sensory information integration (Figure 2). It is motivated by the
following hypothesis: The tuning curves for RGC responses with
and without olfactory signals are different. The extreme values in
the tails of the distributions underlying those curves contribute to
the determination of the visual sensitivity of zebrafish and should
not be discarded as outliers.

The single unit recordings that we used for our experiments
can be regarded as samples from a large population. One way
to infer more about the population statistics is to extrapolate
from the available samples by fitting distributions to them and
sampling additional data. However, fitting a known distribution
to available data can be difficult because of limited sample sizes,
leaving one to make a “best guess” based on prior information
about the behavior of large sample statistics. The best guess can
come frommaking an assumption (for example, a null hypothesis
as a starting place), or a more rigorous method of model selection
using some metric.

If n represents the sample size, n → ∞ with the number
of RGC responses acquired from an animal as it senses its
environment over time. And the distribution of mean RGC
responses calculated throughout an animal’s entire lifecycle
becomes Gaussian. This assumption directly follows from the
central limit theorem. So perhaps the underlying distribution
of measured responses is also Gaussian (a typical assumption
in such modeling). Because our experiments involve two
different sets of RGC responses, with and without olfaction,
we can hypothesize that each set is normally distributed with
varying parameters. This null hypothesis can be tested through
commonly used measures of normality, failing which it can be
rejected and we can look for alternative distributions using a
model selection approach.

In statistical modeling, statisticians are often faced with the
task of selecting a suitable model (a distribution, in our case)
among a set of viable and finite candidates. There are several
metrics or selection criteria one can use to determine the best
explanatory model given the data. The Bayesian Information
Criterion (BIC) (Schwarz et al., 1978; Neath and Cavanaugh,
2012) serves as a canonical method for model selection when
priors are hard to state precisely. In a large sample setting the
model found by BIC is equivalent to the candidate model that is
a posteriori most probable, given the available data. It primarily
amounts to maximizing the likelihood function separately for
each candidate model and then choosing the one for which the
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 I(x)

(3) Generative process to 

generate plausible 

extrema 

      (4) Weibull distribution is fit to the 

tail data sampled from

each distribution

(5) Indicator function that

toggles the RGC tuning

based on sensory input

(2) Different statistical distributions 

apply in different environmental settings 

Control

Olfactory

Stimulus

Recovery

(1) Raw data from wet-bench

experiments

k1, λ1k2, λ2

with olfaction

without olfaction

μ1, σ1 k2, σ2, θ2

FIGURE 2 | An overview of the proposed computational model of cross-modal sensory information integration. The red curve represents the RGC responses when an

olfactory stimulus is present and the green curve represents the responses when there is no olfactory stimulus present. The first step represents the data collection

effort from the wet-bench experiments. The second and third steps include fitting distributions to the data collected in order to draw samples for further processing.

The fourth step represents fitting a Weibull distribution in order to model the underlying difference between visual sensitivity when olfactory input (i.e., additional

sensory information) is present as opposed to when it is not. The final step is identifying an indicator function, I(x) that toggles between the two distributions based on

the sensory input received.

log likelihood is the largest, with a fixed penalty term for guessing
the wrong model.

To identify a good distribution to fit to non-normally
distributed empirical data, we used a Matlab implementation of
BIC1. A large set of valid parametric distributions were fit to the
data and sorted using the output of the BIC metric to compare
the goodness of the fits. The overall process returns a set of
fitted distributions with their respective parameters. The list of
distributions that were tried includes: Beta, Birnbaum-Saunders,
Exponential, Extreme Value, Gamma, Generalized Extreme
Value, Generalized Pareto, Inverse Gaussian, Logistic, Log-
Logistic, Log-Normal, Nakagami, Rayleigh, Rician, t Location-
Scale, andWeibull. It was assumed that all data were continuous.

1github.com/dcherian/tools/blob/master/misc/allfitdist.m

Our initial assumption that the overall data representing
RGC responses without olfactory signals are normally distributed
was rejected by the normality tests at the 1% significance
level (a detailed description of the normality tests is given
in section 4). Using the BIC method, the distribution that fit
accurately to the overall RGC response data without olfactory
stimulation was found to be the Generalized Pareto distribution
(see Supplementary Material). Interestingly, this distribution is
considered to be in the EVT family. The null hypothesis that
the overall RGC responses with olfactory stimulus are normally
distributed was not rejected at the 1% significance level by the
normality tests, thus we fit a Gaussian distribution to that data.

Suppose we have n observations, or number of RGC
responses. If xi represents the i-th RGC response where i ∈ (1,
2, ... , n), the population statistics (mean µ and variance σ 2) of
the RGC response data with olfactory signal are found as the
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unbiased estimates of the distribution parameters and are given
by the following equations:

µ =

n
∑

i=1

xi

n
(3)

σ 2 =
1

n− 1

n
∑

i=1

(xi − µ)2 for all i ∈ (1, 2, 3, ..., n) (4)

The probability density function for the Generalized Pareto
distribution with shape parameter k, scale parameter σ and
threshold parameter τ is given by the following equation:

y = f
(

x | k, σ , τ
)

=

(

1

σ

){

1+ k
(x− τ)

σ

}−1− 1
k

(5)

We used maximum likelihood to estimate the parameters k and
σ from the two-parameter Generalized Pareto distribution by
fitting RGC responses without olfaction2.

Having access to a model of the entire population facilitates
generative sampling, which in turn allows for better tail
modeling, and support for heightened visual sensitivity under
certain conditions. Such generative processes in the brain
may be responsible for a number of different phenomena,
as they facilitate generalization in learning from limited
sampling (Rao et al., 2002). We use random sampling and the
Metropolis-Hastings algorithm, a Markov chain Monte Carlo
(MCMC) sampling method (Hastings, 1970) to generate in total
100, 000 simulated RGC responses with and without olfaction,
respectively. The maximum (or the minimum) RGC response
values within these samples follow an EVD. For our analysis,
we concentrate only on the maximum RGC responses from the
distributions described above because the lowest possible RGC
response can be 0 spikes per second, indicating no response. Since
the RGC responses (both with and without olfactory signals) can
be assumed to be i.i.d samples from continuous distributions that
are bounded from below, the Weibull distribution is the correct
choice for modeling them. We expect the Weibull cumulative
distribution curves (CDFs) for RGC responses with and without
olfaction to be widely separated and the threshold RGC response
value for an olfactory signal to shift sensitivity leftward (see
Figure 3 for an example), indicating that the cells are now more
sensitive. This effect, replicated within the model, would confirm
in a more rigorous sense that the presence of olfactory signals
increases the fish’s sensitivity toward its surrounding and almost
endows it with night vision that would be otherwise impossible
in absence of those signals.

This process is analogous to the super-additivity phenomenon
in the multi-sensory superior colliculus of higher-order

2For finding the maximum likelihood estimates of the Generalized Pareto

distribution, we used the Matlab function gpfit, which only returns the estimates

of the shape k and scale σ parameters of a two-parameter Generalized Pareto

distribution. The function makedist was then used to create a probability

distribution object reflecting where samples are taken from, using the parameters

k and σ .

organisms like mammals, where the presence of two weak
sensory signals from the environment enhances the animal’s
neural response toward that environment (Holmes and Spence,
2005). The RGC threshold value represents an average RGC
response for visual sensitivity, which changes throughout
an animal’s entire life-cycle as it adapts to an ever-changing
environment. However, the threshold varies (decreases or
increases) in the presence or absence of a sensory stimulus
other than visual input. This leads us to the possibility of the
existence of some decision making mechanism in the fish’s brain
that toggles between two different distributions to adjust the
tuning of the RGCs based on sensory input. Mathematically,
this decision making procedure can be implemented as an
indicator function I(x). If θ represents the parameters of an
RGC distribution, i.e., the prior information available for RGC
responses with or without olfactory signals and x represents a
new RGC response due to a stimulus from the environment
such that x ∈ Rn (here n = 22, as we successfully retrieved 22
dimensions representing RGC spikes over time after stimulation
of the olfactory neurons from the wet-bench experiments of
Huang et al. For further explanation, see section 4), then the
indicator function I(x) can be represented as:

I (x | θ) =

{

1, if olfactory signal is present
0, otherwise

(6)

We speculate that the actual neural computation for the overall
phenomenon is far more complex and is not restricted to just two
modalities. However, given the recordings available for this study,
we limit our model to just one particular circuit.

3.1. Choices for an Indicator Function
For the indicator function, we address the following problem:
given a set of vectors representing RGC responses in spikes/s
with and without olfactory signals, is it possible for an indicator
function to identify whether a new RGC response has been
triggered after an olfactory signal or not? Our intuition behind
using an indicator function is that such a process exists in some
capacity in the brain where the presence of one signal enhances
the other signal, thereby eliciting responses much different from
the situation when the signal is not present. In essence, this
task can be formulated as a binary classification problem with
two possible outcomes: presence or absence of olfactory signals.
Ideally, any discrimitative supervised learning method can easily
solve the problem. For our analysis, we examine the utility of
support vector machines and an artificial neural network which,
to some extent, mimics the functions of a biological neuron and
is closer to the mechanism that the brain uses to process such
signals. The motivation for choosing these particular classifiers
is their simplicity—we desire an indicator function with an
efficient training regime that can operate over thousands of
multi-dimensional data points, such as a large collection of RGC
responses. Other classifiers (e.g., decision trees, random forests,
logistic regression) may also be suitable.

3.1.1. Support Vector Machine

The Support Vector Machine (SVM) is a supervised learning
approach that is widely used for classification and regression
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analysis (Cortes and Vapnik, 1995). Since our data is numeric and
high-dimensional, SVM is a natural choice as it has been found
to be extremely efficient in high-dimensional spaces for large-
scale classification problems. SVMs use a subset of training points
in the decision function, which form the “support vectors” that
define the decision boundary between classes. As a consequence,
it has been found to be memory efficient and has fast execution
times if the data are normalized. For analysis, we assumed our
data to be linearly separable and used a linear SVM formulation.
We normalize all data using min-max normalization.

An SVM model with a set of labeled training data tries to find
an optimal hyperplane for classifying new samples based on some
constraints. Given a training dataset, D = (xi, yi) of sizem with xi
= (x1, x2, ..., xm), an n-dimensional feature/attribute vector, and
label yi = -1 or +1, formally the SVM classifier can be defined as a
quadratic optimization problem solving the following equation:

min ‖w‖2 s.t yi(w
Txi + b) ≥ 1 for all i (7)

where w = (w1, w2, ..., wn) is a weight vector and b is the bias.
An important consideration when training an SVM model is

the parameter C that dictates the trade-off between having a wide
margin and correctly classifying training data.

min ‖w‖2 + C

m
∑

1

ξi s.t yi(w
Txi + b) ≥ (1− ξi), ξi ≥ 0 for all i

(8)
A larger value of C implies a smaller number of mis-classified
training samples and is prone to overfitting.

3.1.2. Artificial Neural Network

We also consider a multi-layer perceptron (MLP) neural network
as the indicator function. Similar to SVM, MLP is a supervised
learning algorithm that learns a non-linear mapping from input
x ∈ Rn, where n represents the number of dimensions, to y ∈

Rm where m can be any number m < n, depending on the
number of classes in the training dataset. However, unlike SVMs,
a simple MLP includes one or more hidden layers consisting
of artificial neurons. The hidden layers act as feature detectors
and gradually discover the salient features of the training data
through backpropagation (Rumelhart et al., 1986;Werbos, 1990).
Each neuron includes a non-linear and differential activation
function and is connected to every neuron in the previous
layer exhibiting a high degree of connectivity between layers.
As a result, due to the distributed nature of non-linearities,
the learning process is difficult to visualize. However, neural
networks are usually assumed to be non-parametric functions,
i.e., they can be used as function approximators without having
any prior information about the distribution of input or training
dataset and hence are well suited to represent the indicator
function. If x represents a p-dimensional input vector such that
x = (x1, x2, x3, ..., xp) with y = (+1,−1) as labels and g :R 7→ R

as the activation function, then the equation for a single neuron
is given by:

y = g

(

b+

p
∑

i=1

wixi

)

(9)

where w =
[

w1,w2,w3, ...,wp

]

represents the weights learned
through backpropagation.

4. EXPERIMENTS

4.1. Data Collection and Representation
As stated above, the first step in building a computational
model of this nature is to attempt to define the underlying
distribution of the data one is trying to explore. We use the
data from a study by Huang et al. (2005) for our analysis.
The data consists of single unit RGC responses measured in
spikes/sec before and after olfactory stimulation under varying
light intensity (see Figure 2 from Huang et al.). In terms of
raw data organization, it is primarily a histogram with the
x-axis representing the visual sensitivity of fish binned into
approximately 22 positions representing a timestamp and their
corresponding frequency measured in spikes/sec on the y-axis.
Under normal conditions, the minimum threshold light intensity
to invoke a retinal ganglion cell response in a dark-adapted
zebrafish embryo is 10−5. However, with olfactory stimulation
with methionine, the threshold light intensity decreases to 10−6.
We calculated the minimum RGC response threshold to be at 75
spikes/s. Hence, the data can be separated into two parts: one
with olfactory stimulus and the other without it. In total, there
were 22 RGC responses across time with olfactory stimulus and
29 without olfactory stimulation.

4.2. Experiment 1
The first experiment was to check whether the raw data we
collected from the experiments confirms our hypothesis that
the EVT can be applied to build an accurate model. We
posit that since the RGC responses with olfactory stimulation
represent extreme aberration from the baseline and are non-
negative integers, the Weibull distribution is the right candidate
for modeling our data. But how differently does our data fit
with the Weibull distribution vs. a central tendency model like
the Gaussian distribution? We explore this by comparing the
CDFs of the Weibull and Gaussian distributions with parameters
derived from our data.

4.3. Tests of Normality and Synthetic Data
Generation
Using the data collected from wet-bench experiments as a basis,
we simulated an expansive data space by fitting distributions
over the original data. The goal was to generate as much
evidence as possible for statistical inference. However, in order
to fit distributions to generate more samples from the existing
data, we need to make some assumptions about the underlying
distribution. Initially, as described above in section 3, we assumed
a null hypothesis that the distribution of RGC responses in
a zebrafish throughout its entire lifecycle is Gaussian. Since
our work involves two different sets of RGC responses—one
with olfactory stimulus and the other without it—under this
assumption the distributions underlying each should be Gaussian
with different parameters. To test this, we performed several
commonly used tests of normality: the Kolmogorov Smirnov
test (Massey, 1951), the Shapiro-Wilk test (Shapiro and Wilk,
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1965), and a Lilliefors test (Lilliefors, 1967, 1969; Conover and
Conover, 1980)3. Due to the small sample size (n = 22 or 29),
we preferred the Shapiro-Wilk test over Kolmogorov-Smirnov
and Lilliefors. For datasets that failed the normality test, The
BIC selection criterion was deployed to find another distribution
with the best fit. Afterwards, we generated 100, 000 non-negative
samples of RGC responses from the respective distributions for
further analysis.

4.4. Experiment 2
The second experiment was to check whether the points we
sampled confirm our hypothesis that the EVT can be applied
in a generative scenario. In order to verify this, we fit a Weibull
distribution to the top n RGC responses to understand how the
curves vary when olfactory input is present as opposed to when
it is not. The value n was selected via empirical observation.
The sampling methods used were: random sampling andMCMC
sampling. Since EVDs like the Weibull only apply to samples
at the tails of distributions, it is independent of the underlying
distribution of the data as a whole. Hence, irrespective of
the overall data distribution and sampling process, the results
of Experiment 2 for the Weibull distributions for the top n
responses should ideally be similar to Experiment 1. We expect
the Weibull cumulative distribution functions for data with
and without olfactory stimulus to be widely separated, with the
curve for data with olfaction shifting leftward, giving higher
probability scores to RGC responses that would be improbable
under conditions where olfaction is not engaged.

4.5. Experiment 3
Additionally, we wanted to corroborate whether we can define
a deterministic indicator function such that given some RGC
response it is possible for the function to identify if an olfactory
stimulus is present or not. In essence, this task becomes a
binary classification problem where the presence of olfactory
signals can be labeled as 1 and the absence as 0. As described
above in section 3, we use a linear SVM or a multi-layer
perceptron as our binary classifier. For consistency in the
operation of the indicator function, we limit the dimensionality
of all vectors to the dimensionality of RGC responses with
olfactory stimulus (n = 22). We use the 100,000 samples we
generated for each scenario (with olfactory stimulus and without
olfactory stimulus), dividing the sets into 80% training and 20%
testing partitions.

In summary, the entire modeling effort is encapsulated in the
following steps (also depicted in Figure 2):

1. Data collection and representation. This step consists
of collecting and representing data based on the wet-
bench experiments for control (without any stimulation)

3We used the following Matlab implementations of the normality tests: lillietest

(for the Lilliefors test), swtest (from Matlab central for the Shapiro-Wilk test),

kstest (for the one-sample Kolmogorov-Smirnov test). Each of these tests returns

a decision (1 or 0) for the null hypothesis that the data comes from a distribution

in the normal family, against the alternative that it does not come from such a

distribution. A result of 1 rejects the null hypothesis at the 5% significance level

(default). For our experiments, we set the significance level to 1%.

and experimental (with olfactory stimulation) zebrafish as a
histogram and collecting the statistics for further analysis.

2. Experiment 1. This first test consists of an experiment
to evaluate our hypothesis that EVT applies with the raw
data collected in step 1. We fit Gaussian distributions (to
the entire collection of data with and without olfaction
individually) and Weibull distributions (to the top-n RGC
responses from the two datasets). The value n was selected via
empirical observation.

3. Tests of normality and synthetic data generation. Here we
begin by assuming that the distribution of RGC responses
in a zebrafish throughout its entire life cycle is normal, and
attempt to falsify that assumption via tests of normality.
The appropriate distributions are subsequently fit to the
data to generate 100, 000 synthetic samples. The data with
olfactory stimulus follows the Gaussian distribution, whereas
the underlying distribution for data without olfactory stimulus
is Generalized Pareto.

4. Experiment 2. Similar to Experiment 1 but instead uses
100, 000 generated samples and only Weibull distributions
fit to the top-n samples generated to examine how olfactory
signals influence visual sensitivity as reflected by the CDF
curves for the two scenarios. The value n is selected through
empirical observation.

5. Experiment 3. This experiment involves identifying an
indicator function I(x) that can distinguish when an olfactory
stimulus is present and when it is not. Here this function
is a deterministic binary classifier, either a linear SVM or a
multi-layer perceptron.

5. RESULTS

5.1. Experiment 1
Figure 3 depicts the result of Experiment 1, which was
conducted to examine the difference between central tendency
modeling and EVT modeling. The data for this experiment were
what was directly collected from the wet-bench experiments
for both control (without olfaction) and experimental (with
olfaction) zebrafish.

As can be seen in the figure, with olfactory stimulation the
visual sensitivity in zebrafish shifts leftward, making the RGC
responses below the normal threshold of 75 spikes/s probable,
as indicated by the physiology experiments of Huang et al.
(2005). Moreover, if we look closely, the Weibull distributions
(represented by the red and blue solid and dashed lines) are a
better fit to the data because the RGC responses with olfactory
stimulation represent a set of extreme responses as opposed to
RGC responses without any stimulation. If we fix our attention
at the threshold RGC response at 75 spikes/s, the Weibull curves
provide a better explanation for getting an RGC response below
75 spikes/sec for olfactory stimulation in comparison to the
normal distribution, which makes those values more improbable.
In other words, the tuning becomes more sensitive if we use
the Weibull distribution. We plotted the curves by varying n
(n = 3, 8) of the top-n RGC responses. The tuning becomes more
sensitive as n becomes smaller.
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FIGURE 3 | Experiment 1. Cumulative Distribution Functions for zebrafish with and without olfactory stimulation at light intensity 10−5 and 10−6, respectively. The

curves depict the difference between central tendency modeling (green) and EVT modeling (red and blue). As can be seen, tuning becomes more sensitive when the

Weibull distribution is used. The number of maximal RGC responses taken is either 3 or 8 (indicated within the parentheses). Best viewed in color.

5.2. Tests of Normality and Synthetic Data
Generation
The null hypothesis that the data without olfactory stimulus are
normally distributed was rejected at the 1% significance level
for all of the tests. However, the other assumption of normality
for data with olfactory stimulus was not rejected at the 1%
significance level. Based on these results, we fit a Gaussian
distribution to the data with olfactory stimulus. Using the BIC
selection criterion to find the best fit, the distribution for the data
without olfactory stimulus was determined to be Generalized
Pareto. We then collected non-negative samples simulating RGC
responses via random sampling or MCMC sampling (100, 000
samples from each sampling method), to be used for fitting a
Weibull distribution to the top n samples in order to understand
how the curves vary when olfactory input is present (i.e., when
the overall distribution is Gaussian) as opposed to when it is not
(i.e., when the overall distribution is Pareto).

5.3. Experiment 2
Figures 4, 5 show the models of visual sensitivity calculated
over the simulated data from random sampling and MCMC
sampling4. Similar results are achieved for both sampling
methods. An important observation to note here is that tuning
is always more sensitive when olfactory stimulus is present. The
values of n in this experiment are much larger (n = 50, 250)
due to the increased availability of data, but still represent a
small number of points from the tail of the overall distribution.
The CDF curves for data with and without olfactory stimulation

4We ran experiments 1 and 2 ten times. In each of those trials, the leftward shift of

the distribution after olfactory stimulation was preserved.

are widely separated and the width of separation increases as n
grows larger. This reflects how the visual sensitivity threshold
can change throughout a fish’s life cycle as it is exposed to an
ever-changing environment and acquires new RGC responses
for modulating its internalized model of visual sensitivity. Note
that zebrafish build new cells within their nervous systems via a
neurogenesis process, meaning the number of responses available
at a point in time can change in a non-stimulus dependent way.
Our proposed model supports this phenomenon.

5.4. Experiment 3
With respect to testing the possible indicator functions I(x), we
began by considering a linear binary SVM classifier trained using
80, 000 generated samples and tested using 20, 000 generated
samples. With random sampling, we achieved a testing accuracy
of 95.5 (± 0.163) percent, but with MCMC sampling accuracy
decreased to 93.925 (± 0.123) percent. With a multi-layer
perceptron classifier, the accuracy dropped to 95.25 (± 0.007)
percent using the same training-testing split and data from
MCMC sampling5. The success of this experiment establishes
that the two different classes of RGC responses are separable.
Thus it is possible, in a statistical learning sense, to have a
mechanism to toggle between RGC tuning configurations when
an olfactory stimulus is present and when it is not. One possibility
for why the classification was successful in these experiments
is that the indicator function implicitly learns that the data are
distributed differently in the two classes (Generalized Pareto for
data without olfactory stimulus and Gaussian for the data with
olfactory stimulus). That the two classes of data are distributed

5Each of these experiments was run ten times. The numbers in parentheses

represent standard error.
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FIGURE 4 | Experiment 2. Cumulative Distribution Functions for zebrafish with and without olfactory stimulation at light intensity 10−5 and 10−6, respectively, with

data points generated through random sampling. The curves labeled “Control” in the legend describe the Weibull distributions (as represented by the solid blue and

red lines) without olfactory stimulus. As can be seen, tuning is most sensitive when an olfactory stimulus is involved. Best viewed in color.

FIGURE 5 | Experiment 2. Cumulative Distribution Functions for zebrafish with and without olfactory stimulation at light intensity 10−5 and 10−6, respectively, with

data points generated through MCMC sampling. The curves labeled “Control” in the legend describe the Weibull distributions (as represented by solid blue and red

lines) without olfactory stimulus. The result is very similar to random sampling—the tuning is more sensitive when an olfactory stimulus is involved. Best viewed in color.
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differently lends further support to our hypothesis that an
indicator function is involved in the integration of cross-modal
sensory information—the distributional difference facilitates a
very straightforward pattern recognition process to separate
the classes.

6. DISCUSSION

As vertebrates evolved over centuries, sensory organs adapted
with the ever-changing environment. In many vertebrate species,
at any given time the brain integrates and processes multi-
sensory information. In humans, for example, the functions of
the olfactory and visual systems are influenced by sensory input
from each organ. Most mammals have specialized multimodal
neurons in the superior colliculus that are capable of integrating
multiple stimuli from the environment and providing a uniform
reaction. In lower vertebrates such as fish, however, such
advanced mechanisms are absent. In zebrafish, the integration
of sensory information from the olfactory system facilitates
signaling transduction in the visual pathway. As a consequence,
retinal neural activities such as the firing of retinal ganglion
cells are increased. This is particularly important for wild type
animals that live under natural environmental conditions. For
example, zebrafish normally mate in the early morning hours
before the sun comes up, during which time the light illumination
is low. It is conceivable that under such conditions stimulation
of olfactory neurons may increase visual sensitivity and thereby
facilitate the process of mating. While the system mechanisms
underlying this olfacto-retinal sensory integration have been well
characterized, statistical models that describe the phenomenon
at the cellular level have not been described. In this paper, we
have described a computational model that supports the research
into how the visual system integrates information from other
sensory modalities.

The idea of building computational models for multisensory
input has been explored previously (Anastasio et al., 2000;
Driver and Noesselt, 2008; Angelaki et al., 2009). When it
comes to determining the statistical relationship between sensory
responses among different sensory organs, the Bayesian model
has been a preferred framework. However, almost all of the
existing work focuses on higher vertebrates such as mammals.
Angelaki et al. (2009) attempted to reconcile the difference
between the traditional physiological studies on multisensory
integration with computational and psychological studies using
Bayesian inference on the visual-vestibular system for the
perception of self-motion in macaques. They describe how the
multimodal neurons represent probablistic information defined
by multiple stimuli and propose that special neurons accomplish
near optimal cue integration through a linear summation of
input signals.

With respect to models of simpler animals, Wessnitzer
and Webb (2006) explore multimodal sensory integration
for navigation from the physiological perspective of the
insect’s nervous system. In zebrafish, using a similar linear
model (Hughes et al., 1998) the contribution of different
types of cone photoreceptor cells to photopic spectral visual

sensitivity was determined. This was done by re-modeling
the electroretinographic data recorded from the cornea, which
include absorbance spectrum of four types of cone photoreceptor
cells (cone cells that are sensitive to ultra-violet light, blue
light, green light, and red light, respectively) given as the visual
pigment template for the appropriate maximum absorption,
neural signals obtained from different cone cell types, relative
fraction of the individual cone cells across the retina, and
linear gains for each cone type (Cameron, 2002). The model
incorporates the first-order cellular and biophysical aspects of
cone photoreceptor cells and thereby predicts the second-order
physiological functions of cone cell-mediated visual sensitivity.
Using this model, linear gains that represent the strength of
four different types of cone cell-derived neural signals onto
four different inferred cone processes in the whole retina can
be assessed.

Turning to extreme value theory, the objective of nearly all
extant models in computational neuroscience has been to discard
the extreme values located at the tails of distributions as noise
and concentrate on the mean or average. However, evidence
suggests that extremes, and not means, of cell responses direct
activity in the brain. For example, the ability of primates, like
macaque monkeys, to identify individual faces can be localized
to a group of special neurons that fire in response to specific
regions of the face (Freiwald et al., 2009). An interesting finding
that came out of that study was that neurons were tuned to the
geometry of extreme facial features. Previous investigations along
this line concentrated on how the brain fundamentally adapts
itself to the statistics of the sensory world, extracting relevant
information from sensory inputs by modeling the distribution
of inputs that are encountered by the organism (Simoncelli and
Olshausen, 2001; Simoncelli, 2003). This led to the advent of
“sparse coding” which attempts to explain how neurons encode
sensory information using a small number of active neurons at
any given point in time (Olshausen and Field, 1997). A direct
extension of this work suggests that sparse coding is an all-
pervasive phenomenon used by all types of sensory neurons in
different modalities across different species (Olshausen and Field,
2004). EVT builds upon these concepts but is more specialized.

Much prior work related to EVT modeling has focused on
various non-biological applications from trend detection
in ground-level ozone (Smith, 1989) to quantifying
extreme precipitation levels using Generalized Pareto
distributions (Cooley et al., 2007). Other applications of EVT
include, but are not limited to, finance, telecommunications,
the environment (Finkenstadt and Rootzén, 2003), and
hydrology (Katz et al., 2002). Recent work in computer vision
and machine learning has extensively used the concept of
EVT (Shi et al., 2008; Broadwater and Chellappa, 2010; Scheirer
et al., 2011, 2014; Fragoso et al., 2013). For instance, for biometric
verification systems, Shi et al. (2008) used the Generalized Pareto
Distribution to model the genuine and impostor scores and
made a significant observation that the tails of each score
distribution contain the most relevant information that helps
in defining each distribution considered for prediction and
the associated decision boundaries, which are often difficult
to model.
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Our research extends this theory to multi-sensory inputs
through a model that demonstrates strong neural fidelity. With
a biologically-consistent information fusion algorithm based on
retinal circuits in the zebrafish, we believe that we have access
to a better general solution to the problem at hand and possibly
many other information processing problems of interest. In
this article, we have developed a neural computation model
that simulates the process of multi-organ sensory integration
and predicts the consequence of sensory integration in higher-
order brain functions. In contrast to Gaussian modeling, we
propose that EVT models of the extrema found in the tails
of the data can form a powerful basis for cross-modal sensory
information integration, facilitating heightened sensitivity in
targeted modalities that have been influenced by a stimulus
in the environment. This resulted in the development of a
computational EVT-based framework for multi-organ sensory
integration in the zebrafish that is not only an explanatory model
in neuroscience, but also shows promise for applications in
machine learning and neuromorphic systems.
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