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Autism spectrum disorder (ASD) is a developmental disorder, affecting about 1% of
the global population. Currently, the only clinical method for diagnosing ASD are
standardized ASD tests which require prolonged diagnostic time and increased medical
costs. Our objective was to explore the predictive power of personal characteristic data
(PCD) from a large well-characterized dataset to improve upon prior diagnostic models
of ASD. We extracted six personal characteristics (age, sex, handedness, and three
individual measures of IQ) from 851 subjects in the Autism Brain Imaging Data Exchange
(ABIDE) database. ABIDE is an international collaborative project that collected data from
a large number of ASD patients and typical non-ASD controls from 17 research and
clinical institutes. We employed this publicly available database to test nine supervised
machine learning models. We implemented a cross-validation strategy to train and
test those machine learning models for classification between typical non-ASD controls
and ASD patients. We assessed classification performance using accuracy, sensitivity,
specificity, and area under the receiver operating characteristic curve (AUC). Of the
nine models we tested using six personal characteristics, the neural network model
performed the best with a mean AUC (SD) of 0.646 (0.005), followed by k-nearest
neighbor with a mean AUC (SD) of 0.641 (0.004). This study established an optimal ASD
classification performance with PCD as features. With additional discriminative features
(e.g., neuroimaging), machine learning models may ultimately enable automated clinical
diagnosis of autism.
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INTRODUCTION

Autism spectrum disorder (ASD) is characterized by impaired linguistic, communication,
cognitive and social skills (Wetherby and Prutting, 1984). Therapies have been developed
to treat the varying degrees of symptoms and improve patient quality of life. However, the
diagnosis of ASD remains challenging, especially for marginal cases, resulting in under-
and over-diagnosis. To date, behavior-based tests are the standard clinical approach to
diagnosing ASD (American Psychiatric Association, 2013). The diagnostic process for ASD
is time-consuming and costly (Galliver et al., 2017). An automated ASD diagnostic approach might
allow for earlier identification of ASD and could help provide a map of high-risk populations.

Abbreviations: ABIDE, Autism Brain Imaging Data Exchange; ASD, Autism Spectrum Disorder; AUC, Area Under the
Receiver Operating Characteristic Curve; PCD, Personal Characteristic Data; SVM, Support Vector Machine.
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Emerging machine learning approaches are showing great
promise for objective evaluation of neuropsychiatric disorders
(Nielsen et al., 2013; Bone et al., 2015; Chen et al., 2015;
Plitt et al., 2015; Ghiassian et al., 2016; Yahata et al., 2016;
Abraham et al., 2017).

Machine learning is a group of statistical techniques that
learn with the distribution of data so as to make decisions
on new data. It is used to devise complex applications to
make accurate classifications/predictions on diverse data (Russell
and Norvig, 2010). Autism diagnosis could be formulated as a
typical classification problem (i.e., ASD vs. typical control/non-
ASD). The constructed model/classifier is then able to evaluate
whether a new unknown subject has ASD or not based on
input features.

Several studies have employed machine learning to improve
ASD diagnosis. Duda et al. (2016) applied machine learning to
distinguish autism from attention deficit hyperactivity disorder
using a 65-item Social Responsiveness Scale. Bone et al.
(2015) trained their models to diagnose autism against healthy
controls using the same Social Responsiveness Scale and the
Autism Diagnostic Interview-Revised scores. More recently, the
Autism Brain Imaging Data Exchange (ABIDE) has gathered
data [i.e., personal characteristic data (PCD), structural MRI,
functional MRI] from over 1,000 subjects and made it available
for the ASD research community (Craddock et al., 2013). This
has facilitated the development of machine learning models
towards the automated diagnosis of ASD (Ghiassian et al.,
2016; Abraham et al., 2017; Heinsfeld et al., 2018; Li et al.,
2018). While most studies have focused on brain neuroimaging
data, few studies have reported automated machine learning
models that solely rely on PCD as input features. As such,
the full potential of PCD on ASD classification has yet to
be comprehensively evaluated. It is important to note that
a true diagnostic classifier of ASD cannot be created due
to the retrospective case-control ABIDE study design. In
this work, we simply set out to assess the predictive power
of PCD for ASD diagnosis and evaluate which machine
learning model is most robust for this task. Specifically,
we employed and validated nine machine learning models
by using PCD, such as age, sex, handedness, and IQ, for
ASD classification of individual subjects. Taking advantage
of such a large PCD dataset from ABIDE, we systematically
evaluated the predictive power of PCD features on ASD
classification and compared the performance of those nine
machine learning models.

MATERIALS AND METHODS

Data
We selected six PCD features of interest—age at testing, sex,
handedness, full-scale IQ, verbal IQ, performance IQ—from
the ABIDE I Preprocessed Database. Only subjects with
information for all 6 features were included (N = 851 of total
of 1,112 subjects in ABIDE I database). Of the 851 subjects,
430 were typical non-ASD controls and 421 had a confirmed
diagnosis of ASD. To control for site effects, we included site

TABLE 1 | Demographic information for our sub-sample of the Autism Brain
Imaging Data Exchange (ABIDE) Database.

Group ASD (N = 421) Control (N = 430) P

Age 16.8 ± 7.7 16.7 ± 6.9 0.858
Full-Scale IQ 105.2 ± 16.8 110.9 ± 12.6 <0.001
Verbal IQ 104.4 ± 17.8 111.3 ± 13.3 <0.001
Performance IQ 105.0 ± 17.2 108.2 ± 13.3 0.003
Sex (%) 0.017

Male 88 82
Female 12 18

Handedness (%) 0.018
Left 13 6
Right 85 92
Ambidextrous 2 1

All data are mean ± SD unless otherwise specified.

of testing in each of the models. Using a two-sided Student’s
t-test (unequal variance), we identified significant differences
between ASD patients and healthy controls in full-scale IQ
(p < 0.001), verbal IQ (p < 0.001), and performance IQ
(p = 0.003); there was no significant group difference in age
(p = 0.8582). Sex (p = 0.017) and handedness (p = 0.018)
were also significantly different between groups (chi-squared
test; Table 1).

A portion of the ABIDE study sites defined handedness as
a score based on the Edinburgh Handedness Inventory while
others coded it as a category (left, right, or ambidextrous). Thus,
we reformatted all handedness data to categorical values. This
study included 15 different ABIDE recruitment sites. These were
included in the features to control for site of testing.

Classification Models
In order to comprehensively evaluate the full potential of PCD for
ASD classification, we tested a variety of approaches, including
k-nearest neighbor (Altman, 1992), linear and nonlinear Support
Vector Machine (SVM; Cortes and Vapnik, 1995), decision
tree (Breiman et al., 1984), logistic regression (Dobson, 1990),
Stacked Sparse Auto-encoder (SSAE)-based neural network
(Hinton and Salakhutdinov, 2006), random forest (Breiman,
2001), and majority voting and weighted average ensemble
models (Cruz and Wishart, 2006; Zhou, 2012). The models are
detailed in the Supplementary Materials.

To optimize the performance of each model, we performed
a parameters grid search (Cuingnet et al., 2011) for each model
(Supplementary Table S1; Supplementary Materials).

Model Evaluation
We applied a k-fold cross-validation scheme to train and test the
models. The whole dataset was randomly divided into 25 equal
sized portions. Of the 25 portions, one portion of data was held
out for model testing, and the remaining 24 portions were used
for model training. In order to create a validation dataset for
model optimization, a 10-fold cross-validation was performed on
the training dataset for each model (Supplementary Materials;
Supplementary Figure S1). This process was repeated until each
of the 25 portions was evaluated once as the testing data. We
evaluated the model based on the concatenated test labels and
ground truth labels across 25 iterations. We repeated this k-fold
cross-validation 30 times.
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The performance of the classification was assessed using
four diagnostic metrics: accuracy, sensitivity, specificity and
area under the receiver operating characteristic curve (AUC).
Accuracy is measured as the percentage of correctly classified
subjects within all subjects. Sensitivity is defined as the
percentage of correctly classified ASD subjects within all ASD
subjects, while specificity is represented by the percentage of
correctly classified healthy subjects within all typical non-ASD
control subjects. Sensitivity is the ability of the classifier to
correctly identify ASD subjects (true positive rate), whereas
specificity is the ability of the classifier to correctly identify
healthy subjects (true negative rate). AUC reflects the diagnostic
ability of a binary classifier system when its discrimination
cutoff varies.

RESULTS

From the models we tested using all six PCD features, we found
that the model with the best AUC was the Stacked Sparse
Auto-encoder (SSAE)-based neural network (p < 0.001) which
correctly classified ASD patients with a mean (SD) accuracy of
62.0% (0.9%) and AUC of 0.646 (0.005; Table 2). The k-nearest
neighbor model displayed an accuracy of 61.8% (0.8%) and the
second highest AUC of 0.641 (0.004), but its sensitivity was
lower than most models. Compared to this, both linear and
non-linear SVM yielded better performance considering overall
diagnostic measures.

Using a feature selectionmethod based on the Student’s t-test,
we noted that the most predictive features were full-scale IQ,
followed by verbal IQ and performance IQ. By using only these
three features, the neural network achieved an AUC (SD) of 0.641
(0.009) which was very comparable to the AUC using all seven
features. By removing females (n = 126) and only considering
male subjects (n = 725), the diagnostic performance for neural
network was also comparable with an accuracy of 61.1% (1.3%)
and AUC of 0.645 (0.014).

DISCUSSION

This study set out to explore the full potential of PCD as
diagnostic features for ASD classification. We developed and
compared nine automated machine learning models by using a
large PCD dataset from the ABIDE repository. In our evaluation,

our neural network model outperformed eight other peer models
by achieving the best AUC of 0.646.

PCD have demonstrated strong predictive power for other
neurodevelopmental disorders. For example, in the ADHD-200
global competition, PCD features outperformed fMRI features
in attention deficit hyperactivity disorder classification (Brown
et al., 2012). This inspired us to test the predictive power of
PCD for ASD classification. Previous studies using PCD for ASD
classification have been limited, and optimal performance for
PCD has not been established. In recent studies, PCD were only
investigated for the purpose of feature fusion or integration.
For instance, Ghiassian et al. (2016) reported an accuracy of
59.6% with non-linear SVM using the same six PCD features
and eye stat (eyes open or closed). However, they investigated
PCD performance only for model comparison. In addition, their
results were based on one classifier whereas we tested multiple
classifiers to determine not only the best performance but also
the model that consistently yielded the best performance. Finally,
when we used the same dataset as Ghiassian et al. (2016) in our
neural network model, we obtained a somewhat higher accuracy
of 62.3%. Nevertheless, these differences might have also resulted
from other factors such as study differences in cross-validation.
The more important takeaway is that the six PCD we tested, and
particularly the three IQ measures, provide significant predictive
power for ASD diagnosis that should be incorporated into future
ASD classification studies.

Our results highlight the advantage of neural networks
over other commonly employed machine learning models in
ASD classification. Traditionally, neural network models have
had a significantly higher computational cost than other peer
models. With recent rapid advances in deep learning techniques,
the current techniques have reduced the optimization process
for neural networks to an acceptable training time. As
shown in Supplementary Table S1, the neural network model
has more hyperparameters which provide the model with
additional flexibility to learn the PCD distribution for ASD
classification. Interestingly, k-nearest neighbor had the second-
best AUC among our nine models, but its sensitivity in our
experiment was not desirable. Compared to this, both linear and
non-linear SVM yielded better performance considering overall
diagnostic measures.

In addition, our results compare favorably to recent
predictions made using fMRI features from a similar sample

TABLE 2 | Accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) values for each machine learning model.

Accuracy (%) Sensitivity (%) Specificity (%) AUC

Decision tree 54.7 ± 1.5 53.3 ± 2.0 54.9 ± 1.7 0.562 ± 0.015

Majority model 61.9 ± 0.8 55.4 ± 1.1 69.2 ± 1.3 0.568 ± 0.009

Random forest 57.2 ± 0.8 54.4 ± 1.2 60.4 ± 1.1 0.615 ± 0.007

SVM (linear) 61.4 ± 0.5 57.1 ± 0.6 66.7 ± 0.8 0.622 ± 0.002

SVM (non-linear) 61.9 ± 0.4 52.3 ± 1.5 71.6 ± 1.1 0.623 ± 0.005

Confidence model 61.5 ± 0.9 49.1 ± 1.4 67.1 ± 1.0 0.633 ± 0.008

Logistic regression 59.1 ± 0.5 55.5 ± 0.6 62.6 ± 0.8 0.635 ± 0.001

k-Nearest neighbor 61.8 ± 0.6 46.6 ± 1.0 72.1 ± 0.8 0.641 ± 0.004

Neural network 62.0 ± 0.9 53.3 ± 1.3 71.2 ± 1.9 0.646 ± 0.005

All data are mean ± SD; SVM, Support Vector Machine.
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of the ABIDE database (Abraham et al., 2017). That study
achieved a maximum accuracy (SD) of 66.8% (5.4%). Although
ourmodel with PCD had a lower accuracy of 62.0%, our standard
deviation of 0.9% is substantially lower (i.e., narrower confidence
interval) than their model. Additionally, our model only requires
six simple PCD features which are low-cost and easy-to-
obtain as compared to neuroimaging data. These performance
scores compared to fMRI-based classification emphasize the
importance of PCD in ASD classification.

The main limitations of our study arise from how the ABIDE
data were collected. This international study collected data from
17 unique clinical and research sites. This leads to heterogeneity
in the data that might compromise the machine learning models.
To mitigate the impact of site bias, we controlled for the site
of testing by including it in all the models. However, the
heterogeneity of PCD data may require further investigation
before such models can be utilized in clinical settings. The
small sex difference in ASD vs. controls we observed is likely a
function of the high incidence of ASD in males rather than a
selection bias for this substudy. Even if this was a biased selection
from ABIDE, our secondary analyses in only males from this
subpopulation yielded very similar results to our primary analysis
that included both sexes, suggesting this difference did not affect
performance or bias our results. Another limitation is the size of
the dataset.While 851 subjects are considered a large study in this
field of clinical research, larger datasets may be needed to yield
generalizable machine learning models. Also, our ASD classifiers
specifically focused on the classification of ASD and would not
be effective in detecting the presence of other developmental
disorders. A large prospective study of a more heterogeneous
population would be required to confirm the value of PCD
and/or other promising features to diagnose ASD.

Future efforts could include combining PCD with
neuroimaging data using machine learning models. Along
with the addition of fMRI features, the use of other features,
such as medical tests or past or family history of disease,
might boost the performance of the models to a clinically
useful level. The addition of more features may also increase
the performance of neural networks and allow for the use
of more complex architecture of neural networks. Studies
testing new machine learning models show promising results
using fMRI features (He et al., 2018; Li et al., 2018). A recent
development in machine learning, called transfer learning,
mimics the human brain by using large amounts of available
information unrelated to the disease of interest (e.g., typical
controls) to draw conclusions when presented with a smaller,

less accessible amount of information about the disease
of interest. Transfer learning has already been shown to
improve classification and identify networks in the brains
of high-risk premature birth babies (He et al., 2018) and
diagnose autism on small subsets of the ABIDE database
(Li et al., 2018).

In summary, we developed and compared nine machine
learning models for ASD classification by using PCD as input
features. We conclude that combining PCD with optimized
machine learning models can enhance diagnosis of ASD. When
integrated with additional features (e.g., fMRI features), these
models have the potential to yield a more objective approach for
diagnosing autism.
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