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Objective: Stimulus visual patterns, such as size, content, color, luminosity, and interval,

play key roles for brain–computer interface (BCI) performance. However, the three

primary colors to be intercompared as a single variable or factor on the same platform are

poorly studied. In this work, we configured the visual stimulus patterns with red, green,

and blue operating on a newly designed layout of the flash pattern of BCI to study the

waveforms and performance of the evoked related potential (ERP).

Approach: Twelve subjects participated in our experiment, and each subject was

required to finish three different color sub-experiments. Four blocks of the interface were

presented along the edge of the screen, and the other four were assembled in the center,

aiming to investigate the problem of adjacency distraction. Repeated-measures ANOVA

and Bonferroni correction were applied for statistical analysis.

Main results: The averaged online accuracy was 98.44% for the red paradigm,

higher than 92.71% for the green paradigm, and 93.23% for the blue paradigm.

Furthermore, significant differences in online accuracy (p< 0.05) and information transfer

rate (p < 0.05) were found between the red and green paradigms.

Significance: The red stimulus paradigm yielded the best performance. The proposed

design of ERP-based BCI was practical and effective for many potential applications.

Keywords: brain–computer interface, ERP, color of stimulus, visual stimulus, single character paradigm

INTRODUCTION

Brain–computer interface (BCI) enables patients suffering from movement disorders to
communicate with others or interact with the outside world through electroencephalogram (EEG),
magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and more
(Vidal, 1973, 1977; Wolpaw et al., 2000, 2002). Evoked related potential (ERP) from EEG/MEG
can be reliably measured by scalp electrodes or sensors (Sutton et al., 1965; Coles and Rugg, 1995).
To date, most research works on BCI can be roughly divided into several categories according to
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the types of signals used, especially ERP-based BCI (Farwell
and Donchin, 1988; Furdea et al., 2009; Kübler et al., 2009;
Zhang et al., 2012; including P300-BCI), motor imagery BCI
(Pfurtscheller and Neuper, 2001; Wang et al., 2006; Hwang et al.,
2009; Jiao et al., 2018), steady-state visual evoked potentials
(SSVEP) BCI (Ortner et al., 2011; Jiao et al., 2016; Nakanishi et al.,
2018; Zhang et al., 2018), hybrid BCI (Pfurtscheller et al., 2010;
Li et al., 2016), and so on. In the present work, we focused on
ERP-based BCI, which is one of the most promising approaches.

A commonly used component in ERP is the visual evoked
potential (VEP) P300 or P3, which is generally elicited by the
oddball paradigm. P300 is characterized by a latency of 250–
500ms after stimulus, and the positive deflection is stronger
than other components (e.g., P100, N170, and N200) prior to it
(Sutton et al., 1965). Therefore, the VEP P300-BCI stands for the
utilization of P300 as the way to discriminate the target and the
non-target. The first VEP P300-BCI, otherwise known as P300
speller, was introduced by Farwell and Donchin (1988). In their
study, subjects were asked to sit in front of a screen with a 6
× 6 matrix presenting 26 letters and 10 digits and required to
count the number of flashes of target characters silently in the
row–column paradigm (RCP). However, adjacency-distraction
errors and double-flash errors are the main defects of RCP. To
decrease the impact of these two, researchers found ways to
address this problem frommultiple levels. Townsend et al. (2010)
designed an 8 × 9 checkerboard paradigm (CBP) to separate
two 6 × 6 matrices and arrange all rows of one matrix to flash
randomly first before the columns, thereby effectively avoiding
both abovementioned errors. Jin et al. (2010) composed a new
method that mathematically combined the stimuli presented to
improve the performance and yielded a higher bit rate than that
of the RCP. Paralleling with RCP, the single-character paradigm
(SCP), in which each character is individually highlighted,
fully capable of avoiding adjacency distraction, has also been
extensively studied (Fazel-Rezai et al., 2012; Jin et al., 2015).
To compare these two mainstream paradigms (RCP and SCP)
fairly, Guger et al. invited 100 healthy subjects to perform a
spelling task, and the result showed that 72.8% (N = 81) of
the subjects spelled RCP with 100% accuracy and 55.3% (N =
38) of the subjects did the same in SCP. However, the averaged
P300 response at Cz for RCP was 7.9 µV lower than the 8.8 µV
achieved in SCP (Guger et al., 2009). Moreover, a modified SCP
called lateral SCP provided a better performance than RCP with
respect to online accuracy and bit rate (Pires et al., 2012). Thus,
RCP and SCP are both promising methods to establish a practical
BCI system.

The effects brought by stimuli have been explored in many
aspects, such as the interstimulus interval (Sellers et al., 2006),
the background color of stimulus (Salvaris and Sepulveda, 2009),
the face stimulus (Zhang et al., 2012; Jin et al., 2014), the moving
stimulus like vertical moving bars (Hong et al., 2009), flipping
characters (Martens et al., 2009), zooming symbols (Cheng et al.,
2018), and so on. As for color, white and black backgrounds
were compared. Consequently, white backgroundwas superior to
the black one in terms of performance (Salvaris and Sepulveda,
2009). Green (onset)/blue (offset) stimulus yielded a better
practical performance in P300-BCI than white/gray stimulus

(Takano et al., 2009). Moreover, the luminosity contrast was also
investigated for P300 speller (Li et al., 2014). The RGB colors
acting as stimuli have been utilized to compare EEG classification
algorithms or feature extraction methods (Rasheed and Marini,
2015; Alharbi et al., 2016). However, the paradigm was limited to
one square pattern responsible for presenting colors under a gray
background, with a stimulus duration of 3 s one time, instead of
the oddball paradigm.

In this study, we introduced a new layout of flash pattern
on the basis of SCP, with red, green, and blue stimuli under a
white background. In addition, aside from P300, other visual
ERP waveforms, such as P200 (P2), N2, and N400 (N4), have
already been proven beneficial to improve BCI performance.
For example, Guo et al. (2008) introduced motion-onset VEPs
including P2 and N2, to deliver control command successfully;
Jin et al. (2014) suggested that N4 helps improve the online
accuracy of ERP-based BCI. Therefore, the waveform features of
P2, N2, P3, and N4 were also considered during ERP analysis in
our study.

MATERIALS AND METHODS

Subjects
Twelve healthy subjects (S1–S12), comprising six males and six
females aged 22–28 years, participated in our experiments. All
subjects had normal color vision, and seven of them participated
in a BCI experiment for the first time. The local ethics committee
approved the consent form and the experimental procedure
before any of the subjects participated. All subjects were informed
of the whole online-and-offline procedure beforehand, and they
were allowed to leave the experiment anytime if they felt
uncomfortable during the experiment.

Experimental Design
A 20-in. LCD, Lenovo UOAFG989, was set with sRGB color
gamut and 1,600 × 900 resolution, and its maximum luminous
intensity was 200 cd/m2 when displaying white. A subject was
seated 70 cm away from the display in a dimly lit laboratory, with
ambient light of 40 ± 9.2 lx. Psychotoolbox from MATLAB was
operated for the flash pattern. Red (255, 117, 117), green (117,
255, 117), and blue (117, 117, 255) colors were chosen to be the
stimuli by turns. The stimulus onset asynchrony (SOA) was set
to 400ms, and the duration of stimulus was 200ms throughout
all experiments.

The specific layout of the pattern is shown Figure 1. Four
square blocks (108 × 108) were distributed at the four corners
of the screen, whereas the other four were assembled in the
center. Altogether, eight square blocks took turns to be the target.
Figure 1A illustrates the original presentation of the pattern
before the experiment began, and Figure 1Bwas merely captured
as an example for the ongoing “blue” experiment. Here, the
color of the stimulus can also be represented by red or green
in their own color sub-experiment. Figure 1C demonstrates the
color configuration of the three paradigms. In this study, three
paradigms were presented to every subject in order. We called
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FIGURE 1 | The layout of the experiment. (A) The original pattern; (B) the screenshot of the “blue” experiment; (C) the legend of the three stimuli.

them R-P (red paradigm), G-P (green paradigm), and B-P (blue
paradigm) for convenience.

The flowchart of the set of experiments is shown in Figure 2.
Each paradigm consisted of offline and online sessions. As
illustrated in Figure 2, one offline experiment had four runs, and
each run included four epochs. One epoch stood for one target
block to be focused on, and 16 trials represented the repeating
times applied in each epoch. When an epoch began, the subject
focused on the target block where the hint showed before and
counted the flashes in the target block silently, at the same time,
ignoring other flashes lighted in non-target blocks. When the
target flash had been shown for the predetermined (i.e., 16 in
this study) times, one epoch finished, and the hint would move
on to the next block. Then, that block would take the place of
the former as the new target to be focused on. After finishing
four runs of offline, a model of the subject would be built. Then,
the online experiment would operate 16 blocks to be the targets
one by one with feedbacks. As for the feedback, the four blocks
near the edge were represented by A (up left), B (up right), C
(bottom left), and D (bottom right), and the four in the center
with E, F, G, and H were assigned in the same way. The number
of trials for recognition was chosen automatically via an adaptive
strategy, which was explained in the section Online Strategy (Jin
et al., 2011). Compared with offline experiments, the online one
saved trials and delivered feedbacks in a timely manner.

Given that the order of “color” displayed could influence the
BCI performance, we arranged S1, S2, S9, and S12 to follow
the order of R(red)–G(green)–B(blue). S3, S4, S6, and S8 were
arranged in G–B–R. S5, S7, S10, and S11 were arranged in B–R–
G (see Table 1). This arrangement could lead to relative fairness
in the subsequent analysis.

Electroencephalogram Acquisition
In this study, the EEG signals were recorded by g.USBamp and
32-channel g.EEGcap (Guger Technologies, Graz, Austria). The

amplifier was set with a sample rate of 256Hz, a sensitivity line
of 100 µV, a band-pass filter from 0.5 to 30Hz, a notch filter at
50Hz to remove AC artifacts, and impedances below 10 k�. All
14 electrodes selected from the 10–20 international system were
F3, Fz, F4, C3, Cz, C4, P7, P3, Pz, P4, P8, O1, Oz, and O2, which
were referenced at right mastoid and grounded at FPz (Figure 3).

Feature Extraction and Classification
After the offline data acquisition for each subject, feature
extraction and classification were performed to build a personal
model for his or her online session later. In terms of filtering,
a third-order Butterworth filter with a band pass from 1 to
30Hz was applied to raw EEG data. Then, according to the
labels attached to every flash (which were simultaneously made
during the data acquisition), the 100-ms pre-stimulus (flash)
and the 800-ms post-stimulus data segments (altogether 900-
ms data segment) were selected. Moreover, the latter 800ms was
reserved after baseline correction by means of the former 100ms.
Thereform, a three-dimensional matrix was constructed by the
factors of channels, sampling rate, and trials realized for one
subject. As for downsampling, the second dimension (related to
time shaft) of the matrix was downsampled to 36Hz, instead of
the original sample rate of 256Hz. Therefore, the feature vector
with 14 channels× 29 time points was accessible for the classifier.

Here, we adopted the Bayesian linear discriminant analysis
(BLDA), which was first developed by Hoffmann et al. (2008)
and successfully applied to a P300-BCI system to classify EEG
data, because of its capability to better overcome the overfitting of
high-dimensional data or data containing noise. Moreover, this
method is relatively efficient in the ERP-BCI system (Chen et al.,
2015). Then, 16-fold cross-validation was performed after model
building, so that the scores of each flash can be achieved, and the
target flash can obtain the highest score among the eight.

To improve the model, we applied a trial selection method
to help eliminate the error trials in offline data. For example,
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FIGURE 2 | Flowchart of our experiments (note: exp here stands for experiment).

TABLE 1 | The order of paradigms for each subject.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

R-P 1 1 3 3 2 3 2 3 1 2 2 1

B-P 2 2 1 1 3 1 3 1 2 3 3 2

G-P 3 3 2 2 1 2 1 2 3 1 1 3

“1” means the subject did the corresponding paradigm first, and “2” represents second

and “3” did the last.

one block needs to be counted for 16 times in one run (see
Figure 2). In Figure 4, we demonstrated the whole process. If
the first trial was recognized as false according to the classifier,
the “first” would be removed (like the red frame in the left
panel of Figure 4), and the 15 remaining trials would fill up;
however, not all the blocks enjoyed 16 times of repetition after
eliminating, so on account of the integrity and uniformity, we
discarded some trials in the green frame and kept all blocks with
15 repetition times (see the right panel of Figure 4). In this case,
we eliminated the distraction brought by the new start of a target
fixation to some extent. This modification was only executed
once, considering the sufficiency of data used to perform the
subsequent overlapping averaging process. Then, the rest of the
trials were sent to the classifier again to rebuild a model for
favorable performance.

Online Strategy
After achieving the model developed on the basis of offline
datasets, the online real-time feedback could be presented
smoothly to the subject every time as one block’s recognition
was completed. However, it took fewer trials than an epoch did
in offline session, because the system judged whether the last
two successive results were the same in every block recognition.

FIGURE 3 | The electrodes selected from the 10–20 system.

If so, the process of trials for the block would be stopped,
and the last result would be shown as the feedback. Otherwise,
the maximum trials of one block, which was set to 16, would
be performed. In this way, the feedback of each block was
printed successively on the screen until the 16 blocks were
completely recognized.

Data Analysis and Statistics
Two important performance indexes are accuracy and
information transfer rate (ITR), which were used to evaluate a
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FIGURE 4 | Example for the error trials before and after model modification.

BCI system. The latter one can be calculated as follows:

B =
{

log2N + Acc · log2Acc+ (1− Acc) · log2
(

1−Acc
N−1

)

0 < Acc < 1

log2N + Acc · log2Acc Acc = 1
(1)

ITR = B · 60
t

(2)

In formula 1, N denotes the possible choices in one trial, and
whereas every choice shares the equal possibility to be lighted,
here N= 8; Acc represents the classification accuracy. In formula
2, t is the time cost for operating the trials, and ITR (bit/min) can
be achieved through calculation.

In terms of statistics, all the variables were first tested under
Ryan–Joiner test (R-J test), which is similar to the Shapiro–Wilk
test, for normal distribution. Then, repeated-measures ANOVA
(rm-ANOVA) was applied to test the significance brought by the
color factor. However, before RM-ANOVA, Mauchly’s sphericity
test was executed, and if unsatisfactory, Greenhouse–Geisser
correction would be chosen to revise degree of freedom. Finally,
Bonferroni correction was implemented in post hoc comparison.
The significance level was α = 0.05 after Bonferroni correction.

Color Contrast Calculation
Li et al. (2014) investigated the effects of luminosity contrast
on BCI performance. It was reported that higher classification
accuracy was achieved by a high-luminosity contrast; higher
amplitude and shorter latency of VEP P300 were also released
by the high-luminosity contrast stimulus. The following were
the calculation formulas of luminosity contrast mentioned in
Li’s study:

L = 0.2126 ∗ R+ 0.7152 ∗ G+ 0.0722 ∗ B (3)

X =
{

((XsRGB + 0.0550)/1.055 ) ˆ2.4 XsRGB > 0.03928
XsRGB/12.92 XsRGB ≤ 0.03928

(4)

The X above can be R or G or B.

RsRGB = R8bit/255
GsRGB = G8bit/255
BsRGB = B8bit/255

(5)

The ratio between the display color (L1) and the background
color (L2) is

Luminosity Contrast Ratio = L1 + 0.05

L2 + 0.05
(6)

In this work, we calculated the corresponding ratio for the three
stimuli under white background according to the formulas above
and discussed the results in the section Layout of the Stimulus.

RESULTS

ERP Analysis
Figure 5 shows the grand averaged ERP waveforms over 14
channels with three curves representing three different color
types of stimulus in a single-channel plot. Four kinds of colors
were shadowed behind the neighborhood of peak point, with the
rule that the minimum and the maximum of three peak points
(latency) would be selected, and the range would be formed
[min −10ms, max +10ms]. Such rules were also feasible for
the condition that only one or two curves displayed the desired
signal, whereas the rest did not.

Figure 6 illustrates the discrimination between the target and
the non-target over all sites from the three paradigms.We applied
a time window with 0–800 ms after a stimulus and considered
the target and non-target ERP segments as the inputs of the
calculation shown below to obtain the R-squared values.

r(x)2 =
( √

N1N0

N1 + N0
·
mean

{

x| y = 1
}

−mean
{

x| y = 0
}

std
{

x| y = 1, 0
}

)2

(7)
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FIGURE 5 | Grand averaged evoked related potential (ERP) waveforms of targets across all 12 subjects from three paradigms overall 14 electrodes. Note: Four kinds

of ERP signals (e.g., P2, N2, P3, N4) were demonstrated with different backgrounds in each plot of the electrode if existing.

FIGURE 6 | R-squared value maps of three paradigms throughout all 14 channels for S1–S12 subjects for discrimination between the target and the non-target.

In formula 7, x represents the value; y can be “1” standing for the
target samples, whereas “0” for the non-target ones; and N1 and
N0 are the corresponding numbers of the groups. In Figure 6, the
polar color turned darker as discrimination went more obvious
between the two.

P2

P2 peak is typically evoked following N100 in visual ERP-based
BCI and varies between 150 and 275ms. P2 is related to visual
search, attention, and memory (Freunberger et al., 2007). In
this study, we explored P2 in parieto-occipital areas of the
scalp. Through statistical analysis, the stimulus color significantly
affected the P2 peak latency at electrodes of Oz [F(2, 22) = 8.762,
p < 0.01]. Then, comparison within groups indicated that G-
P’s P2 latency was observed significantly longer than that of B-P
at Oz (p < 0.01).

N2

In Figure 7, the significance of the N2 peak latency was revealed
at O1 [F(2, 22) = 11.672, p < 0.01; G-P > R-P: p < 0.01, G-P >

B-P: p < 0.05], at O2 [F(2, 22) = 30.078, p < 0.01; G-P > R-P: p <

0.01, G-P> B-P: p< 0.001], and at P8 [F(2, 22) = 17.870, p< 0.01;
G-P > R-P: p < 0.01, G-P > B-P: p < 0.001]. Thus, the N2 peak
evoked by G-P was later than that for R-P and B-P significantly at
electrodes O1, O2, and P8, respectively. However, no significance
has been detected either in tests of within-subjects effects or in
post hocmultiple comparisons in terms of N2 amplitude.

Accuracy and Bit Rate of Brain–Computer
Interface
Figure 8A displays the offline accuracy and bit rate, which
was averaged over 12 subjects and overlapping by trials. R-P
yielded a better offline performance depending on the highest
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FIGURE 7 | The N200 latency boxplot with significance at four sites. Note: the

label “*” means the significance of two groups is p < 0.05; meanwhile, **p <

0.01 and ***p < 0.001; the color of the box indicates the

corresponding paradigm.

offline accuracy and the least trials to reach 100%. Furthermore,
Figure 8B depicts the single trial offline classification accuracy,
but no significant difference was found.

Table 2 lists the online performance of 12 subjects in detail,
and p-value was tested among the three paradigms for three
indexes [i.e., accuracy (%), ITR (bit/min), and AVT] closely
behind. However, p-value shows significance in accuracy and ITR
between R-P and G-P.

Effects by Model Modification
By utilizing the method mentioned in the section Feature
Extraction and Classification, the error trials changed,
as displayed in Figure 9. Through two-way RM-ANOVA
with the factors of method (before and after model
modification) and stimulus color, significance was found in
the factor of color [F(2, 22) = 4.942, p < 0.05] and method
[F(1, 11) = 21.868, p < 0.01] while it was not found in
the interaction of the two factors [F(2, 22) = 0.979, p >

0.05]. In post hoc of model modification, error trials were
significantly reduced (p < 0.01). Meanwhile, the sum of error
trials for subjects after the modification was significantly
reduced [F(1, 11) = 21.868, p < 0.01] as well. Thus, the
efficiency of the model modification method in this work
was proved.

Moreover, although stimulus color significantly influenced the
error trials before modification [F(2, 22) = 4.585, p < 0.05] and
after it [F(2, 22) = 4.040, p < 0.05], no significance was found in
post hoc in error trials either before modification or after it.

Effects by the Layout
As mentioned in the section Effects by Model Modification, the
layout of the pattern may also influence the offline accuracy.
Through two-way RM-ANOVA, we found that the interaction
of the two factors was significant [F(2, 22) = 4.424, p <

FIGURE 8 | Offline accuracy and bit rate analysis. (A) Overlapping average per

trial. (B) Single-trial per subject.

0.05]. Therefore, we shifted the two-way RM-ANOVA to one-
way RM-ANOVA to detect the simple effect of each factor.
The layout factor affected error trials significantly in G-P
[F(1, 11) = 6.289, p < 0.05] and in the sum [F(1, 11) = 5.482,
p < 0.05].

When color acted as the factor, significance was only observed
before modification [F(2, 22) = 4.545, p < 0.05; G-P > B-
P: p < 0.05). Nevertheless, the four inner blocks produced
more error trials than the outer ones, and the difference was
significant (Figure 10).

The sum of offline error trials was 48 in the four outer
blocks through the three paradigms, and it counted to 85 in
the inner ones. Specifically, 8,640 times [16 targets × (16–
1) times × 12 subjects × 3 paradigms] was counted by 12
subjects during the three paradigms; thus, 0.56% error rate
occurred in the four outer blocks, and 0.98% occurred in the
inner ones.

Subjects’ Feedback
Subjects were asked to evaluate the tiredness of each paradigm by
scores (1: few; 2: medium; 3: many). To specify the differences, we
also applied Friedman test to investigate the differences on scores.
Friedman test as a type of non-parametric test was appropriate
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TABLE 2 | Online accuracy and bit rate analysis.

Accuracy (%) Bit rate (bit/min) AVT

R-P G-P B-P R-P G-P B-P R-P G-P B-P

S1 100.00 100.00 100.00 24.97 25.71 25.00 2.19 2.19 2.25

S2 100.00 87.50 62.50 27.27 17.07 7.09 2.06 2.31 2.63

S3 100.00 87.50 100.00 23.68 16.20 25.00 2.38 2.44 2.25

S4 100.00 93.75 93.75 23.68 20.17 20.73 2.38 2.31 2.25

S5 100.00 93.75 100.00 24.32 20.17 27.27 2.31 2.31 2.06

S6 100.00 93.75 93.75 26.47 20.73 20.17 2.13 2.25 2.31

S7 100.00 87.50 81.25 26.47 16.62 13.67 2.13 2.38 2.44

S8 100.00 93.75 100.00 25.71 21.32 26.47 2.19 2.19 2.13

S9 100.00 93.75 100.00 24.32 19.13 24.32 2.31 2.44 2.31

S10 93.75 87.50 100.00 20.17 15.79 25.71 2.31 2.50 2.19

S11 87.50 93.75 93.75 16.20 20.73 20.17 2.44 2.25 2.31

S12 100.00 100.00 93.75 26.47 26.47 21.32 2.13 2.13 2.19

AVG 98.44 92.71 93.23 24.14 20.01 21.41 2.25 2.31 2.28

STD 3.72 4.29 10.66 3.01 3.29 5.64 0.12 0.11 0.14

p R-P vs. G-P G-P vs. B-P R-P vs. B-P R-P vs. G-P G-P vs. B-P R-P vs. B-P R-P vs. G-P G-P vs. B-P R-P vs. B-P

0.014 1.000 0.498 0.019 1.000 0.693 0.401 1.000 1.000

AVT refers to an average number of trials consumed to output the feedback; Bonferroni correction has been applied. The bold values mean the highest accuracy, bit rate, and the least

repetition times among those 3 colors, and in the row of p-value, bold one was to highlight the pair which achieved significance.

FIGURE 9 | The error trials before and after modification of the model. Note: the number implies the error trials happened for one subject in one paradigm and the

overall sum of trials was 240 (16 targets × 15 times); the statistical results in this section were all corrected by Bonferroni correction.

for those correlated samples (Table 3). However, no significance
was found toward tiredness (χ2 = 1.267, p > 0.05).

DISCUSSION

The present study mainly focused on the effect of chromatic
stimulus on the performance of an ERP-based BCI and

discussed several related problems stated as follows: (1) the
influence on the offline error trials brought by the layout
and the relationship between the layout and adjacency

distraction, (2) the availability of the conclusion (Li et al.,
2014) applied to the present study that better performance
(including higher accuracy, higher amplitude, and shorter
latency) occurred in a high-luminosity contrast, and (3)
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FIGURE 10 | The error trials contributed by outer and inner blocks. Note: the number implies the error trials happened for one subject in one paradigm and the overall

sum of trials was 240 (16 targets × 15 times); the statistical results in this section were all corrected by Bonferroni correction.

TABLE 3 | Subjects’ feedback to each paradigm.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

R-P 1 1 3 1 2 2 1 2 2 2 3 2

G-P 1 1 1 2 3 2 2 1 1 2 2 1

B-P 2 1 2 1 1 2 2 2 1 2 1 1

A score of “1” means a little tired, “2” means medium, and “3” means quite a lot.

the observation of the ERP components’ waveforms in
this work.

Performance
As for performance, classification accuracy and ITR were the
main indexes to evaluate the performance of a BCI system. The
online result (Table 2) depicted that the highest online averaged
accuracy was obtained by R-P with 98.44%, higher than 92.71%
by G-P, and 93.23% by B-P. In addition, significance was found
between R-P and G-P both over online accuracy (p < 0.05) and
ITR (p < 0.05), under the circumstance that all subjects were
divided into three groups to experience the three paradigms in
three kinds of order. Thus, the effects by the order of process
were eliminated.

To explain the result, some literature in psychology may help.
It was found that longer-wavelength colors including red are
considered as arousing or warm, whereas colors with a shorter
wavelength like green and blue are associated with relaxing
and cool (Nakshian, 1964). For one color as stimulus to be
experienced lasting for 40min at least in our experiment, the
color of stimulus when flashing may exert some psychological
hint to motivate or cool down the emotion of subjects to

some degree. Some psychological experiments found that red
can promote performance on some virtual target-shooting
task (Sorokowski and Szmajke, 2011). They reported that the
participants were able to hit red moving objects significantly
better than blue and black objects, which was much relevant to
our study in both stimulus color and the conclusion. On the
side of biology, it was known that objects’ information of color
was described to be processed in visual area V4 of the human
brain (Dubner and Zeki, 1971) and the cones in human’s eyes
have different light sensitivity to red, green, and blue light. This
paper’s result may give some evidence or reference to help related
biological research.

In related studies, the green/blue flicker paradigm achieved an
80.60% online classification accuracy (Takano et al., 2009). The
paradigm that set a green familiar face as stimulus yielded an
86.1% online accuracy on average (Li et al., 2015). An SSVEP-
BCI utilizing red, green, blue, and violet as stimuli showed that
the violet one gained the highest accuracy of 94.38%, and the red
one obtained 90.21% in wheelchair control application (Singla
et al., 2013). Hence, the novel BCI with chromatic stimulus
is consistent, efficient, and practicable, as judged by extracting
consistent ERP wave features and outstanding mean accuracy
over 90% online experiments for all 12 subjects.

Layout of the Stimulus
In this work, we applied a novel layout paradigm with chromatic
stimulus flashing in blocks on the basis of SCP. The benefits
of this design lie in two parts. One is the problem of double
flash. Considering that eight blocks randomly flashed once
in one trial, and the SOA of one flash is 400ms, a single
target cannot possibly flash twice in a time interval shorter
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than 800ms. The other is adjacency distraction. As shown
in the section Effects by the Layout, the position indeed
influenced the error trials in offline sessions significantly, but
the ratios it caused were 0.56% for the outer blocks and
0.98% for the inner blocks, thereby indicating a comparatively
minor aspect in terms of the whole situation, especially after
model modification.

Color Contrast
As mentioned in the section Color Contrast Calculation, the
color contrast ratio was 2.61:1 for R-P, 1.29:1 for G-P, and
3.66:1 for B-P with a white background. In previous literature
(Nam et al., 2010; Li et al., 2014), all of the values of RGB
channels remained equal, and the groups for contrast were
limited to two. However, when the comparison groups of
stimulus color increased to three in the present study, several
previous results did not show similarity with the trend. In
P300 waveform, no satisfactory significance was shown in
the P300 amplitude of three paradigms within subjects at
Pz, inconsistent with the trend in the literature. For online
accuracy, a higher averaged accuracy was obtained by R-P,
followed by B-P and G-P, as shown in Table 2; hence, G-P had
the lowest color contrast ranked at the bottom, whereas the
results of R-P and G-P cannot be satisfied by that observation.
Moreover, the relationship between color contrast and accuracy
is not linear.

ERP Component
Visual stimulus features such as color are processed in the ventral
stream of visual pathways over the occipitotemporal areas of the
brain (Corbetta et al., 1991; Merigan and Maunsell, 1993).

P2 peak waveform features in the present study resulted
in obtaining a longer latency in G-P at Oz. The oddball
paradigm is one primary way to evoke P2, and its amplitude
can be enhanced to the targets (Ferreira-Santos et al., 2012).
However, in a visual search paradigm, more specific research
has been performed on stimulus features (e.g., color, size,
and orientation) to explore the mechanisms for feature
detection in the brain (Luck and Hillyard, 1994). Thus, the
findings in the present work are relatively supplemented in
this area.

N2, which is an endogenous component similar to P300,
corresponds to visual attention or degree of attention. In the
present study, the N2 latency from G-P was significantly
longer than that of the two other paradigms within all
subjects. This result was caused by a shorter latency
shown in high color contrast, whereas a longer latency
was shown in low color contrast (Li et al., 2014). Here,
“green” obtained the lowest value in color contrast at the
white background.

Meanwhile, P300 and N4 failed to exhibit significance either
in amplitude or in latency. As shown in Figure 5, the three grand
averaged curves were relatively close to each other under the
color shadows of P300 andN4waveforms, thereby indicating that
P300 and N4 were not sensitive to different stimulus colors in
this work.

CONCLUSION

The color of stimulus out of RGB could achieve the best
performance in an ERP-based BCI by designing a novel layout
in a single-character pattern. In detail, R-P yielded the highest
online averaged accuracy and the fastest ITR among the three;
G-P displayed a longer latency in the ERP waveforms of P2
and N2. Moreover, the eight blocks in the paradigm can be
replaced with control commands or be applied to psychological
attention estimation. Further investigation will be performed
on the neural mechanism of our experimental results. Besides,
further improvement may focus on the algorithm improvement,
enhancement of ITR, and fatigue supervision (e.g., heart rate and
body temperature).
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