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Deep neural networks (DNNs) have recently been applied successfully to brain decoding

and image reconstruction from functional magnetic resonance imaging (fMRI) activity.

However, direct training of a DNN with fMRI data is often avoided because the size of

available data is thought to be insufficient for training a complex network with numerous

parameters. Instead, a pre-trained DNN usually serves as a proxy for hierarchical visual

representations, and fMRI data are used to decode individual DNN features of a stimulus

image using a simple linear model, which are then passed to a reconstruction module.

Here, we directly trained a DNN model with fMRI data and the corresponding stimulus

images to build an end-to-end reconstruction model. We accomplished this by training a

generative adversarial network with an additional loss term that was defined in high-level

feature space (feature loss) using up to 6,000 training data samples (natural images and

fMRI responses). The above model was tested on independent datasets and directly

reconstructed image using an fMRI pattern as the input. Reconstructions obtained

from our proposed method resembled the test stimuli (natural and artificial images) and

reconstruction accuracy increased as a function of training-data size. Ablation analyses

indicated that the feature loss that we employed played a critical role in achieving

accurate reconstruction. Our results show that the end-to-end model can learn a direct

mapping between brain activity and perception.

Keywords: brain decoding, visual image reconstruction, functional magnetic resonance imaging, deep neural

networks, generative adversarial networks

INTRODUCTION

Advances in the deep learning have opened new directions to decode and visualize the information
present in the human brain. In the past few years, deep neural networks (DNNs) have been
successfully used to reconstruct visual content from brain activity measured by functional
magnetic resonance imaging (fMRI) (Güçlütürk et al., 2017; Han et al., 2017; Seeliger et al., 2018;
Shen et al., 2019).

The reconstruction studies avoid training a DNN model directly on the fMRI data because
of limited dataset size in fMRI studies. To solve the limited dataset size issue, the feature
representation from a DNN pre-trained on a large scale image dataset is usually used as a proxy
for the neural representations of the human visual system. Hence, these decoded-feature-based
methods involve two independent steps, (1) decoding DNN features from fMRI activity and (2)
reconstruction using the decoded DNN features.
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Different from fMRI studies, DNNs in computer vision for
image generation are usually trained in the end-to-end manner
with large datasets. For instance, Mansimov et al. (2015) trained
a caption-to-image model on Microsoft COCO dataset that
consists of 82,783 images, each annotated with at least 5 captions.
Dosovitskiy and Brox (2016a) trained aDNNmodel on ImageNet
training dataset (over 1.2 million images) to reconstruct images
from corresponding DNN features. Due to availability of large-
scale image datasets, the above image-generation studies can
train DNNs using an end-to-end approach to directly generate
images from a modality correlated with the images. In contrast,
the largest fMRI dataset used for reconstruction in Shen
et al. (2019) consisted of only 6,000 training samples. Thus,
training a DNN to reconstruct images directly from fMRI
data is often avoided and considered infeasible because of the
smaller datasets.

Learning a direct mapping between brain activity and
perception of the outside world or subjective experiences
would be advantageous over the previous decoded-feature-based
methods due to the following reason. Decoding features from
fMRI is constrained by the pre-trained DNN features which were
optimized in a prior without brain data that may not be optimal
for decoding them from brain activity. Therefore, information
loss occurs in the decoding process which affects the quality
of reconstruction. A direct mapping can help in reducing the
information loss mentioned above.

In this study, we sought to evaluate the potential of the
end-to-end approach for directly mapping fMRI activity to
stimulus space given a limited training dataset. In the end-to-
end approach, the input to the DNN is the fMRI activity and
the output of the DNN is the reconstruction of the perceived
stimulus. If reconstruction using the end-to-end approach is
successful, we can avoid the feature-decoding step (step 1 above)
that leads to information loss.

For designing an end-to-end DNN model to reconstruct
images from fMRI data, we considered the models that transform
image representations such as DNN features to original image
as the potential candidates. The motivation behind this is that
the fMRI activity is the neural representation of the perceived
image and thus can be considered as an image representation.
Also, in previous studies (Agrawal et al., 2014; Khaligh-Razavi
and Kriegeskorte, 2014; Güçlü and van Gerven, 2015a,b; Cichy
et al., 2016; Horikawa and Kamitani, 2017) fMRI activity has
already been shown to be correlated to DNN features. Therefore,
for this study, we adopted the model from Dosovitskiy and Brox
(2016b) to reconstruct the image from fMRI activity.

For the end-to-end image reconstruction model used in
this study, the model needs to be optimized with suitable
choice of loss functions relevant to our problem. Dosovitskiy
and Brox (2016a) first proposed a DNN-based method for
reconstructing original images from their corresponding features
by optimization within image space. Loss in image space usually
results in poor reconstruction because it generates an average of
all possible reconstructions having the same distance in image
space, and hence the reconstructed images are blurred. The
feature loss in high dimensional space, also called perceptual
loss, constrains the reconstruction to be perceptually similar to

the original image. Adversarial loss (Goodfellow et al., 2014)
constrains the distribution of the reconstructed images to be
close to the distribution of natural images. In a subsequent
study, Dosovitskiy and Brox (2016b) have also showed that
reconstruction from features is improved by introducing feature
and adversarial loss terms. Thus, we adopted this latter approach
for reconstructing perceived stimuli directly from the fMRI
activity. Specifically, we modified their model to take input
directly from the fMRI activity and trained the model from
scratch with the dataset from Shen et al. (2019).

Here, we present a novel approach to visualize perceptual
content from human brain activity by an end-to-end deep image
reconstruction model which can directly map fMRI activity in
the visual cortex to stimuli observed during perception. Our
end-to-end deep image reconstruction model was accomplished
by directly training a deep generative adversarial network with
a perceptual loss term with fMRI data and the corresponding
stimulus images. We demonstrated that the reconstructions
obtained from our proposed method resembled the original
stimulus images. We further explored the generalizability of our
reconstruction model (trained solely with natural images and
fMRI responses) to artificial images. To understand the effect
of training-dataset size on reconstruction quality, we compared
reconstruction results across gradually increasing dataset sizes
(from 120 to 6,000 samples). Finally, to investigate the effects of
different loss functions used in the reconstruction, we performed
an ablation study that objectively and subjectively compared
reconstruction results as loss functions were removed one at
a time.

MATERIALS AND METHODS

In this section, we briefly describe the methods we used for
our experiments and the details of the dataset. For more details
regarding image reconstruction, please refer to Dosovitskiy and
Brox (2016b), and for details regarding the dataset, please refer to
Shen et al. (2019).

Problem Statement
Let x ∈ Rw×h×3 be the stimulus image displayed in the perception
experiment, where w and h are width and height of the stimulus
image and 3 denotes the number of channels (RGB) of the color
image. Let v ∈ R

D be the corresponding preprocessed fMRI
vector for the brain activity recorded during the perception of
the image, with D being the number of voxels in the visual cortex
(VC). We are interested in obtaining a reconstruction of the
stimulus from fMRI vector v.

To solve this problem, we use a DNN Gθ with parameters θ,
which performs non-linear operations on v to obtain a plausible
reconstruction Gθ(v) of the stimulus image.

Image Reconstruction Model
To reconstruct stimulus images from fMRI data, we modified the
DNNmodel proposed by Dosovitskiy and Brox (2016b).

For each fMRI data vector v corresponding to a stimulus
image x, the model was trained to generate a plausible
reconstructed image Gθ(v). In the training step, the network
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FIGURE 1 | Schematics of our reconstruction approach. (A) Model training. We use an adversarial training strategy adopted from Dosovitskiy and Brox (2016b),

which consists of three DNNs: a generator, a comparator, and a discriminator. The training images are presented to a human subject while brain activity is measured

by fMRI. The fMRI activity is used as input to the generator. The generator is trained to reconstruct the images from the fMRI activity to be as similar as possible to the

presented training images in both pixel and feature space. The adversarial loss constrains the generator so that reconstructed images fool the discriminator into

classifying them as the true training images. The discriminator is trained to distinguish between the reconstructed image and the true training image. The comparator

is a pre-trained DNN that was trained to recognize objects in natural images. Both the reconstructed and true training images are used as input to the comparator,

which compares the image similarity in feature space. (B) Model test. In the test phase, the images are reconstructed by providing the fMRI activity associated with

the test image as the input to the generator.

architecture (Figure 1A) consisted of three convolutional
neural networks: a generator Gθ that transformed the fMRI
vector v to Gθ(v), a discriminator D8 that discriminated the
reconstructed image Gθ(v) from the natural image x, and a
comparatorC that compared the reconstructed imageGθ(v) with
the original stimulus image x in feature space. During test time,
we only need the generator (Figure 1B) to reconstruct images
from fMRI data.

The input to the generator was the fMRI vector v

from the VC and the output was the reconstructed image
Gθ(v). The generator consisted of three fully connected layers
followed by six upconvolution layers that generated the final
reconstruction image Gθ(v). The comparator network C was
Caffenet (Krizhevsky et al., 2012), which was trained on the
ImageNet dataset for the image classification task. The Caffenet
model is a replication of the Alexnet model with the order of
pooling and normalization layers switched andwithout relighting
data-augmentation during training. The network consisted of
five convolutional and three fully connected layers. We used
the last convolutional layer of the comparator to compare the

reconstructed image with the original image in feature space. The
parameters of the comparator were not updated during training
of the reconstruction model.

The discriminator D8 consisted of five convolutional layers
followed by an average pooling layer and two fully connected
layers. The output layer of the discriminator was a 2-way softmax
and the network was trained to discriminate the reconstructed
image from the original image. The generator was trained
concurrently to optimize the adversarial loss function, which
fooled the discriminator into classifying the reconstructed image
as the real stimulus image. The adversarial loss forces the
generator to generate more realistic images that are closer to the
image distribution of the training data.

The generator was modified to take its input from fMRI
data instead of DNN features. The discriminator in Dosovitskiy
and Brox (2016b) was provided two inputs, the image and
corresponding feature from the comparator, however, we
modified the discriminator to receive only the image as the input.
The architecture of the comparator network was the same as in
Dosovitskiy and Brox (2016b).
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Let Xi denote the i th stimulus image in the dataset, Vi

denote the corresponding fMRI data, and Gθ(Vi) denote the
corresponding reconstructed output image of the generator. The
generatorGθ had parameters θ, which were updated to minimize
the weighted sum of three loss terms for a mini-batch that used
stochastic gradient descent: loss in image space Limg, feature loss
Lfeat, and adversarial loss Ladv:

L(θ,8) = λimgLimg(θ)+ λfeatLfeat(θ)+ λadvLadv(θ,8)

where

Limg(θ) =
∑

i
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Ladv(θ,8) = −
∑

i

logD8( Gθ(Vi))

and λimg, λfeat, and λadv denote the weights of the loss
in image space Limg, feature loss Lfeat, and adversarial loss
Ladv, respectively.
The discriminator was trained concurrently with the

generator to minimize Ldiscr:

Ldiscr (8) = −
∑

i

log (D8 (Xi)) + log (1−D8 ( Gθ (Vi))).

The parameters of the comparator C were fixed throughout the
training because it was only used for the comparison in feature
space, and thus did not require any update.

We trained the system using the Caffe framework (Jia et al.,
2014) and modified the implementation of the model provided
by Dosovitskiy and Brox (2016b). The weights of the generator
and discriminator were initialized using MSRA (He et al.,
2015) initialization. The comparator weights were initialized by
Caffenet weights trained on ImageNet classification. We used
Adam solver (Kingma and Ba, 2015) with momentum β1 = 0.9,
β2 = 0.999 and an initial learning rate 0.0002 for optimization.
We used a batch size of 64 and trained for 500,000 mini-batch
iterations in all experiments. Following this training procedure
similar to Dosovitskiy and Brox (2016b), we temporarily stopped
updating the discriminator if the ratio of Ldiscr to Ladv was below
0.1. This was done to prevent the discriminator from overfitting.
The weights of the individual loss functions λimg, λfeat, and λadv
were set to λimg = 2× 106, λfeat = 0.01, and λadv = 100.

We applied image jittering during the training for data
augmentation and to take into account subject’s eye movement
during the image presentation experiment. Generally, eye
movement was approximately one degree of visual angle for a
typical subject. The viewing angle for the stimulus images was
12◦. All training images were resized to 248 × 248 pixels before
training. During training, we randomly cropped a 227 × 227
pixel window from each training image to use as the target image
for each iteration. This ensured that the largest jittering size was
approximately one degree viewing angle.

To analyze the size of the dataset, we trained the
reconstruction model with a variable number of training
samples for 1,000 epochs with a batch size of 60. The rest of the
hyperparameters were the same as in the previous analysis.

Dataset From Shen et al. (2019)
We used an fMRI dataset from our previous reconstruction
study (Shen et al., 2019). This dataset was used to reconstruct
stimulus images from the visual features of a deep convolutional
neural network that was decoded from the brain. The dataset
analyzed for this study can be found in the OpenNeuro (https://
openneuro.org/datasets/ds001506) repository.

The dataset comprises fMRI data from three human subjects.
For each subject, the stimulus images in the dataset are
categorized into four types: training and test natural images,
artificial shapes, and alphabetical letters. The natural images used
for the experiment were selected from 200 representative object
categories in the ImageNet dataset (2011, fall release) (Deng et al.,
2009). The training dataset of natural images were 1,200 images
that were taken from 150 object categories and the test dataset
of natural images were 50 images from the remaining 50 object
categories. Thus, the categories used in the training and test
datasets did not overlap. The artificial shapes were 40 images
obtained by combining 8 colors and 5 shapes. The artificial shapes
stimuli set was controlled by shape and color, but figure-ground
separation and brightness were consistent across all the stimuli.
The alphabetical letters were 10 black letters from the English
alphabet. The alphabetical letters stimuli set had consistent color,
brightness and figure ground separation. The only variable in this
stimuli set was the shape of the alphabet.

The image presentation experiments comprised four distinct
types of sessions that corresponded to the four categories of
stimulus images described above. In one training-session set
(natural images), 1,200 images were each presented once. This
set of training session was repeated five times. In each test-
session (natural image, artificial shape, and alphabetical letters),
50, 40, and 10 images were presented 24, 20, and 12 times
each, respectively. The presentation order of the images was
randomized across runs.

The fMRI data obtained during the image presentation
experiment were preprocessed for motion correction followed by
co-registration to the within-session high-resolution anatomical
images of the same slices and subsequently to T1-weighted
anatomical images. The coregistered data were then re-
interpolated as 2× 2× 2 mm voxels.

The fMRI data samples were created by first regressing out
nuisance parameters from each voxel’s amplitude for each run,
including a linear trend and temporal components proportional
to six motion parameters. These were calculated by the SPM
(http://www.fil.ion.ucl.ac.uk/spm) motion correction procedure.
After that, voxel amplitudes were normalized relative to themean
amplitude of the initial 24 s rest period of each run, and were
despiked to reduce extreme values (beyond ± 3 SD for each
run). The voxel amplitudes were then averaged within each 8 s
(training sessions) or 12 s (test sessions) stimulus block (four
or six volumes), after shifting the data by 4 s (two volumes) to
compensate for hemodynamic delays.
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The voxels used for reconstruction were selected from the VC,
which consisted of lower-order visual areas (V1, V2, V3, and V4)
as well as higher-order visual areas (the lateral occipital complex,
fusiform face area, and parahippocampal place area). The lower-
order regions were identified using retinotopy experiments and
the higher-order areas were identified using functional localizer
experiments (Shen et al., 2019).

The fMRI data from the training image dataset were further
normalized to have zero mean and unit standard deviation for
each voxel. The mean and standard deviation of the training
fMRI data were then used to normalize the test fMRI data.

We performed trial-averaging for the test fMRI data while we
considered each trial as an individual sample for the training
fMRI data. Therefore, to compensate for the statistical difference
between training and test fMRI data, we rescaled the test fMRI
data by a factor of

√
nwhere n is number of trials averaged, before

we use the test fMRI data as the input to the generator.
We train reconstruction models with the training natural

images and their corresponding fMRI data for each individual
subject, and test reconstructionmodels with the test fMRI dataset
of the corresponding subject. For training in the dataset size-
analysis, we initially selected a fixed number of training images
and their corresponding fMRI data from five trials. As we
increased the size of the dataset, we added more training images
and fMRI data. Specifically, we gradually increased the size of
the training dataset from 120 (5 × 24) to 6,000 (5 × 1,200)
training samples.

Evaluation
We evaluated the quality of reconstruction using both objective
and subjective assessment methods. For both methods, we
performed a pairwise similarity comparison, following previous
studies (Cowen et al., 2014; Lee and Kuhl, 2016; Seeliger et al.,
2018; Shen et al., 2019), in which one reconstructed image
was compared with two candidate images: the original stimulus
image from which the reconstruction was derived and a “lure”
image, which was a different test image. The lure image was
randomly selected from the test dataset of the same type as
the original stimulus image. For each reconstructed image, the
pairwise similarity comparison was conducted for all possible
combinations of candidate images: the original stimulus image
and every other stimulus image of the same type in the test
dataset. For example, to evaluate the reconstruction quality for
one of the 50 test natural images, the lure image is randomly
selected from the remaining 49 test natural images. Then, for each
reconstructed natural image, the pairwise similarity comparison
is conducted for all 49 pairs of candidate images.

For the subjective assessment, we conducted a behavioral
experiment similar to Shen et al. (2019). In this experiment, a
group of 13 raters (6 females and 7 males, aged between 19 and
48 years) were presented with a reconstructed image and two
candidate images and were asked to select the candidate image
that appeared more similar to the reconstructed image. The trials
for different test images were presented in a randomized order for
each rater to prevent them frommemorizing the correspondence
between reconstructed and the true images.

For the objective assessment, we conducted pairwise similarity
comparison analysis based on two metrics separately: Pearson
correlation coefficient and structural similarity index (SSIM)
(Wang et al., 2004). We computed the two metrics between the
reconstructed image and each of the two candidate images. For
the pairwise similarity comparison, we selected the candidate
image with the higher Pearson correlation coefficient or higher
SSIM, respectively.

For computing pixel-wise Pearson correlation coefficients, we
first reshaped an image (a 3D array with dimensions of height,
width, and RGB color channels) into a 1-dimensional vector.
During this reshaping, the pixels of different color channels
are concatenated in a vector. Then we calculated the Pearson
correlation coefficient between the reshaped reconstructed and
candidate images.

Since Pearson correlation coefficient considers each pixel as an
independent variable, we also used SSIM to take into account the
similarity of local structures of the spatially close pixels between
two given images.We computed SSIM between the reconstructed
and candidate images in the original 2D form for each of the
RGB color channels, and then average the SSIM across the RGB
color channels.

For both assessments, we calculated the percentage of trials
in which the original stimulus image was selected, and used
this value as the reconstruction accuracy of each reconstructed
image. Trials for each reconstructed image were conducted by
pairing the original stimulus image with every other stimulus
image of the same type. For the study of dataset size, we
reduce the trials for each reconstructed image by randomly
selected 500 trials (10 trials for each test image) from all the
possible trials, while the selected trials are fixed for all the
conditions (here the modes trained with different number of
samples) to be compared. For each type of test images (natural
images, artificial shapes and alphabetical letters), we used the
mean reconstruction accuracy as the quality measure, which was
obtained by averaging across all the samples after pooling the
three subjects.

We compliment the evaluation using pairwise similarity
comparison with modified RV coefficient (Smilde et al.,
2009). We compute the modified RV coefficient between two
matrices: matrix of the reconstructed images and matrix of
the true images. The rows of both these matrices correspond
to test samples and columns correspond to individual pixels.
With this setting, the modified RV coefficient evaluates the
correlation between similarity relation within the true images
and within the reconstructed images. We compared the
results with a baseline of modified RV coefficient computed
with randomly shuffled ordered of reconstructed images
and correctly ordered true images to see whether the
reconstructions preserve the similarity relation among the
true images.

We conducted another behavioral experiment to study the
effect of different loss terms in the proposed approach. Another
group of 5 raters (2 females and 3 males, aged between 25 and
37 years) were presented with one original stimulus image and
two reconstructed images that were generated from different
combinations of loss terms. The raters were asked to judge which
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FIGURE 2 | Reconstruction of natural images. (A) Stimulus and reconstructed natural images. The stimulus images (in black frames) are shown in the top row. Three

corresponding reconstructed images (in gray frames) from each of the three subjects are shown underneath. (B) Reconstruction accuracy for natural images in terms

of the accuracy of pairwise similarity comparison based on Pearson correlation, structural similarity index (SSIM) and human judgment (error bars, 95% confidence

interval (CI) across samples; three subjects pooled, the number of samples (N) = 150; chance level, 50%).

of the reconstructions more resembled the original stimulus
image. This pairwise comparisonwas conducted for 6 pairs of loss
term combinations for each stimulus image in the test dataset.
We used the winning percentage as the quantitative measure for
comparing reconstructions that were generated using different
combinations of loss terms. The winning percentage was the
percentage of trials in which the reconstruction from one
combination was judged better than that of the other. For
computing the winning percentage from objective metrics,
the reconstructions with higher similarity (Pearson correlation
coefficients or SSIM) were selected. For more details regarding
the design of the behavioral experiments, please refer to
Shen et al. (2019).

RESULTS

Image Reconstruction
We trained the reconstruction model on the Shen et al. (2019)
training-session samples of fMRI visual perception data. In the
training session, each stimulus image had been presented to each
subject five times. Here, we treated each stimulus presentation
as a separate training sample for the reconstruction model.
Therefore, the training dataset we used consisted of 6,000
(5× 1,200) samples.

We evaluated reconstruction quality using three test datasets:
natural images, artificial shapes and alphabetical letters. For
generating reconstructions, fMRI samples corresponding to the
same image (24 samples for the natural image session, 20
for the artificial shapes session, and 12 for the alphabetical
letters session) were averaged across trials to increase the
signal to noise ratio. The averaged fMRI samples were used as

input to the trained generator (Figure 1B). Figure 2A shows
example images from the natural image test dataset and their
corresponding reconstructions from three different subjects.
The reconstructions from all three subjects closely resembled
shape of the object in the natural image stimuli. The color,
however, was not preserved in some of the reconstructions. The
reconstruction results from our model show that despite utilizing

a small dataset, training a model from scratch and reconstructing
visually similar images from fMRI data was possible with high
accuracy (Figure 2B) The mean reconstruction accuracy (three
subjects pooled, N = 150) is 78.1% by Pearson correlation
(78.9, 75.3, and 79.9% for Subject 1, 2, and 3), 62.9% by SSIM

(63.0, 61.9, and 63.8% for Subject 1, 2, and 3), and 95.7% by
human judgment (95.6, 95.1, and 96.4% for Subject 1, 2, and
3). Additionally, we calculated modified RV coefficient, which

evaluates the correlation between the similarity relation within
the true images and the reconstructed images to see whether
the reconstructions preserve the similarity relation within the

true images. The higher modified RV coefficients (0.34, 0.32, and
0.32 for Subject 1, 2, and 3) for natural image test dataset as
compared to the baseline calculated by random permutation (p<

0.0001 for all three subjects, permutation test) demonstrate that
reconstructed images from our approach preserve the similarity
relation within the true images.

Further, we evaluated the generalizability of our
reconstruction model (trained solely with natural images
and fMRI responses) using artificial images as similarly
performed by Shen et al. (2019) (Figure 3A). Using the proposed
approach, artificial shapes were reconstructed with high
accuracy (Figure 3B. 69.3% by Pearson correlation, 56.9% by
SSIM, and 92.7% by human judgment) and alphabetical letters
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FIGURE 3 | Reconstruction of artificial images. (A) Reconstruction of artificial shapes. The stimulus images (in black frames) are shown in the top row. Three

corresponding reconstructed images (in gray frames) from each of the three subjects are shown underneath. (B) Reconstruction accuracy for artificial shapes.

(C) Reconstruction accuracy for both shape and color. (D) Reconstruction of alphabetical letters. (E) Reconstruction accuracy for alphabetical letters. For (B,C,E),

reconstruction accuracy is assessed in terms of the accuracy of pairwise similarity comparison based on Pearson correlation, structural similarity index (SSIM) and

human judgment (error bars, 95% CI across samples; three subjects pooled, N = 120 for artificial shapes, N = 30 for alphabetical letters; chance level, 50%).

were also reconstructed with high accuracy (Figures 3D,E;
95.9% by Pearson correlation, 79.6% by SSIM, and 96.4% by
human judgment), even though the model was trained on
natural images.

From the results for artificial shape reconstruction, we
observed that the shape of the stimulus was well preserved in the
reconstructions. However, the color was preserved only for the
red-colored shapes. To evaluate reconstruction quality in terms
of shape and color, we compared reconstructed images of the
same colors and shapes, respectively. The quantitative results are
shown in Figure 3C (shape: 76.5% by Pearson correlation, 57.3%
by SSIM, and 95.0% by human judgment; color: 56.7% by Pearson
correlation, 50.7% by SSIM, and 75.6% by human judgment) and
confirm that the reconstructed images weremore similar in shape
to the original images than in color.

While the main purpose of this study is to evaluate the
potential of the end-to-end method in learning direct mapping
from fMRI data to visual images, we compared the reconstruction

accuracy of the proposed method with that of Shen et al. (2019)
to analyze the difference between the two methods. We observed
that our new method achieved almost same performance as
Shen et al. (2019) on the Pearson correlation metric (natural
images: ours 78.1 vs. 76.1%; two-sided signed-rank test, no
significantly difference, N = 150), whereas our new method did
not outperform Shen et al. (2019) on the subjective judgment
(natural images: ours 95.7 vs. 99.1%; two-sided signed-rank test,
P < 0.006,N = 150). Shen et al. (2019) used a natural image prior
that helps their reconstructions look more natural, which could
explain why that method outperforms our new method in terms
of human judgment. We tried to introduce a natural image prior
through use of a discriminator, but the reconstructions did not
appear as natural as those from Shen et al. (2019).

Effect of Dataset Size
The results of the previous analyses show that it is possible
to reconstruct images from human brain activity by training
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FIGURE 4 | Effect of training-dataset size. (A) Reconstruction from brain activity (Subject 1) using models trained with different dataset sizes. The stimulus images (in

black frames) are shown in the first column. The corresponding reconstructed images (in gray frames) are shown to the right of each stimulus image (from left to right,

the number of training samples increases). (B) Reconstruction accuracy in terms of the accuracy of pairwise similarity comparison based on Pearson correlation,

structural similarity index (SSIM) and human judgment (error bars, 95% CI across samples; three subjects pooled, N = 150, chance level, 50%). The horizontal axis is

scaled using a base 2 logarithm.

an end-to-end model from scratch with only 6,000 training
samples. Next, we sought to investigate the effect of dataset
size on reconstruction quality. We checked how many samples
are enough to achieve recognizable reconstruction and assessed
the possibility of improving reconstruction quality using more
training samples.

We increased the training dataset from 120 to 6,000 (120,
300, 600, 1,500, 3,000, and 6,000) samples. Figure 4 shows a
qualitative comparison of reconstructions (Figure 4A) and the
quantitative objective and human judgment scores (Figure 4B).
Through visual inspection of the reconstruction results in
Figure 4A, we can see that reconstruction quality improved with
the number of training samples. Objective and human judgment
scores quantitatively confirm this trend. The results showed that
the increasing trend in the reconstruction quality is not saturated
for our reconstruction model, which suggests that although
we can obtain highly accurate reconstructions with only 6,000
training samples, better reconstruction quality might be achieved
if larger datasets are available.

Effect of Loss Functions: Ablation Study
We performed an ablation study to understand the effects of
the different loss functions used in training the reconstruction
model. We removed one loss function at a time and compared
the reconstructions with those obtained using all three loss
functions. Visual inspection showed that the best resemblance
to the original images was obtained using all three loss
terms (Figure 5A). To quantitatively compare the reconstruction

quality of different models in the ablation study, the winning
percentage of the pairwise similarity comparisons based on
either objective or human judgment was used. The difference in
winning percentage between the model optimized with all three
loss terms and the model optimized with one loss term removed
indicates the importance of the corresponding loss term. From
Figure 5B, we can observe that the model trained with all three
loss terms showed the highest winning percentage followed by the
model where the loss in the image space is removed. The results
demonstrate that the model trained with all three loss terms was
preferred by the human raters.

Removing the loss in image space resulted in a moderate
drop for both objective and subjective assessments (Pearson
correlation 7.3% decrease, SSIM 13.8% decrease, and human
judgment 18.5% decrease), but the difference in human
judgement was not as pronounced as it was for the other two
loss functions. Removing feature loss produced the highest
drop in winning percentage for human judgment (36.9%
decrease) and a moderate drop in Pearson correlation (5.6%
decrease) and SSIM (11.1% decrease). This demonstrates the
importance of optimization in high dimensional feature space,
as it not only enhances the spatial details, but also makes the
reconstruction more perceptually similar to its corresponding
original stimulus image. Although removing adversarial
dramatically reduced human judgement scores (30.0% decrease)
and SSIM (41.8% decrease), it surprisingly showed improvement
in Pearson correlation (10.9% increase). This suggests that
optimizing adversarial loss forces the reconstruction to appear
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FIGURE 5 | Ablation of loss terms. (A) Reconstruction from brain activity (Subject 1) using reconstruction models with some loss components removed. The stimulus

images (in black frames) are shown in the first column. The corresponding reconstructed images (in gray frames) obtained with different models are shown to the right

of each stimulus image (from right to left, the model is: full reconstruction model (Full), with image loss removed ( −Limg ), with feature loss removed (−Lfeat), and with

adversarial loss removed (−Ladv). (B) Reconstruction accuracy in terms of winning percentage of pairwise similarity comparison based on Pearson correlation,

structural similarity index (SSIM) and human judgment (error bars, 95% CI across samples; three subjects pooled, N = 150, chance level, 50%). The winning

percentage is the percentage of pairwise similarity comparison trials in which the reconstruction from one model was judged better than that of the other.

closer to a natural image distribution and preserve structural
similarity but has a negative impact on preservation of the
spatial details.

DISCUSSION

Here, we have demonstrated that end-to-end training of a DNN
model can directly map fMRI activity in the visual cortex
to stimuli observed during perception, and thus reconstruct
perceived images from fMRI data. The reconstructions of natural
images were highly similar to the perceived stimuli in shape,
and in some cases in color (Figure 2). Although trained only
on natural images, the model generated accurate reconstructions
of artificial shapes and alphabetical letters (Figure 3), thus
showing generalizability that is similar to Shen et al. (2019). We
also demonstrated that reconstruction quality improved as the
number of training samples increased (Figure 4), and thus we
may be able to further improve reconstruction accuracy with
even more training samples.

We performed an ablation study by removing one loss
function at a time to understand the importance of each loss
term used for training the proposed model (Figure 5). The
results showed that the model trained with all three loss terms
achieved the best performance in terms of human judgement
while the model trained without the adversarial loss showed
the best performance in terms of Pearson correlation. The
removal of loss in image space resulted in moderate changes

in winning percentage calculated from behavioral experiments
and both objective measures (Pearson correlation and SSIM).
The removal of feature loss resulted in a drop in all the three
types of winning percentage, although the drop in human
ratings was more pronounced. Although removal of adversarial
loss showed significant increase in winning percentage based
on Pearson correlation, winning percentage based on human
ratings and SSIM dropped significantly. This suggests that the
addition of adversarial loss in the optimization process constrains
the reconstructed images so that their distribution is closer
to that of the training images (natural images). The increase
in Pearson correlation winning percentage, however, suggests
that adversarial loss has negative impact on preserving the
spatial details of the reconstructed image. The results suggest
that both the perceptual and adversarial losses are critical for
our end-to-end deep image reconstruction model to achieve
perceptually similar reconstructions.

Earlier studies on decoding stimuli in pixel space either
searched for a match in the exemplar set (Naselaris et al., 2009;
Nishimoto et al., 2011) or tried to reconstruct the stimulus
(Miyawaki et al., 2008; Wen et al., 2016; Güçlütürk et al., 2017;
Han et al., 2017; Seeliger et al., 2018; Shen et al., 2019). In
the exemplar matching methods, visualization is limited to the
samples in the exemplar set and hence these methods cannot be
generalized to stimuli that are not included in the exemplar set. In
contrast, reconstruction methods are more robust in generalizing
to a new stimulus domain (Figure 3).
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DNN-based reconstruction methods have typically avoided
directly training a DNN model for reconstruction (Güçlütürk
et al., 2017; Han et al., 2017; Seeliger et al., 2018; Shen et al.,
2019). Instead, they have used decoded features as a proxy for
hierarchical visual representations encoded in the fMRI activity
that was used as the input to a reconstruction module. This
method is effective since the decoded features can easily be
plugged into known image reconstruction/generation methods.
It is also thought to be efficient given the lack of large-scale
diverse fMRI datasets (which contrasts with the large computer-
vision datasets used for end-to-end training of vision tasks). The
lack of large fMRI datasets makes learning a direct mapping from
brain activity to stimulus space difficult without overfitting to
the training dataset. Thus, developing a way to learn this direct
mapping from limited numbers of training samples was the main
motivation for this work.

A potential advantage of direct mapping is that it avoids
information loss that occurs in the feature-decoding step. Even
though the decoded features are correlated with the original
image features, in Horikawa and Kamitani (2017) the maximum
correlation coefficient on average was < 0.5. Thus, we argue
that information in the decoded features is not all the visual
information that can be decoded from the brain. Therefore, if
enough training samples are available, direct mapping may help
in preventing this information loss.

Our proposed method can easily be extended to other
modalities such as text, sounds and video. This can be
achieved by a suitable choice of generator, discriminator, and
comparator modules for the corresponding modality. Further,
our approach can be extended for reconstruction of multimodal
data where a single generator module with multiple heads can
generate reconstructions of multiple modalities simultaneously.
Therefore, we believe an end-to-end approach has a wide
potential for transforming the internal representations of the
brain to meaningful visual and auditory contents for brain-
machine interfaces.
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