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Epilepsy is one of the most common chronic neurological diseases. High-frequency

oscillations (HFOs) have emerged as promising biomarkers for the epileptogenic zone.

However, visual marking of HFOs is a time-consuming and laborious process. Several

automated techniques have been proposed to detect HFOs, yet these are still far

from being suitable for application in a clinical setting. Here, ripples and fast ripples

from intracranial electroencephalograms were detected in six patients with intractable

epilepsy using a convolutional neural network (CNN) method. This approach proved

more accurate than using four other HFO detectors integrated in RIPPLELAB, providing a

higher sensitivity (77.04% for ripples and 83.23% for fast ripples) and specificity (72.27%

for ripples and 79.36% for fast ripples) for HFO detection. Furthermore, for one patient,

the Cohen’s kappa coefficients comparing automated detection and visual analysis

results were 0.541 for ripples and 0.777 for fast ripples. Hence, our automated detector

was capable of reliable estimates of ripples and fast ripples with higher sensitivity and

specificity than four other HFO detectors. Our detector may be used to assist clinicians

in locating epileptogenic zone in the future.

Keywords: epilepsy, convolutional neural network, high-frequency oscillations, ripples, fast ripples, automated

detection

INTRODUCTION

Epilepsy is one of the most common chronic neurological diseases, with an incidence of between
0.5 and 1% (Jacobs et al., 2012; Chaibi et al., 2013), affecting about 67 million people worldwide
(Holden et al., 2005; Makeyev et al., 2017). Most patients are treated successfully with antiepileptic
drugs, although about 30% still suffer from medically refractory epilepsy (Kwan and Brodie, 2000;
Pati and Alexopoulos, 2010; Tamilia et al., 2017). For these individuals, surgical removal of the
epileptogenic zone (EZ), where such seizures originate, is considered themost promising treatment;
however, surgical resection depends on correct delimitation of the EZ (Jacobs et al., 2012; Tamilia
et al., 2017). Accurate delimitation of the EZ is the main determinant of successful epilepsy surgery.

High-frequency oscillations (HFOs) have been defined as events with four consecutive
oscillations between 80 and 500Hz that clearly rise above the baseline (Zelmann et al., 2009).
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Another definition is a root mean square (RMS) amplitude
increase of more than five times the standard deviation compared
with background electroencephalogram (EEG), a duration of
at least 6ms, and more than six peaks (positive plus negative)
more than three standard deviations above the mean baseline
(Staba et al., 2002). Traditionally, EEG frequencies are believed
to be relevant up to the beta, theta, and gamma band (Wang
et al., 2017; Yan et al., 2017a,b). But recent findings in rodents
and humans have shown a possible relation between HFOs and
the EZ (Bragin et al., 1999; Staba et al., 2002; Jacobs et al.,
2010). Furthermore, two post-surgical studies have indicated a
good correlation between surgical outcome and the removal of
tissue corresponding to channels with high HFO rates (Jacobs
et al., 2010; Wu et al., 2010). HFOs have gradually emerged as
promising new biomarkers for the identification of EZ (Jirsch
et al., 2006; Jacobs et al., 2010, 2012; Chou et al., 2016; Cimbalnik
et al., 2016; Fedele et al., 2016). HFOs can be subdivided
according to their spectral range into ripples (80–200Hz) and
fast ripples (200–500Hz, FRs) (Jacobs et al., 2012; Pail et al.,
2013). Whereas, ripples may reflect inhibitory field potentials
that synchronize neuronal activity, thus facilitating information
transfer over long distances, fast ripples are pathological and are
believed to reflect summated action potentials of spontaneously
bursting neurons (Cendes and Meador, 2018).

Nevertheless, detection of HFOs is complicated and time-
consuming owing to their short duration and low amplitude
(Lopez-Cuevas et al., 2013; Gliske et al., 2016). Existing detection
methods can be categorized into automated detection and visual
marking, which is a highly time-consuming process (it takes
about 10 h to visually mark HFOs in a ten-channel 10-min
recording) (Staba et al., 2002; Gardner et al., 2007; Zelmann
et al., 2009), and prone to reviewer bias and drift in judgement
(Cimbalnik et al., 2018). As a consequence, the development of
automated HFO detectors is crucial for the eventual utilization of
HFOs in clinical settings.

Several automated HFO detectors have been developed by
different research groups. In 2002, Staba et al. (2002) introduced
automated detection of HFOs based on the RMS feature of the
band-pass-filtered signals. Thresholding-based approaches have
become popular since the pioneering work of Staba et al. (2002),
for example, those based on short-time line-length (Gardner
et al., 2007), complex Morlet wavelet transforms (Chaibi et al.,
2013), the Hilbert envelope (Dumpelmann et al., 2012), and
approximate entropy (Lopez-Cuevas et al., 2013). Since 2010,
detection algorithms have been designed to tackle the problem
of low specificity through various approaches. Dumpelmann
et al. (2012) chose signal power, line-length, and instantaneous
frequency as input features, and used a radial basis function
neural network to detect HFOs. Zelmann et al. (2010) improved
the RMS detector by computing the energy threshold from
baseline segments, Chaibi et al. (2013) combined RMS and
empiric mode decomposition, and Ren et al. (2018) used the
maximum distributed peak points method to improve baseline
determination accuracy. However, most of the automated HFO
processing methods still had drawbacks such as low specificity
and high rates of false positives. These detectors are still
unsuitable for application in a clinical setting.

In recent years, deep learning has been widely applied in
diverse domains such as computer vision, natural language
processing, and speech recognition (LeCun et al., 2015). It
forms the basis of various machine learning algorithms that
model high-level data abstractions, and does not rely on
handcrafted features (LeCun et al., 2015; Schmidhuber, 2015).
The convolutional neural network (CNN), as a deep learning
algorithm, has shown remarkable performance in challenging
two-dimensional (2D) medical image computing problems,
such as classification of lung image patches with interstitial
lung disease (Li et al., 2014), breast cancer classification from
mammography (Kaur, 2016), and the classification of nuclear
cataract severity from eye examination images (Gao et al., 2015).
CNN is a biologically inspired hierarchical multilayered neural
network approach that simulates the human visual cortex and
detects translation invariance features (Alotaibi and Mahmood,
2016). CNN is superior to other approaches in that it conducts
automatic learning for complex features from raw data and
performs the classification in an end-to-end manner (Sors et al.,
2018). CNN has also shown outstanding effectiveness in solving
the EEG signal classification problem. Johansen et al. (2016)
developed a CNNmodel for detecting spikes in EEGs of epileptic
patients. Achilles et al. (2016) showed the superior learning
performance of CNN for epileptic seizure detection. Therefore,
we proposed that CNN could be used for automated detection
of ripples and fast ripples in patients with intractable epilepsy. In
this study, we converted a 1D intracranial EEG (iEEG) signal to
2D image signals and transformed the detection of ripples and
fast ripples into a binary classification of ripples and non-ripples,
as well as fast ripples and non-fast ripples. Then, a CNN model
was built to classify ripples and non-ripples, as well as fast ripples
and non-fast ripples. Finally, we compared the performance of
our detector with the other four HFO detectors integrated in
RIPPLELAB. The ultimate goal was to provide the location of EZ
through the distribution of HFO generation.

METHODS

Subjects
Patients diagnosed with medically intractable epilepsy who
underwent excision of epileptic foci in the functional
neurosurgery department of Xuanwu Hospital of Capital
Medical University were recruited from March 2016 to May
2017. A total of 19 participants (12 males and seven females)
with a mean age of 22 years (SD = 10; range 10–42 years) were
included in the study. Intracranial data were recorded, with
a sampling frequency of 4,096Hz. Patient characteristics and
electrode implantation sites are listed in Table 1. All patients
gave informed consent in agreement with the Research Ethics
Board of Xuanwu Hospital.

Data Preprocessing
We recorded interictal samples of 5min during the slow-wave
sleep period from each patient, as there is less muscle activities
and more frequent occurrences of HFOs during slow-wave sleep
compared with wakefulness (Zelmann et al., 2009; Burnos et al.,
2014). There was also the advantage that a 5-min segment
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TABLE 1 | Clinical characteristics and implantation sites of the 19 patients.

Patient MRI Implantation sites No. of channels Pathology Engel classification

(one year after surgery)

1 No lesion LIF, LC, LSF, LSP, LSI, LLT 82 FCD IIb, TSC I

2 Left DCC, left FPS, left ventricular wall ectopic LT, LC, LP 76 FCD Ib II

3 HS (right MTL) LH, RH, RI 74 FCD IIIa, HS I

4 Left temporal encephalomalacia foci LSF, LLT, LIF, RP, RO, LO 97 HS III

5 HS (bilateral) RSF, RC, RIF, RSP, RLP 128 FCD I III

6 Left temporal encephalomalacia foci LSF, LIF, LLF, LLT, LP 96 FCD IIId III

7 None RLT, RP, LLT, LC, RC 112 FCD I III

8 No lesion RIF, RLF, RSF, RO 96 FCD I I

9 LMS, left mastoiditis RF, RP 80 FCD IIb III

10 No lesion RSF, RIF, RC, RST, RP, LIF,

LSF, LC, LST, LP

96 FCD IIId I

11 HS (left MTL) LH, RLT, LOT 118 None II

12 None LOT, LIO, LP, RTH, RO, RP 96 FCD I I

13 Abnormal signal in right cingulate gyrus LT, RLF, RIF, RLT, RC 72 None I

14 No lesion RSF, RIF, RC, LSF, LIF, LC 80 FCD Ic II

15 No lesion RIF, RSF, RLP 62 FCD IIb –

16 HS (right MTL) RP, RSP, RSF, RIF 82 FCD Ia I

17 High signal in the right frontal local cortex RP, RPO, RIF, RLF 82 FCD Ic I

18 HS (left MTL) LF, LSI, LFP 90 FCD I I

19 No lesion RIF, RLF, LH 64 FCD IIa I

Gender: M, male; F, female. MRI: DCC, dysgenesis of the corpus callosum; FPS, frontoparietal schizencephaly. HS, hippocampal sclerosis; MTL, mesial temporal lobe; LMS, left maxillary

sinusitis; Implantation sites: LIF, left inferior frontal; LC, left central; LSF, left superior frontal; LSP, left superior parietal; LSI, left superior insula; LLT, left lateral temporal; LT, left temporal;

LP, left parietal; LH, left hippocampus; RH, right hippocampus; RI, right insula; RSF, right superior frontal; RC, right central; RIF, right inferior frontal; RSP, right superior parietal; RLP, right

lateral parietal; LLF, left lateral frontal; RF, right frontal; RP, right parietal; LOT, left occipital-temporal; LIO, left inferior temporal; RTH, right temporal-hippocampus; RO, right occipital; LO,

left occipital; RLF, right lateral frontal; RLT, right lateral temporal; RPO, right parietal-occipital; LF, left frontal; LFP, left frontal-cingulate. Pathologies: FCD, focal cortical dysplasia; HS,

hippocampal sclerosis; TSC, tuberous sclerosis complex.

could provide the same information as a longer interval when
identifying HFOs during slow-wave sleep (Zelmann et al., 2009).
Slow-wave sleep was defined by at least 25% delta activity by
visual inspection of 30-s epochs. Data samples were selected if
they were recorded at least 2 h before or after a seizure, to reduce
the influence of seizures on our analysis. Data containing noise
or artifacts, such as sharp transients with very large amplitudes
or irregular signals, were excluded. The data were transformed
to a bipolar montage for further analysis, which means that the
potential difference between two adjacent active electrodes in the
skull is recorded as iEEG.

The two kinds of HFOs were analyzed separately, owing to the
different generation mechanisms and electrophysiological
characteristics of ripples and fast ripples. A zero-phase
finite impulse response filter was used to perform band-
pass filtering for the data. The cutoff frequencies were 80–200
and 200–500Hz for ripples and fast ripples, respectively
(see Figure 1).

As interictal HFOs are commonly short (<330ms) and rare
(Lopez-Cuevas et al., 2013), the iEEG signals were divided
into one-second time series. Grayscale was used to characterize
the amplitude of iEEG signals, so that a 1D iEEG signal
could be converted to a row of the 2D grayscale image (see
Supplementary Figures 1, 2). Then, we converted each row of
the grayscale image to four rows.

Visual Marking of HFOs
For each channel, the first minute of the iEEG was independently
analyzed by two experienced reviewers. The concordance
between the two reviewers was assessed in line with the
Cohen’s kappa coefficient for each channel (Jacobs et al.,
2010). For channels with kappa < 0.5, the two reviewers
worked together to review the events in the first minute and
established a consensus, based on which, or if kappa > 0.5, the
remaining 4min of the iEEG were marked accordingly by one of
the reviewers.

Among the channels for the 19 patients, a total of 49,340
ripples and 19,734 fast ripples were analyzed by reviewers.
The remaining data were tagged as non-ripples and non-fast
ripples, respectively.

CNN Classifier
CNN requires fewer complex steps of feature extraction
compared to traditional neural networks. The feature extraction
is achieved by the convolutional layers and sub-sampling layers
of CNN, with advantages in terms of the complex non-linear
mapping of low-dimensional feature space that can be obtained
from the high-dimensional feature space for use in classification.
In this work, CNN has roles in both feature extraction and the
classification of HFOs. Details of the proposed CNN model are
shown in Figure 2.
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FIGURE 1 | Data preprocessing. First row: one second of raw data. Second

row: one second of filtered (80–200Hz) data. Third row: one second of filtered

(200–500Hz) data. Fourth row: Time-frequency analysis of raw data.

Input images were 4∗1,024 pixels in size, and were normalized
to have zeromean and unit variance. This normalization achieves
faster convergence and avoids local minima. In the model, the
normalized input is processed by convolutional blocks, where
each block consists of three layers: the convolutional layer, batch
normalization layer and non-linear activation layer (leaky ReLU
was chosen as the activation function in this study). The output
of the leaky ReLU layer is passed to a max pooling layer. In an
attempt to avoid overfitting, dropout is applied before the three
fully connected layers. The output of the last fully connected
layer is passed to a softmax layer, which serves as a classifier and
predicts the class of the input signal.

Architecture of CNN Model

Convolutional layers
CNN, as a simple neural network, makes use of convolution in
place of general matrix multiplication. The convolutional layers,
which detect local conjunctions of features from the previous
layer, constitute the main components of the CNN model. A
convolutional layer consists of neurons that are connected to the
local receptive field of the previous layer. The feature map of the
previous layer is convoluted with the convolution kernel. Then,
the activation function is applied to produce one output matrix.
The process is defined as:

xlj = f

(

∑

i∈Mj
xl−1
j × klij + blj

)

(1)

where f () represents the activation function, leaky ReLU; l
indicates the number of layers; k is the kernel matrix; and b is
a bias value.

Batch normalization layer
During training, the distribution of feature maps changes owing
to the updating of parameters, making the CNN model learning
harder to fit. This phenomenon was called covariate shift by
Ioffe et al. (Ioffe and Szegedy, 2015), who proposed batch
normalization as a solution. Batch normalization accelerates
network training, combined with a reduction of the sensitivity to
network initialization. The batch normalization layer normalizes
the activations and gradients propagating through the network,
making network training an easier optimization problem. In our
CNN model, a batch normalization layer is applied after each
convolutional layer.

Max pooling layer
The max pooling operation reports the maximum output within
a rectangular neighborhood. This layer not only reduces the
spatial size of the feature map, but also removes redundant
spatial information, which is beneficial for translation and scaling
of invariance to small shifts and distortions. The max pooling
layer makes it possible to increase the number of filters in
deeper convolutional layers without increasing the required
computational load per layer.

Dropout layer
Dropout regularization is an effective way to address the
overfitting phenomenon in the neural network training process.
A dropout algorithm is applied to facilitate the generalization
ability of the network by randomly disabling neurons in each
layer during training.

Softmax layer
The softmax activation function normalizes the output of the
fully connected layer. It constructs a hypothetical function to
calculate the probability of the input samples being divided
into each category, and then adjusts the parameters to make
the correct tags corresponding to the maximum probability.
The softmax activation function is deployed to approximate the
expected output between 0 and 1 in our binary classification. The
classification output of the network is “1” in the presence of HFOs
and “0” for non-HFOs.

Details of Learning
After defining the network structure, we specified the training
options. Our CNN model uses the minibatch and stochastic
gradient descent algorithms. The minibatch is set at 256. Cross
entropy serves as the loss function. The maximum number of
epochs are assigned a value of 20. An epoch is a full training cycle
on the entire training data set, in which the training begins with
an initial learning rate of 0.01 and the learning rate decreases by a
factor of five every five epochs. The CNN training was performed
on an NVIDIA Quadro M4000 with computational capability of
5.9 and a clock rate of 800 MHz.

Statistical Analysis
A 10-fold cross-validation approach, namely ten partitions for
training and test sets, 90% for training and 10% for testing,
was employed to measure the stability of the performance of
the proposed CNN model. The performance metrics included
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FIGURE 2 | Architecture of our CNN model.

FIGURE 3 | Effects of different sample sizes on CNN performance. The green line represents the accuracy of HFOs (ripples for A and fast ripples for B), and the

yellow line represents the accuracy of non-HFOs (non-ripples for A and non-fast ripples for B).

specificity and sensitivity. Previous studies of automated HFO
detection also adopted these metrics (Dumpelmann et al., 2012),
and they are appropriate for comparison of our model with other
methods. The calculations were as follows:

sensitivity =
TP

TP + FN
(2)

specificity = 1−
FP

TP + FP
(3)

where true positive (TP) refers to the visually marked HFOs that
are detected by the CNN model; false positive (FP) refers to
automatically detected events that do not overlap with visually
marked HFOs; and false negative (FN) means visually marked
HFOs that are missed by the detector.

Cohen’s kappa coefficient was computed to evaluate the
agreement between automated detection and visually marked
results. Kappa < 0 indicates that an agreement is due purely to
chance, kappa > 0.5 means excellent consistency, and kappa= 1
indicates complete agreement (Zelmann et al., 2009).

Then, the Spearman’s rank correlation was applied to assess
the association between automated detection and visuallymarked
results (Dumpelmann et al., 2012). The number of HFOs detected
by visual marking and automated detection in each channel
were counted. A correlation coefficient of 0.5–1 represented a
strong correlation.

Finally, the Mann–Whitney U-test was applied to compare
the HFO rates in the EZ channels and other channels
(Dumpelmann et al., 2015).

All statistical analyses used SPSS Statistics (IBM Corporation,
Armonk, NY, USA), version 22. The level of significance was set
at p< 0.05. Results were expressed asmean± standard deviation.

RESULTS

Different Sample Sizes
Visually marked data were used to train the CNN model,
consisting of HFOs and the low-amplitude activity here termed
non-HFO. The ratio of HFOs to non-HFOs was 1:1. Ninety
percent of the data were taken as training samples, and the
model was tested on the remaining 10%. Ripples and fast
ripples, representing different physiological significance, were,
respectively, applied to train the CNNmodel.

We changed the number of sample data points to test
whether the sample size affects CNN performance; the results
are shown in Figure 3. The more training samples were used,
the more accurate was the detection of HFOs. As the number
of training samples increased from 4,934 to 49,340, the accuracy
of ripple detection increased from 87.84+1.97 to 90.83+1.78%
(see Figure 3A). Similarly, the accuracy of fast ripple detection
increased from 83.25±1.27 to 87.65±1.13% as the number of
training samples increased from 1,973 to 19,730 (see Figure 3B).

Selection of the Best Model
There are numerous parameters in a CNN that have a significant
impact on its classification accuracy. The settings used tend to
be based on experience and practical considerations. Thus, it was
important to conduct quantitative analysis of the parameters in
our CNN. Seven CNN models were taken into consideration in
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TABLE 2 | The specifications of seven CNN models and their mean performance using 10-fold cross-validation.

Model M1 M2 M3 M4 M5 M6 M7

Conv_1 No. of kernels 32 256 64 64 64 32 16

Filter size [2, 12] [2, 12] [2, 12] [2, 12] [2, 12] [2, 12] [2, 12]

Maxpooling_1 Pool size [2, 4] [2, 4] [2, 4] [2, 4] [2, 4] [2, 4] [2, 4]

Stride 2 2 2 2 2 2 2

Conv_2 No. of kernels 64 128 64 64 64 32 16

Filter size [1, 8] [1, 8] [1, 8] [1, 8] [1, 8] [1, 8] [1, 8]

Maxpooling_2 Pool size [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4]

Stride 2 2 2 2 2 2 2

Conv_3 No. of kernels 128 64 32 32 32 16 8

Filter size [1, 8] [1, 8] [1, 8] [1, 8] [1, 8] [1, 8] [1, 8]

Maxpooling_3 Pool size [1,4] [1,4] [1,4] [1,4] [1,4] [1, 4] [1, 4]

Stride 2 2 2 2 2 2 2

Conv_4 No. of kernels 256 32 32 32 32 16 8

Filter size [1, 8] [1, 8] [1, 8] [1, 8] [1, 8] [1, 8] [1, 8]

Dropout 0.5 0.5 0.5 0.5 0 0.5 0.5

Fully Connected_1 128 128 128 64 64 64 64

Fully Connected_2 64 64 64 32 32 32 32

Fully Connected_3 2 2 2 2 2 2 2

Accuracy Ripples 92.33 ± 0.80% 90.83 ± 1.78% 92.88 ± 0.93% 93.12 ± 0.84% 92.28 ± 1.16% 92.91 ± 0.97% 92.65 ± 0.47%

Non-ripples 87.99 ± 0.68% 86.65 ± 1.38% 87.91 ± 0.77% 88.11 ± 0.95% 88.71 ± 1.13% 87.95 ± 0.61% 87.95 ± 0.48%

Fast ripples 87.23 ± 1.98% 87.64 ± 1.61% 88.13 ± 1.05% 87.65 ± 0.89% 87.81 ± 1.83% 88.39 ± 1.04% 88.12 ± 0.43%

Non-fast ripples 91.63 ± 1.37% 92.21 ± 1.13% 92.34 ± 1.18% 92.82 ± 0.87% 91.64 ± 1.18% 93.35 ± 0.66% 93.28 ± 0.84%

our initial analysis to select the best model, as shown in Table 2.
We performed experiments using 10-fold cross-validation with
all sevenmodels on the same sample, with a total of 48,480 ripples
and 48,480 non-ripples, as well as 19,730 fast ripples and 19,730
non-fast ripples.

Model M1 was designed based on the traditional concept
wherein the number of kernels increases in each layer with
increasing network depth, whereas inmodelsM2 toM7 (pyramid
models), the number of kernels decreased with increasing
network depth. The pyramid models have the advantage of
reducing the number of learning parameters compared with
traditional models, which avoids the risk of overfitting.

The average performance results for 10-fold cross-validation
of different models are shown in Table 2. The average accuracies
(over all models) were 92.43% for ripples, 87.9% for non-ripples,
87.85% for fast ripples, and 92.47% for non-fast ripples. Based on
the overall results, the pyramidmodels (M2 toM7) showed better
performance than the traditional model (M1); in most cases, the
best results were given by model M4 for ripples and M6 for fast
ripples. The CNN worked better with a dropout of 0.5 and 64
neurons in the fully connected layer rather than 128 neurons.
Model M4 was used to detect ripples and M6 was used for fast
ripples for all further analysis in this study.

Selection of the Ratio of HFOs to
non-HFOs
The specificity of HFOs is correlated with the rate of false
positives, that is, the automatically detected events that do not
overlap with visually marked HFOs. When an HFO: non-HFO

ratio of 1:1 was used to train the CNN model, the accuracy was
not satisfactory with either non-ripples or non-fast ripples. In
order to minimize false positive rates and improve the specificity
of HFO detection, we increased the ratio of HFOs to non-
HFOs by increasing the number of non-HFOs to two, three,
four, and five times the number of HFOs, while keeping the
number of HFOs constant. As shown in Figure 4, increasing the
number of non-HFOs raised the accuracy of non-HFO detection
within a certain range; on the other hand, the sensitivity of
HFO detection decreased. In order to improve the specificity
of HFO detection while maintaining a reasonable sensitivity,
we chose the ratio of ripples to non-ripples to be 1:4, and the
ratio of fast ripples to non-fast ripples to be 1:3, to train the
CNN model.

Comparison of Visual and Automated
Detection Results
The CNN model based on the optimum configuration was run
to test the performance objectively. In this part, data from
one patient were selected as the testing samples, and data
from the remaining 18 patients were selected as the training
samples. The results for six patients are shown in Table 3: the
average sensitivities were 77.04% for ripples and 83.23% for fast
ripples, and the average specificities were 72.27% for ripples
and 79.36% for fast ripples. Our automated HFO detector based
on the CNN model could detect HFOs well, and there were
advantages in terms of computational time. Our detector took
only about 20 s to process 5min of 90 channels iEEG data using
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TABLE 3 | Comparison of results between our detector and the other four detectors.

Patient 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) Average (%)

Our detector Ripples Sens 73.67 80.21 75.42 81.64 85.06 66.22 77.04

Spec 50.47 73.15 79.59 77.15 82.25 71.03 72.27

Fast ripples Sens 90.66 79.55 85.50 82.40 77.73 83.54 83.23

Spec 70.75 87.74 72.71 77.41 88.14 79.43 79.36

STE detector Ripples Sens 12.38 12.73 14.61 16.46 28.97 3.26 14.74

Spec 86.21 77.71 86.86 89.29 87.32 71.43 83.14

Fast ripples Sens 36.00 15.79 8.54 18.81 17.66 1.44 16.37

Spec 67.93 74.83 41.18 84.54 86.25 33.23 64.66

SLL detector Ripples Sens 76.23 52.00 15.94 28.57 56.27 41.48 45.08

Spec 33.33 66.10 9.02 7.84 60.14 40.00 36.07

Fast ripples Sens 72.97 37.13 52.10 33.33 13.33 11.11 36.66

Spec 58.70 74.70 66.67 45.45 30.00 3.23 46.46

HIL detector Ripples Sens 72.89 27.89 2.90 25.00 55.31 30.37 35.73

Spec 54.55 83.11 25.00 46.67 89.00 85.42 63.96

Fast ripples Sens 12.50 19.55 22.95 51.13 26.42 22.22 25.80

Spec 78.57 87.73 82.35 74.96 72.43 73.68 78.29

MNI detector Ripples Sens 26.97 8.47 31.88 28.57 9.97 0.74 17.77

Spec 87.88 79.63 3.71 3.28 83.78 7.14 44.24

Fast ripples Sens 75.68 80.24 81.57 53.33 80.00 77.78 74.77

Spec 25.45 52.91 26.72 23.53 18.56 15.38 27.09

Sens, sensitivity; Spec, specificity.

FIGURE 4 | Effects of different ratios of HFOs to non-HFOs on performance of

the CNN. The green solid line represents ripples, the blue solid line represents

non-ripples, the green broken line represents fast ripples, and the blue broken

line represents non-fast ripples.

an Intel R© Xeon R© CPU E5-2650 v4 @ 2.2 GHz processor and
64 GB RAM.

At present, the most important consequence of automated
detection systems is the reduction in the time required for
analysis and the elimination of subjective factors. It is also
necessary to ensure a strong correlation between visual and
automated analysis results. In this study, we calculated the
Cohen’s kappa coefficient of the visual marking and automated

detection results for patient 1. The kappa values for the
two results were 0.541 for ripples and 0.777 for fast ripples.
Spearman’s rank correlation was used to calculate the correlation
between the automated detection and visual analysis results
for each channel. The significant correlations (0.862 for ripples
and 0.938 for fast ripples, p < 0.01) indicated that our
detector achieved reliable estimates of HFO counts and reflected
the topographical distribution of HFO generation. A visual
representation of the distribution of HFOs for all electrodes is
displayed below in Figure 5, showing the ripple and fast ripple
counts for visual analysis and automated detection for patient 1
for each channel.

Comparison With Four Other Detectors
To evaluate the performance of our detector, it was necessary
to compare its results with those of other detectors for analysis
of the same data. Here, we compared our detector with
four well-known detectors implemented in the RIPPLELAB
application (Navarrete et al., 2016), Short Time Energy
detector (STE), Short Line Length detector (SLL), Hilbert
detector (HIL), and MNI detector (MNI). Detailed descriptions
of this algorithm are available in the original publication
(Navarrete et al., 2016). The results of our comparison are
presented in Table 3. Our detector showed markedly higher
sensitivity (77.04% for ripples and 83.23% for fast ripples) and
specificity (72.27% for ripples 79.36% for fast ripples) than
the four detectors except the specificity of STE detector for
ripples (83.14%) and the sensitivity of MNI detector for fast
ripples (74.77%).
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FIGURE 5 | Comparison of results between visual marking and automated detection for patient 1. Blue and red represent ripples and fast ripples, respectively.

(A) Patient 1: visual making results. (B) Patient 1: automatic detecting results.

Comparison of HFO Rates in the EZ and
Other Channels
In this study, we considered the brain area of the removed
contacts of patient 1 as the EZ, for whom a good outcome was
obtained (Engel I). ThemeanHFO rates in the 38 channels within
the EZ were compared with those of 44 channels outside the
EZ; the results are shown in Table 4. The mean HFO rates in
the EZ were 32.9 for ripples and 25.4 for fast ripples. In the
other channels, the mean HFO rates were 16.2 for ripples and
2.2 for fast ripples. The Mann-Whitney U-test was employed to
compare the HFO rates in the EZ and other channels, showing
that HFO rates were significantly higher in the EZ channels than
outside (p < 0.05).

Missed HFOs and False Detections of Our
Detector
Our detector showed excellent comprehensive performance in
detecting ripples and fast ripples from iEEG signals, but there
were still some missed HFOs and false detections. Some typical
examples of these are shown in Figure 6. Our detector was not
sensitive to HFOs with low amplitudes, and sharp transients (e.g.,
epileptic spikes or sharp waves) might have been misclassified
as HFOs owing to their high-pass filter response as oscillations,
leading to an overestimation of HFO rates (Benar et al., 2010).

DISCUSSION

HFOs are considered to be promising biomarkers for the
identification of EZ (Jacobs et al., 2010, 2012; Cimbalnik et al.,

TABLE 4 | Mean HFO rates for channels in the EZ and other channels.

Patient 1 EZ channels Other channels Total channels

No. of

HFOs

Mean HFO

rate

No. of

HFOs

Mean HFO

rate

No. of

HFOs

Mean HFO

rate

Ripples 1,251 32.9 712 16.2 1,963 23.9

Fast ripples 965 25.4 97 2.2 1,062 13.0

2016). Visual marking is characterized by its heavy workload,
consumption of time, and vulnerability to errors. In this study, an
efficient and novel framework was integrated with CNN for the
automated detection of HFOs, as a solution to this challenging
medical processing problem. This approach is expected to relieve
the burden on clinicians and to provide a useful tool for
HFO detection in clinical settings. Compared with the four
other detectors, our detector achieved better comprehensive
performance: a higher sensitivity (77.04% for ripples and 83.23%
for fast ripples) and specificity (72.27% for ripples and 79.36%
for fast ripples). In addition, our detector could automatically
analyze ripples and fast ripples separately, enabling direct
comparison of HFOs in two different frequency bands. Thus, our
detector has significant potential for use in clinical practice.

Parameter Optimization
Various parameters determine both the computational
performance and the accuracy of a CNN model. We compared
the classification performance of our models under different
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FIGURE 6 | Example of missed HFOs and false detections in the first patient. The dotted rectangles represent ripples marked only by visual detections. The red lines

delineate false detections.

parameter conditions; the results are presented in Table 2.
Changes in parameters were correlated with changes in accuracy
of HFOs. The models M1 and M2 achieved accuracies of 90.83
and 92.33%, respectively, for ripples, indicating that pyramid
models (M2 to M7) performed better than the traditional model
(M1). The early CNN model proposed by Lecun et al. (1998)
introduced the strict pyramidal approach. Ullah et al. (Ullah
and Petrosino, 2016) also demonstrated that giving pyramidal
structure to CNNs can allow the number of parameters to be
scaled down, as well as reducing memory consumption on
disk; thus, the simple strict pyramidal model outperforms many
existing sophisticated approaches.

As shown in Table 2, the CNN with model M4 provided
the best results for ripples, while the model M6 was best for
fast ripples. Both of them showed slightly higher performance
than others but involved the minimum number of parameters
among all the models. Model M4 and M6 were adopted for all
other analysis processes in this work, as they were considered the
optimal models.

Comparison With Other Four Detectors
Several automated HFO detectors have been reported, some of
which were high specific, but low sensitive. In this study, we
compared our detector with the other four detectors provided by
RIPPLELAB (Navarrete et al., 2016), STE detector, SLL detector,
HIL detector, and MNI detector. Our detector utilized the CNN
model to detect HFOs from iEEG signals. This model resulted
in excellent sensitivity (77.04% for ripples and 83.23% for fast
ripples) and specificity (72.27% for ripples and 79.36% for fast
ripples). Our detector had a better performance than the SLL
detector, HIL detector, and MNI detector. Although the STE
detector had a higher specificity (83.14%) for ripples than our
detector, its sensitivity (14.74% for ripples and 16.37% for fast
ripples) wasmuch lower than ours. The sensitivity is as significant
as the specificity, because a detector with low sensitivity cannot
delineate the distribution of HFOs in different channels, while
low specificity may overestimate the amount of excitatory tissue

that needs to be resected according to HFO analysis. Based on
full consideration of these two factors, our detector seemed to
perform better than the other four detectors. Only detectors
with excellent sensitivity and specificity are appropriate for
clinical use.

Resection of HFO-Generating Areas
Correlates With Outcome of Epilepsy
Surgery
As was shown in many of the previous studies, brain regions
with a high rate of HFOs are often correlated with EZ (Jacobs
et al., 2010; Wu et al., 2010; Dumpelmann et al., 2015). Signal
processing aims to detect HFOs from iEEG signals and to identify
electrode sites exhibiting high HFO rates. For patient 1, the
Cohen’s kappa coefficient demonstrated excellent concordance
between the visual marking and automated detection results
(0.541 for ripples and 0.777 for fast ripples) for our detector. In
addition, the high Spearman’s rank correlation between the visual
analysis and automated detection (0.862 for ripples and 0.938 for
fast ripples, p < 0.01) indicated that our detector is a practical
tool for identifying channels with high HFO counts. Brain areas
containing LIF 3-12, LC 1-8, and LSF 1-12 were removed by
surgery. As shown in Figure 5, most of the brain tissue with high
HFO rates was resected, resulting in a good outcome (Engel I).

Our automated detector also provided reliable information
about the distribution of HFO rates between channels (see
Table 4). The mean HFO rates were significantly higher in EZ
channels than elsewhere (Mann–Whitney U-test, p < 0.05). This
indicates that HFO rates can provide additional information
about patient outcomes.

The Optimal Ratio of HFOs and non-HFOs
Our automated detector was designed as a supplementary
diagnostic tool for the localization of EZ requiring surgical
resection. Thus, the detector required good sensitivity and
specificity, with a need to remove as many false positive events as
possible with a reasonable sensitivity. The specificity of HFOs is
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correlated with the accuracy of non-HFOs. Hence, the accuracy
of non-HFOs was improved so as to enhance the specificity of
HFOs. When a sample with a 1:1 ratio of HFOs:non-HFOs was
used to train the CNN model, the accuracy was not satisfactory
for detecting either non-ripples or non-fast ripples. Subdividing
the iEEG signals in HFOs and non-HFOs resulted in too many
types of activities (e.g., baseline, epileptic spikes, and sharp waves)
being contained in the non-HFOs, which made the non-HFO
data insufficient. Therefore, we increased the number of non-
HFOs to two, three, four, and five times the number of HFOs,
with the number of HFOs kept constant, so as to improve the
accuracy of non-HFOs. As shown in Figure 3, increasing the
number of non-HFOs did raise the accuracy of non-HFOs within
a certain range, on the other hand, the sensitivity of HFOs
decreased. To improve the specificity of HFOs with a reasonable
sensitivity, we chose a ratio of ripples to non-ripples of 1:4, and
a ratio of fast ripples to non-fast ripples of 1:3, to train the
CNN model.

Limitations and Future Work
Although the CNN model overcame some important issues in
HFO detection, there still were some limitations. A potential
weakness of implementing the CNN model in this way is that
it did not utilize any cross-channel information. Moreover,
the CNN model could not obtain the start and stop time,
amplitude, or energy of HFOs. Future work should focus on
further enhancement of performance of the CNN model.

CONCLUSION

With the continuous accumulation of medical data, there is an
increasing need for the feature extraction and classification
to predict class labels for patient’s clinical data. In this

study, we present an efficient detector powered by the
CNN to detect ripples and fast ripples automatically.
This method has achieved satisfactory performance
compared with existing approaches, which might be
utilized in a clinical setting in the future. Our detector is,
therefore, valuable for identifying EZ during pre-surgical or
intraoperative evaluation.
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