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Synaptic plasticity serves as an essential mechanism underlying cognitive processes as

learning and memory. For a better understanding detailed theoretical models combine

experimental underpinnings of synaptic plasticity and match experimental results.

However, these models are mathematically complex impeding the comprehensive

investigation of their link to cognitive processes generally executed on the neuronal

network level. Here, we derive a mathematical framework enabling the simplification of

such detailed models of synaptic plasticity facilitating further mathematical analyses. By

this framework we obtain a compact, firing-rate-dependent mathematical formulation,

which includes the essential dynamics of the detailed model and, thus, of experimentally

verified properties of synaptic plasticity. Amongst others, by testing our framework by

abstracting the dynamics of two well-established calcium-dependent synaptic plasticity

models, we derived that the synaptic changes depend on the square of the presynaptic

firing rate, which is in contrast to previous assumptions. Thus, the here-presented

framework enables the derivation of biologically plausible but simple mathematical

models of synaptic plasticity allowing to analyze the underlying dependencies of synaptic

dynamics from neuronal properties such as the firing rate and to investigate their

implications in complex neuronal networks.

Keywords: STDP, synaptic plasticity, calcium, regression analysis, learning, activity-dependency

1. INTRODUCTION

Synaptic plasticity serves as an essential mechanism of neuronal networks being linked to diverse
functional properties such as the cognitive mechanisms of learning and memory (Hebb, 1949;
Martin et al., 2000). Amongst others, to understand the details of this link between synaptic
plasticity and functional properties of a neuronal system, theoretical or mathematical models
of synaptic plasticity are formulated and investigated (Dayan and Abbott, 2001; Gerstner et al.,
2012, 2014). On the one hand, detailed biological models of synaptic plasticity are formulated
closely related to experiments, which provide molecular details or synaptic dynamics given diverse
stimulation protocols (Earnshaw and Bressloff, 2006; Graupner and Brunel, 2010; Graupner and
Brunel, 2012; Antunes et al., 2016; Gallimore et al., 2018). However, to capture the richness of
the underlying molecular processes and to match a wide repertoire of experimental findings, the
resulting theoretical models become mathematically rather complex and often depend on detailed
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spike-timings, which impedes further analysis especially on the
neuronal network level. On the other hand, to investigate the
link between synaptic plasticity and functional properties of
neuronal systems, compact, simple theoretical models of synaptic
plasticity are developed neglecting the underlying biological
details (Tsodyks and Feigelman, 1988; Gerstner and Kistler,
2002; Tetzlaff et al., 2011, 2013; Knoblauch and Sommer,
2016). In contrast to the spike-dependency of the detailed
models, these compact models usually depend on the average
firing rates of neurons (Gerstner and Kistler, 2002). However,
the detailed formulation of these compact models are rather
phenomenological and they are only loosely linked to the detailed
biological models.

Here, we will provide a mathematical method enabling us to
derive a compact, firing-rate-dependent theoretical model from a
biologically detailed spike-based model. For the detailed model,
we consider two versions of a well-established calcium-based
spike-timing-dependent plasticity model (Graupner and Brunel,
2012; Graupner et al., 2016; Li et al., 2016). We will show that this
model can be simplified such that the general dynamics induced
by it can be well-described by a compact, rate-dependent model.

Many experimental studies have been performed to investigate
the multiplicity of molecular processes, which are involved in
synaptic plasticity. Thereby, calcium currents are identified as
key players of at least two molecular processes that mediate
the change in synaptic strength by synaptic plasticity (Kandel
et al., 2000; Lüscher and Malenka, 2012; Korte and Schmitz,
2016). First, inside the cell, calcium triggers different pathways
resulting to changes in the number and phosphorylation of
AMPA receptors yielding the potentiation (strengthening) and
depression (weakening) of synapses (Choquet and Triller, 2013;
Huganir and Nicoll, 2013). The second process is triggered by
endocannabinoids and induces depression of synapses (Sjöström
et al., 2001; Sjöström et al., 2003; Nevian and Sakmann, 2006).
The endocannabinoids are transmitted retrogradely from the
postsynaptic neuron to the presynaptic neuron changing the
neurotransmitter release capability. For this, calcium plays
a crucial role (Hashimotodani et al., 2005; Maejima, 2005).
These molecular findings are integrated into a theoretical
model, in which the postsynaptic calcium concentration within
the dendritic spine directly accounts for synaptic plasticity
(Graupner and Brunel, 2012). The calcium concentration, in
turn, is modulated by spike-dependent pre- and postsynaptic
processes. This calcium-dependent model matches several
experimental findings and represents a biologically detailed
theoretical model of synaptic plasticity.

After introducing our mathematical method to derive
compact models from detailedmodels (see section 2), we simplify
the calcium-dependent model of synaptic plasticity to derive
a compact model with synaptic changes dependent on pre-
and postsynaptic firing rates. We repeat this procedure for
different versions of the considered synaptic plasticity model
as well as neuron model. For all cases, the resulting compact
model reliably matches the dynamics of the detailed model
indicating that, despite the mathematical simplification, the
compact model captures the essentials of synaptic dynamics.
Further analyses of the resulting compact models reveal, amongst

others, that the dynamics of synaptic plasticity are dominated by
the square of the presynaptic firing rate, which is in contrast to
phenomenologically derived compact theoretical models. Thus,
the here developed method enables the derivation of simple,
compact, and rate-dependentmodels from detailed ones allowing
further investigations on the network level without loss of
essential details of the synaptic dynamics.

2. MATERIALS AND METHODS

In this study, we derive a simplified, compact, firing-rate-
dependent mathematical formulation of the detailed dynamics
of spike-timing dependent plasticity. For this, we analyze the
firing rate dependency of the detailed model and, based on this,
estimate the functional relations between activity and synaptic
weight changes by regression analysis. As detailed model, we
consider a well-established calcium-based synaptic plasticity
model, which describes a multitude of plasticity effects based
on the underlying molecular dynamics of calcium currents in
the postsynaptic dendritic spine (Graupner and Brunel, 2012;
Graupner et al., 2016). To take the influence of network effects
and postsynaptic activity dynamics into account, we focus in
our analysis on three fundamental network motifs. These motifs
consist of one or two different presynaptic neuronal populations
connected to one postsynaptic neuron. In the following, first, we
introduce the different consideredmotifs and the detailedmodels
of synaptic plasticity as well as used neuron models (please see
Table 1 for used parameter values). Then, we describe our
generic approach to investigate the firing rate dependencies
of synaptic plasticity to derive a simplified, compact
mathematical description.

2.1. Neuronal Setups
Throughout this study we consider three basic neuronal motifs or
setups: a presynaptic population with independent postsynaptic
neuron (P1; Figure 1, top left), a presynaptic population with
dynamic postsynaptic neuron (P2; Figure 1, topmiddle), and two
presynaptic populations with dynamic postsynaptic neuron (P3;
Figure 1, top right).

Neuronal Population I (P1): This motif consists of one
population of N = 1, 000 presynaptic neurons (single lines
abstracted to one arrow) connected to one postsynaptic neuron
(circle). All presynaptic neurons fire independently from each
other by a Poisson process with frequency u. The postsynaptic
neuron is active by a Poisson process with frequency v. Note, in
this setup the firing of the postsynaptic neuron is independent of
the activity of the presynaptic population, since all spike trains
are generated independently by probabilistic Poisson processes.
These processes can yield, at a specific point in time, different
synaptic weights for different presynaptic neurons. Thus, we
consider the average synaptic strength of the presynaptic
population denoted by w.

Neuronal Population I with neuron model (P2): This setup
is similar to the P1-setup. However, here, the activity of the
postsynaptic neuron is not determined by a Poisson process
(see P1), instead, we consider a biologically detailed neuron
model. For generality, throughout this study we use two
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TABLE 1 | Used values for model parameters.

Synaptic plasticity MAT-neuron AEIF-neuron

Parameter Unit Linear calcium Nonlinear calcium Parameter Unit Value Parameter Unit Value

τCa ms 22.27212 18.93044 τm ms 5 τm ms 9.367

Cpre 0.84410 0.86467 R MΩ 50 EL mV -70.6

Cpost 1.62138 2.30815 S0 mV 20 1T mV 2

θd 1 1 α1 mV 30 VT mV -50.4

θp 2.009289 4.99780 α2 mV 2 R MΩ 33.33

γd 137.7586 111.82515 τ1 ms 10 τz ms 144

γp 597.08922 894.23695 τ2 ms 200 a nS 4

τ s 520.76129 707.02258 refr. time ms 2 b nA 0.0805

α(N) mV/s 400 (P2) / 200 (P3) α(N) mV/s 170 (P2) / 80.5 (P3)

The values for the different calcium-based synaptic plasticity models are taken from Graupner et al. (2016), for the MAT-model from Kobayashi et al. (2009), and for the AEIF-model

from Brette and Gerstner (2005). Please note that those values are derived from experimental data. The scaling constant α(N) was empirically determined by simulation, such that the

maximal postsynaptic firing frequency stays within plausible ranges of activity (max v(u,w) ≈ 130 Hz).

FIGURE 1 | Dynamics of the detailed model of calcium-based synaptic plasticity for three different neuronal setups P1, P2, and P3. The different setups are shown

schematically in the first row. The following rows show (second row; A) the average firing rates, (third row; B) the postsynaptic input current, (fourth row; C) the calcium

concentration of an individual synapse using the LC-model (red) and population average (blue) with standard deviation (blue shading), and (fifth row; D) the synaptic

weight of an individual synapse (red) and population average (blue) with standard deviation (blue shading). Columns 1 and 2: Dynamics of the P1-setup for initial

synaptic strengths of w(t0) = 0.6 and pre- and postsynaptic spike-firing of u = v = 40Hz (column 1; LTP) and u = 40Hz and v = 5Hz (column 2; LTD). Columns 3

and 4: Same as in columns 1 and 2 for the P2-setup with presynaptic spike-firing of u = 60Hz (column 3; LTP) and u = 30Hz (column 4; LTD). Columns 5 and 6:

Same as in previous columns for P3-setup of two, competing presynaptic populations 1 (blue) and 2 (green) with initial synaptic weights of w1(t0) = 0.9, w2(t0) = 0.6

and presynaptic spike-firing of u1 = 5Hz, u2 = 60Hz (column 5; no competition) and u1 = 5Hz, u2 = 80Hz (column 6; strong competition). In all cases the

populations consist of N = 1, 000 synapses. The continuous presynaptic activities were obtained by averaging all N spiketrains and temporally filtering with an alpha

function window of 100ms width. The postsynaptic activities were obtained with an alpha function window of 500ms width and using the MAT-model. The calcium

and current traces were filtered with a moving average of 25ms width.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 May 2019 | Volume 13 | Article 26

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lappalainen et al. Theoretical Framework for Firing-Rate Models

different neuron models; the so-called Multi-timescale Adaptive
Threshold model (MAT; Kobayashi et al., 2009) and the
Adaptive Exponential Integrate-and-Fire model (AEIF; Brette
and Gerstner, 2005). Thus, the activity of the presynaptic
population can influence the firing of the postsynaptic neuron.
Consequently, the change in the postsynaptic firing rate (v̇)
depends on u and w, i.e., v̇(u,w), which in turn influences the
dynamics of synaptic plasticity (ẇ).

Neuronal Population II (P3): This motif is an extension of
the P2-setup. Here, two presynaptic populations 1 and 2 are
connected to the same postsynaptic neuron with each population
consisting of independently firing neurons with population-
specific frequency u1 and u2, respectively. Thus, the firing of
the postsynaptic neuron depends on the presynaptic firing rates
and strength of the connecting synapses of both presynaptic
populations (v̇(u1, u2,w1,w2)). Note, the only difference between
both populations is the firing frequency, as all other parameters
are set to be the same. Consequently, we only investigate the
influence of the firing rate of the first population as results also
hold for the second population.

2.2. Calcium-Based Synaptic Plasticity
Model
The strength of an individual synapse connecting a presynaptic
neuron i with the postsynaptic one, denoted by ρi, underlies
the following dynamic (Graupner and Brunel, 2012;
Graupner et al., 2016):

τρ̇i = γp(1− ρi)H(ci(t)− θp)
︸ ︷︷ ︸

LTP

− γdρiH(ci(t)− θd)
︸ ︷︷ ︸

LTD

+Noisei(t).

(1)
The first term describes the processes of long-term potentiation
(LTP) at a synapse with γp being the rate of synaptic increase, θp
being the potentiation threshold. ci(t) is the activity-dependent
postsynaptic calcium-concentration, which is described either by
a linear calcium model (LC; see section 2.2.1) or a more complex
nonlinear calcium model (NLC; see section 2.2.2). H(x) denotes
the Heaviside function. Analogously, the second term describes
the processes of long-term depression (LTD) at a synapse in
accordance to the parameters γd and θd.

The noise term accounts for coincidental activity-dependent
dynamics and non-plasticity related weight dynamics and is
given by

Noisei(t) = σ
√

τ

√

H(ci(t)−θp)+H(ci(t)−θd) ηi(t), (2)

where τ is the same temporal constant as in Equation 1, σ is
a constant amplitude parameter, and ηi(t) represents Gaussian
white noise with mean zero and unit variance drawn for each
synapse individually.

2.2.1. Linear Calcium Dynamics (LC)
In the linear calcium (LC) model, the dynamics of the
intracellular calcium concentration of the postsynaptic spine for
each synapse, denoted as ċi, is given by:

ċi = − ci

τCa
+ Cpre6k δ(t − tik)+ Cpost6l δ(t − tl), (3)

where τCa is the time constant of the calcium decay. The calcium
concentration increases with pre- and postsynaptic spike times ti

k
and tl of amplitudes Cpre and Cpost, respectively. Delays between
spiking events and the flow of ions are neglected as such delays
only shift the independent, probabilistic spike events in the time
domain. Please note, instead of Equation 3, we also consider a
more complex set of equations to model the calcium dynamics as
described in the following.

2.2.2. Nonlinear Calcium Dynamics (NLC)
In the nonlinear calcium (NLC) model, the calcium
concentration ci(t) = ci,pre(t) + ci,post(t) is determined by
presynaptically evoked transients of calcium, described by

ċi,pre = −
ci,pre

τCa
+ Cpre6kδ(t − tik), (4)

and postsynaptically evoked transients of calcium given by

ċi,post = −
ci,post

τCa
+ Cpost6lδ(t − tl)+ ξ6lδ(t − tl)ci,pre, (5)

where the quantities τCa, t
i
k
, tl, Cpre and Cpost are analog to the

linear calcium model. The nonlinearity factor

ξ =
2(Cpost + Cpre)− Cpost

Cpre
− 1 (6)

couples the pre- and postsynaptic calcium concentrations
(Graupner et al., 2016).

2.3. Neuron Model
2.3.1. Multi-Timescale Adaptive Threshold Neuron

(MAT)
The multi-timescale adaptive threshold (MAT) model
(Kobayashi et al., 2009; Yamauchi et al., 2011) describes the
postsynaptic membrane potential as a leaky integrator:

τmV̇ = −V(t)+ RI(t), (7)

where τm is the membrane time constant, R the membrane
resistance, and I the excitatory postsynaptic current. The
excitatory postsynaptic current provides the linkage to the
calcium-based plasticity model by summing the incoming spikes
dependent on the synaptic weights:

I(t) = α(N)
τm

R

N
∑

i=1

ρiδ(t − tik). (8)

N denotes the size of the presynaptic population, ρi the
synaptic strength connecting the presynaptic neuron i to the
postsynaptic neuron, ti

k
the presynaptic spiking times, and α(N)

is a population-size-dependent scaling constant for the current.
After each postsynaptic spike time tj, the spiking threshold S

gets adapted by

S(t) =
∑

j

1(t − tj)+ S0, (9)
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with S0 being the resting threshold. The update of the threshold
and its decay is described by multiple timescales, τ1 and τ2, and
amplitudes, α1 and α2, and is given by

1(t) = α1 exp(−t/τ1)+ α2 exp(−t/τ2).

2.3.2. Adaptive Exponential Integrate-and-Fire

Neuron (AEIF)
The adaptive exponential integrate-and-fire (AEIF) model
(Brette and Gerstner, 2005) describes the postsynaptic membrane
potential as

τmV̇ = −V + EL + 1T exp

(
V − VT

1T

)

− Rz + RI, (10)

where τm = C
gL

= CR is the membrane time constant composed

of the membrane capacitance C and the leak conductance gL, EL
is the leak reversal potential,VT the spiking threshold,1T a slope
factor, I the excitatory postsynaptic current as given in Equation
8, and z is the adaptation current determined by

τz ż = a(V − EL)− z. (11)

Here, τz denotes the adaptation time constant and a the
subthreshold adaptation. Once a spike is triggered, the variable
z is increased by an amount b which denotes the spike-triggered
adaptation and V is reset to the reset potential Vr = EL.

2.4. Acquisition of Data, Transformation,
and Analysis
The acquisition of the data resulting from the detailed model
and its transformation to an activity-dependent, compact model
of synaptic plasticity is carried out in a similar manner for all
three different neuronal setups, two plasticity, and two neuron
models. In the following, the corresponding steps taken are
explained (Figure 2).

Step I: Simulation of Calcium-Based STDP.
We solve the differential equations of synaptic (and neuronal)
dynamics numerically by the Euler method with time step 1t =
0.5ms for different presynaptic input frequencies. The parameter
space of the system is given by the presynaptic firing frequency u
(and postsynaptic activity v for P1) between 0 and 100 Hz (with a
step size of 1 Hz) and the initialization of the synaptic strength
w(t0) between 0 and 1 (in arbitrary units) with a step size of
0.05. Please seeTable 2 for an overview of the analyzed parameter
spaces. An exemplary time evolution of the involved quantities
is shown in Figure 1 for the LC-model (section 2.2.1) with the
MAT neuron model (section 2.3.1). Due to the fast time constant
for the calcium concentration (τCa), the calcium concentration is
initialized at zero.

As the activities drive the change of synaptic weights, given
each pair of pre- and postsynaptic spike train, we calculate the
average synaptic strength (w̄) of all synapses (ρi) across a period
of two seconds:

w̄(u, v,w, t) = 1

N

N
∑

i=1

ρi(t), (12)

FIGURE 2 | Generic approach to derive the firing rate dependencies of

calcium-based STDP. Step I involves the simulation of the detailed

calcium-based STDP model. Step II transforms the data obtained in Step I to

rate-dependent data of synaptic plasticity. In Step III the rate-dependent data

is analyzed using a regression algorithm and the results are evaluated.

where N is the size of the presynaptic population and ρi is given
by solving Equation 1 with corresponding calcium dynamics
numerically. Alongside, the numerical simulation yields the
activity of the postsynaptic neuron. The latter is preset for P1
or calculated as spike count over 500ms for P2 and P3, denoted
as v(u,w) for P2 and v(u,w) for the P3-setup (here x indicates a
vector). However, the resulting w̄(u, v,w, t) is analyzed further in
Step II described next.

Step II: Transformation to Rate-Based Data for

Synaptic Plasticity.
The mean synaptic strength w̄(t) from the numerical solution
of the detailed synaptic plasticity model is further approximated
by cubic splines to w̃(t). By this, the result is regularized
from random fluctuations and enables us to calculate a
reliable numerical derivative at the initial point in time. This
approximation is described by

w̃(u, v,w, t) = Splinek=1
s=0.1(w̄(u, v,w, t)), (13)

where Spline is the UnivariateSpline function in the python
library scipy.interpolate with parameters k and s. Here, k is
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TABLE 2 | Mathematical notations for the different neuronal setups.

Postsynaptic firing Change in synaptic strength Parameter space

P1 v is preset ẇnum(u, v,w) �1 = {(u, v,w) : u, v ∈ [0, 100],w ∈ [0, 1]}
P2 v = v(u,w) ẇnum(u, v(u,w),w) �2 = {(u, v,w) : u ∈ [0, 100], v = v(u,w),w ∈ [0, 1]}
P3 v = v(u,w) ẇnum

1 (u1, v(u,w),w1) �3 = {(u, v,w) : u1,2 ∈ [0, 100], v = v(u,w),w1,2 ∈ [0, 1]}

the degree of the smoothing spline and s specifies the number
of knots. The routine increases the number of knots until the
smoothing condition

∫ T
0 (w̄(t)− w̃(t))2dt ≤ s is satisfied.

By considering the synaptic dynamics w̃(u, v,w, t) only
around the first time point t = 0, on the one hand, the direct
time-dependency is eliminated and, on the other hand, the
weight-dependency of synaptic plasticity becomes controllable
by neglecting its long-term development. Instead, we scan the
weight-dependency of the weight change by considering different
initial values for w. Thus, the change in synaptic strength of the
population can be expressed as:

˙̂w(u, v,w) = ˙̃w(u, v,w, t = 0). (14)

Please note that the resulting ˙̂w(u, v,w) does not significantly
depend on the initial distribution of ρi (see Figure S1). We
average the change in synaptic strength of the population over
several statistically independent initializations z (total number of
intializations Z = 100 for P1, P2 and Z = 38 for P3) of the
same parameter set. By this, we obtain the final overall change
in synaptic strength (from numerics)

ẇnum(u, v,w) = 1

Z

Z
∑

z=1

˙̂wz(u, v,w). (15)

In case of P3, in which we consider two independent presynaptic
populations, thus, v(u1, u2,w1,w2), we add indices in order to
differentiate between both populations such that

ẇnum
1 (u1, v,w1) and ẇnum

2 (u2, v,w2) (16)

describe the change of the average synaptic strength of
population 1 and 2, respectively. As mentioned before, in the P3-
setup both populations dynamics are similar. Therefore, we will
only consider the weight changes and variables related to the first
population, if not stated otherwise.

In summary, based on these definitions for all neuronal setups
(Table 2), the (average) synaptic weight changes of the detailed
model ẇ commonly depends on the average population firing rate
u, the postsynaptic firing rate v, and the average synaptic strength
w, which are all local variables of synaptic plasticity (Gerstner and
Kistler, 2002).

Step III: Regression Analysis.
Given the transformation of the numerical data from spike-
dependencies to firing rate dependencies (Step II), in the
following, we fit our rate-based data of synaptic changes
ẇnum(u, v,w) by regression analysis to obtain compact

mathematical formulations of the underlying weight dynamics.
Thus, we will obtain a function of the form of

ẇij = f (uj, vi,wij), (17)

with i being the postsynaptic and j the presynaptic neuron.
To obtain such a function, we fit the rate-dependent data

(Step II) by a Taylor series expansion containing combinations
of the involved state variables u, v,w (for better readability we
omit the neuronal indices) with coefficients cαβγ . The indices α,
β , and γ indicate the order of the state variables u, v, and w in the
corresponding feature uαvβwγ :

ẇ =c000 + c100 u+ c010 v+ c001 w+ c200 u
2 + c110 uv

+ c101 uw+ c020 v
2 + c011 vw+ c002 w

2 + · · · .
(18)

Here, we limit the amount of considered features (individual
terms) to the 27 listed in Table 4 to reduce the number
of possible combinations for the regression analysis. These
are all features with α, β , γ ∈ {0, 1, 2}; thus, individual state
variables of these features are maximally of the second order.
The choice of the second order is related to general rate-
based equations used in literature, such as the Hebb rule
(Hebb, 1949), the Oja rule (Oja, 1982), or the BCM rule
(Bienenstock et al., 1982). In all these equations, no quantity
is higher than the second order (Tetzlaff et al., 2011). Of
course, higher orders or rather more features can be considered
if required.

The regression algorithm, we use, is a weighted
linear least squares regression and thus minimizes the
weighted sum of squared residuals. The weights are
inferred from the variance across the results from the Z
independent initializations. As a measure of accuracy, the
weighted coefficient of determination (R2) was determined
from 5-fold cross-validation. Note that it was further
unbiased with respect to the number of considered
features (Theil, 1958; Willett and Singer, 1988).

Qualitative Analysis of Resulting Compact Models
From the procedure described above we obtain a compact model
consisting of a simplified differential equation, which resembles
the dynamics of the corresponding complex model. However, to
provide a better understanding of the underlying properties of
the resulting compact models, we will assess whether these fulfill
several qualitative characteristics of synaptic plasticity identified
from numerical results (here we focus on the LC-model). For
this, we define nine different qualitative characteristics, which are
provided in the following. Please note that these characteristics

Frontiers in Computational Neuroscience | www.frontiersin.org 6 May 2019 | Volume 13 | Article 26

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lappalainen et al. Theoretical Framework for Firing-Rate Models

are defined such that a compact model can either fulfill them
or not.

1. LTP Area: If the average synaptic weight is below a certain
value, essentially for all combinations of pre- and postsynaptic
frequencies, LTP dominates the synaptic changes. The LTP
Area weight value is about 0.3 (ẇ(w) > 0 for w > 0.3).

2. LTD Increase: If the synaptic weight is between the LTP
Area weight value and the equilibrium value of the synaptic
dynamics (w∗), the influence of LTD on the synaptic dynamics
increases with larger weight values which, in turn, decreases
the overall influence of LTP with LTP still being the dominant
process (ẇ > 0 with ẇ(w1) > ẇ(w2) for w1 < w2).

3. LTD Area: If the synaptic weight is above the equilibrium
value w∗, LTD dominates the synaptic weight dynamics for all
combinations of pre- and postsynaptic frequencies (ẇ(w) < 0
for w > w∗).

4. Invariability: If the pre- and postsynaptic activities are below
10Hz, synaptic changes become negligible (ẇ ≈ 0 for
u, v < 10).

5. Curvilinearity: For increasing pre- and/or postsynaptic
activities (above 10Hz), ẇ(u, v) switches from a convex
function to a concave function.

6. Saturation: For high levels of neuronal activity, synaptic
changes (ẇ) become independent of the actual frequency of
neuronal activities.

7. w-Behavior: For the P1-setup, the change of synaptic
weights depends linearly on the actual synaptic weight
(ẇ(w)≈w). For the P2- and P3-setup, ẇ(w) has
one maximum.

8. Competition: (Only for the P3-setup) If one population
is highly active, the connections from the second to the
postsynaptic neuron experience depression via competition.

9. Steadiness: (Only for the P3-setup) If the activity of one
population approaches a maximum level, the influence of the
other population on the system dynamics is negligible.

3. RESULTS

In this study, we develop a simple, compact mathematical model
by inferring the neuronal firing rate dependency of synaptic
plasticity from a detailed, calcium-based synaptic plasticitymodel
(Graupner and Brunel, 2012; Graupner et al., 2016). For this,
we consider three different neuronal setups of one (P1, P2) or
two (P3) presynaptic neuronal population(s) connected onto one
postsynaptic neuron and analyze the dependencies of synaptic
changes (ẇ) on the (average) pre- and postsynaptic neuronal
activities (u, v) and the corresponding synaptic weight (w).
For generality, we consider two different models of synaptic
plasticity and two different neuron models (see section 2). In
other words, for a given neuron model, plasticity model, and

FIGURE 3 | Firing rate-dependent synaptic plasticity dynamics for the three different neuronal setups P1 (left) P2 (middle), and P3 (right). Data for the LC-model with

the MAT neuron model are shown. (A) Activity-based change in synaptic strength for the reference fit with 27 features (F = 27) for predefined initial synaptic weights

(odd panels) and neuronal activities (even panels) for each neuronal setup, respectively. Deviations from simulated data are negligible. (B) Same as in (A) for the best

model with three features (F = 3). (C) For a wide variety of number of features the corresponding models (indicated by the coefficient of determination R2) match the

simulated data describing the dependencies of synaptic weight changes on activities and current weight.
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neuronal setup, first, we simulate the dynamics of the detailed
plasticity model given different levels of pre- and postsynaptic
activities. Then, we transfer the data from spiking-based to rate-
based and, finally, fit the activity-dependencies by regression
analysis. This analysis provides the synaptic changes given
different terms or features of pre-, postsynaptic activity, and
the synaptic weight and is repeated for other combinations
of models and setups. For details please see section 2. Please
note that, in the following, we will focus on synaptic plasticity
with linear calcium dynamics (LC-model; section 2.2.1) with the
MAT neuron model (section 2.3.1) to explain the basics of our
approach and results.

We restricted the regression analysis by considering maximal
second order terms resulting in 27 different features of u, v,w
each individually weighted (see Table 4 for all considered
features). Thus, for all neuronal setups, we searched for the most
relevant combinations of 27 features that fit best the simulation-
based dependencies evaluated by calculating the coefficient of
determination between fit and simulation data from 5-fold
cross-validation in the four-dimensional space of ẇ,w, u, v (see
Figure 3A for different intersections). The resulting best fits
serve as reference estimator of the corresponding setup. The
reference estimators reached accuracies of R2 = 0.981 for
the P1-setup (Figures 3 A.1,A.2,C.1), R2 = 0.986 for the P2-
setup (Figures 3 A.3,A.4,C.2), and R2 = 0.963 for the P3-setup
(Figures 3A.5,A.6,C.3). To compare the resulting estimators
more qualitatively with the simulation data, we defined nine
characteristics of the simulated synaptic weight changes and
analyzed whether the resulting estimators or compact models
match these (see Material and Methods and Table 3). The
reference estimators meet all characteristics (except Saturation
and, additionally, Steadiness in P3) and, thus, the reference
estimators basically describe the dynamics of the detailed,
calcium-based synaptic dynamics. However, common simple
models of synaptic plasticity consist of a small number of
individual terms (Gerstner and Kistler, 2002; Tetzlaff et al.,

2011; Gerstner et al., 2014). Thus, we repeated the regression
analysis searching for the combination of three features fitting
best the data (Figure 3B) and compared the most accurate three-
feature-estimators with the corresponding reference estimator. As
expected, the lower number of considered features fits the data
less accurate (see Figure 3C), however, the resulting differences
remain quantitative (large values of R2) and qualitative small
(compare Figure 3B with A).

In more detail, starting with the P1-setup consisting of one
presynaptic population connected to a postsynaptic neuron
of clamped activity, the most accurate three-feature-estimator
(Figures 3B.1,B.2) is given by

P1-setup: ẇ = c010 v+ c011 vw+ c102 uw
2 (19)

with an accuracy of R2 = 0.810 (with weighting cαβγ of feature
uαvβwγ ; c010 = 0.007832 ± 5 · 10−6, c011 = −0.009186 ±
8 · 10−6, c102 = −0.000989 ± 4 · 10−6). This model fulfills
all linear and nonlinear characteristics except the nonlinear
characteristics of Invariability, Saturation, and Curvilinearity

(Table 3). Next, the most accurate three-feature-estimator for the
P2-setup (Figures 3B.3,B.4), which is a presynaptic population
connected to a postsynaptic neuron with dynamic postsynaptic
activity, is

P2-setup: ẇ = c200 u
2 + c110 uv+ c202 u

2w2 (20)

with an accuracy of R2 = 0.822 (with c200 = 0.0001900 ± 10−7,
c110 = 0.0000527 ± 3 · 10−7, c202 = −0.0001197 ± 4 · 10−7)
and fulfilling the majority of the characteristics correctly except
Saturation and Curvilinearity (Table 3). Finally, the best three-
feature-estimator for the P3-setup (Figures 3B.5,B.6), which is
similar to the P2-setup except that it consists of two presynaptic
populations, is given by

P3-setup: ẇ = c200 u
2 + c210 u

2v+ c202 u
2w2 (21)

TABLE 3 | Assessment of best fit models with nine qualitative characteristics.

Setups P1 P2 P3 P1 P2 P3

R2 0.810 0.822 0.652 0.981 0.986 0.963

R2
U

- - - 0.967

Estimator (Equation 19) (Equation 20) (Equation 21) Reference (F = 27)

Quality

1 LTP Area X X X X X X

2 LTD Increase X X X X X X

3 LTD Area X X X X X X

4 Invariability 7 X X X X X

5 Saturation 7 7 7 7 7 7

6 Curvilinearity 7 7 7 X X X

7 w-Behavior X X X X X X

8 Competition - - 7 - - X

9 Steadiness - - 7 - - 7

(Left) Assessment of the best individual model for each neuronal setup and (Right) the reference fit.
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with an accuracy of R2 = 0.652 (with c200 = 0.0000227±2 ·10−9,
c210 = 0.0000004 ± 1 · 10−10, c202 = −0.0000789 ± 7 · 10−9)
and depicts five of nine characteristics correctly (all
except Saturation, Curvilinearity, Steadiness, and
Competition; Table 3).

Although the three-feature-estimators do not match the
nonlinear aspects (e.g., Curvilinearity) of the detailed synaptic
plasticity dynamics, the resulting rules (Equations 19–21) reliably
match the basics of synaptic plasticity, for instance the regimes
of LTP and LTD. Thus, they are representing simple, compact
mathematical models of synaptic plasticity specifically for
each setup.

Given the different models with numbers of features ranging
from three to ten (Figure 3C), we analyzed the consistency of
each feature within all the eight best estimators per setup to derive

which features are generally powerful in describing synaptic

plasticity. For the P1-setup, the accuracies of these estimators
range from 0.810 for three features to 0.975 for ten features

(Figure 3C.1). For the setups P2 and P3, the accuracies lie in
[0.822, 0.979] and [0.652, 0.956], respectively (Figures 3C.2,C.3).

Next, we repeated these analyses for all models and derived
the absolute frequency for each feature occurring in the eight
best estimators (Table 4). For the P1-setup the most frequently
occurring features are uv, uw and vw. The Hebbian correlation
terms (uv and uvw) are also often present in the P2- and
P3-setup. Interestingly, besides the Hebbian terms, for all setups
and models, the u2- and u2w-feature occur frequently. This
suggests that the square of the presynaptic firing rate is an
important component influencing synaptic weight dynamics.
To verify this finding, we excluded all features having a u2-
term and derived new estimators. These estimators match
the data from the detailed model less accurately (red in
Figure 3C) than the estimators with u2-terms (blue). Note
that, if for instance all terms being linear in u are excluded
(green), the R2-values of the resulting estimators are similar
to the complete estimators emphasizing the importance of
the u2-terms. Thus, we conclude a general trend toward
a significant correlation between synaptic plasticity and the
square of presynaptic activity, which is not often considered
in literature.

TABLE 4 | Number of occurrences of each feature for the eight best estimators for each setup and different models.

P1 P2 P3

LC NLC LC + MAT NLC + MAT LC + AEIF LC + MAT NLC + MAT LC + AEIF

1 1 - - - - - - - -

2 u 2 - 4 - 5 3 - 6

3 v 8 - 4 4 1 - - -

4 w - - - - - - - -

5 u2 7 - 8 - 8 8 - 8

6 uv 2 8 4 8 7 7 3 7

7 uw 4 6 2 - 2 - - -

8 v2 - 6 - 3 2 5 - -

9 vw 8 7 4 1 5 6 6 3

10 w2 - - - - - - - -

11 u2v - 2 2 2 - 1 5 1

12 u2w 5 6 7 6 6 7 2 7

13 uv2 1 1 - 3 3 3 5 2

14 uvw 1 6 5 6 1 - - 3

15 uw2 2 - - - - - - -

16 v2w - - 3 3 3 - - -

17 vw2 - - 4 - - 1 2 4

18 u2v2 3 3 2 - - 3 4 4

19 u2vw - - 1 3 - - 3 -

20 u2w2 - - 1 - 2 1 6 2

21 uv2w 1 2 - 3 3 2 5 -

22 uvw2 3 1 - - 2 - - -

23 v2w2 3 - 1 2 1 - 3 -

24 u2v2w - 1 - 3 - 1 4 1

25 u2vw2 1 1 - - - - 1 2

26 uv2w2 - 1 - 1 1 1 - -

27 u2v2w2 1 1 - 4 - 3 3 2

For each setup-model combination, the three most occurring features are highlighted in gray. LC: linear calcium model (section 2.2.1); NLC: non-linear calcium model (section 2.2.2);

MAT: multi-timescale adaptitive threshold neuron model (section 2.3.1); AEIF: adaptive exponential integrate-and-fire neuron model (section 2.3.2).
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After deriving the best compact model for each setup
(Equations 19–21), next, we will derive the model which
most precisely describes synaptic plasticity regarding all three
different neuronal setups. For that purpose we are focusing on
the LC-model with the MAT neuron model. We consider a
unified accuracy measure R2U being the mean over all individual
accuracies minus their standard deviation. Subtracting the
standard deviation is meant to avoid a bias with respect to a
certain setup.

In the following, we will discuss the three most accurate
unified estimators resulting from this analysis (Table 5): The first
most accurate unified estimator is

ẇ = c200 u
2 + c210 u

2v+ c201 u
2w (22)

with c200 = 0.0000228± 4 · 10−9, c210 = 0.0000004± 2 · 10−10,
c201 = −0.0000789±2 ·10−8. Please note that the cαβγ -values for
all unified estimators are derived from a 5-fold cross-validation
across all setups and models.

The second estimator is

ẇ = c200 u
2 + c210 u

2v+ c202 u
2w2 (23)

with c200 = 0.0000360± 4 · 10−9, c210 = 0.0000004± 2 · 10−10,
c202 = −0.0000786 ± 2 · 10−8. Both estimators or models
contain the features u2, u2v and only differ slightly in their
stabilizing features u2w and u2w2 (c201, c202 < 0). Quantitatively,
they best match the neuronal setup P2. Qualitatively, they
fail in correctly describing several characteristics of synaptic
plasticity (Table 5).

On the other hand, the third most accurate unified estimator
contains Hebbian terms (uv and uvw) as well as a stabilizing one
uw2 with c102 < 0:

ẇ = c110 uv+ c111 uvw+ c102 uw
2 (24)

with c110 = 0.0001272± 3 · 10−8, c111 = −0.0001444± 4 · 10−8,
c202 = −0.0011699 ± 2 · 10−7. Interestingly, this estimator
matches best the P1-setup and it qualitatively generalizes
better than the two most accurate unified estimators. It also
correctly depicts diverse characteristics of synaptic plasticity. In
addition, this estimator best captures the dynamics considering
the nonlinear calcium dynamics (Table 6). We simulated the
activity-dependent synaptic plasticity dynamics of this estimator
(compact model) and compared it with the detailed, calcium-
dependent model for the different setups using the LC-model
with MAT neuron model (Figure 4). Overall, the compact model

TABLE 5 | Assessment of the best three unified models describing the collective dynamics of all three neuronal setups with nine qualitative characteristics.

Setups P1 P2 P3 P1 P2 P3 P1 P2 P3

R2 0.629 0.677 0.626 0.604 0.739 0.652 0.798 0.601 0.630

R2
U

0.620 0.610 0.599

Estimator (Equation 22) (Equation 23) (Equation 24)

Quality

1 LTP Area X X X X X X X X X

2 LTD Increase 7 X 7 7 7 7 X X X

3 LTD Area X 7 7 X X 7 X X X

4 Invariability X X X X X X X X X

5 Saturation 7 7 7 7 7 7 7 7 7

6 Curvilinearity 7 7 7 7 7 7 7 7 7

7 w-Behavior X X 7 7 X X X X X

8 Competition - - 7 - - 7 - - 7

9 Steadiness - - 7 - - 7 - - 7

Only data for the LC-model with the MAT neuron model are shown.

TABLE 6 | R2-values for the unified estimators across all models.

Model

Estimator
c200 u

2
+ c210 u

2v + c201 u
2w

(Equation 22)

c200 u
2

+c210 u
2v+c202 u

2w2

(Equation 23)

c110 uv + c111 uvw + c102 uw
2

(Equation 24)

P1 LC 0.629 0.604 0.798

P2 LC + MAT 0.677 0.739 0.601

P3 LC + MAT 0.626 0.652 0.630

P1 NLC 0.485 0.517 0.800

P2 NLC + MAT 0.261 0.511 0.665

P3 NLC + MAT 0.317 0.427 0.644

P2 LC + AEIF 0.743 0.799 0.434

P3 LC + AEIF 0.700 0.715 0.456
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matches the dynamics of the complex model especially in the
long-term dynamics for LTP as well as LTD. Thus, the long-term
dynamics of the rate-based model converge to the synaptic value
of spike-timing-dependent plasticity.

However, the effect of competition between two neuronal
populations is not well matched by the simple rate-based model
(Figures 4E,F). If we allow a fourth feature in the estimator, the
resulting compact model describes competition, too (Figure 5).
This is also an example indicating that, if a specific property
of the detailed model is desired, one has to consider more
features to obtain a compact model which also includes this

property. Similarly, if a compact model is desired which matches
more accurate the detailed model, more features have to be
incorporated (see e.g., Figure 3C).

In summary, our results lead to the conclusion that
features of squared presynaptic activity are well describing
and likely be associated to synaptic plasticity. Nevertheless,
the third unified estimator (Equation 24) provides evidence
that models of other features exist that better describe
the qualitative linear characteristics of synaptic plasticity
throughout different neuronal setups while they quantitatively
perform worth.

FIGURE 4 | Comparison of spike-timing dependent synaptic plasticity with rate-based synaptic plasticity according to the third unified estimator (Equation 24). Here,

we show the results using the LC-model with the MAT neuron model. (A,B): Dynamics of P1 for global initial synaptic strengths of w = 0.3 and pre- and postsynaptic

spike-firing of u = v = 35Hz (A; LTP) and w = 0.7 and u = v = 20Hz (B; LTD). The rate-based plasticity (RBP) is illustrated in red whereas the average spike-timing

dependent plasticity (STDP) is illustrated in blue. (C,D) Same as in (A,B) for P2 with global initial synaptic strengths of w = 0.3 and presynaptic spike-firing of

u = 65Hz (C; LTP) and w = 0.9 u = 36Hz (D; LTD). The rate-based plasticity (RBP) is illustrated in red whereas the average spike-timing dependent plasticity (STDP)

is illustrated in blue. (E,F) Same as in C,D for competitive behavior in P3 of two presynaptic populations 1 (blue) and 2 (green) with initial synaptic weights of w1 = 0.9,

w2 = 0.6 and presynaptic spike-firing of u1 = 5Hz, u2 = 75Hz (E; no competition) and u1 = 5Hz, u2 = 90Hz (F; strong competition). The rate-based plasticities for

populations 1 and 2 are illustrated in yellow and red respectively. The corresponding average spike-timing dependent plasticity is illustrated in blue and green. In all

cases the populations consist of N = 1, 000 synapses.

FIGURE 5 | Comparison of spike-timing dependent synaptic plasticity with rate-based synaptic plasticity according to the third unified estimator (Equation 24) with

the additional feature vw2. As in Figure 4, we show the results using the LC-model with the MAT neuron model. (A,B): Dynamics of P1 for global initial synaptic

strengths of w = 0.3 and pre- and postsynaptic spike-firing of u = v = 35Hz (A; LTP) and w = 0.7 and u = v = 20Hz (B; LTD). The rate-based plasticity (RBP) is

illustrated in red whereas the average spike-timing dependent plasticity (STDP) is illustrated in blue. (C,D) Same as in (A,B) for P2 with global initial synaptic strengths

of w = 0.3 and presynaptic spike-firing of u = 65Hz (C; LTP) and w = 0.9 u = 36Hz (D; LTD). The rate-based plasticity (RBP) is illustrated in red whereas the average

spike-timing dependent plasticity (STDP) is illustrated in blue. (E,F) Same as in (C,D) for competitive behavior in P3 of two presynaptic populations 1 (blue) and 2

(green) with initial synaptic weights of w1 = 0.9, w2 = 0.6 and presynaptic spike-firing of u1 = 5Hz, u2 = 75Hz (E; no competition) and u1 = 5Hz, u2 = 90Hz (F;

strong competition). The rate-based plasticities for populations 1 and 2 are illustrated in yellow and red respectively. The corresponding average spike-timing

dependent plasticity is illustrated in blue and green. In all cases the populations consist of N = 1, 000 synapses.
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4. DISCUSSION

We developed a method to derive a simple, compact
mathematical model of synaptic plasticity based on a biologically
detailed, calcium-based model. In contrast to the detailed model,
the resulting simple model can be used for further analytical
and/or numeric analysis of, for instance, large-scale systems.

An alternative method is, for instance, to derive the cross-
correlation function of neuronal firing (Brunel and Hakim, 1999;
Ostojic et al., 2009) and, then, to incorporate this function into
a mean-field model of synaptic plasticity (Kempter et al., 1999).
This method is mathematically more accurate as our method
and it can also be used to investigate the self-organization of
neural circuits (Ocker et al., 2015; Tannenbaum and Burak, 2015).
However, deriving the cross-correlation function of neuronal
firing or the mean-field model of synaptic plasticity for diverse
detailed neuron and plasticity models is very complex and, up to
now, not always possible. On the other hand, the complexity of
our method depends less on the considered neuron and synaptic
plasticity models.

We considered two different versions of the calcium-based
STDP model with parameters which where determined by
Graupner et al. (2016) on slices of the visual cortex frommacaque
monkeys. Of course, these parameters (and also from the neuron
model) could vary for different brain regions. However, with
the here-developed method one can easily link these parameters
to simpler models of plasticity. Given that the function of
a brain region is mainly determined on the network level,
by using the resulting simple model one can investigate the
influence of the parameters on the functional properties of the
brain regions.

Overall, we cannot guarantee that we applied the optimal
weighting of the observations and thus found the best linear
unbiased estimator. Technically, it could be checked if the whole
covariancematrix of the N observations in Z initializations would
provide a better weighting. However, this is computationally
not feasible, especially for the case of P3 with 4.5 Mio.
observations. Furthermore, we considered the estimators or
models with the highest R2 while taking the next best
model into account could yield other reasonable learning rules
matching, for instance, more qualitative characteristics (see for
instance Equation 24). If a compact model is required, which
matches the detailed model with a higher accuracy, instead
of three features, one can easily allow more features being
present in the final estimator (Figure 3C). Furthermore, by
considering features of higher order than two in Step III,
the resulting final estimators could describe additional aspects
of the detailed model. However, given the increased number
of features, the regression procedure would require more
computational resources.

The results for individual learning rules of the considered
neuronal populations did not significantly match with, for
instance, the BCM (Bienenstock et al., 1982) or the Oja’s rule
(Oja, 1982). Although the results significantly match Hebbian

correlation learning, the stabilization mechanisms are different
to commonly used ones. Overall, regarding the treated rate-based
models, our applied methods on three different neuronal setups
suggest that features from the BCM rule and Oja’s rule are
not the best estimators for the underlying plasticity data. From
our methods, features observed to be correlated to LTP are
the Hebbain term uv and terms, which depend on the square
of the presynaptic activity such as u2v (opposing to v2w from
BCM theory) and u2. Features observed to be correlated to
LTD are vw, u2w (opposing to v2w from Oja’s rule), and uvw.
The u2-terms could imply that, on the network level, synaptic
dynamics are more sensitive to variations in the inputs (u) than
in the network activity (v) providing a stronger influence of
the actual inputs on the overall network dynamics. However,
such dynamics and the u2-dependency require further theoretical
and experimental studies. For instance, by varying systematically
the rate of stimulation triggering synaptic plasticity (similar to
Sjöström et al., 2001), the resulting ẇ-u-relation could indicate a
u2-dependency. Overall, the plausibility of certain terms remain
unclear and corresponding molecular pathways of synaptic
plasticity still have to be investigated to find pieces of evidence
for these terms. However, on the one hand, our method provides
a way to link complex synaptic plasticity dynamics with dynamics
on the network level and, on the other hand, the individual
terms from our method allow to identify important ingredients
of synaptic plasticity enabling an (functional) ordering of diverse
molecular pathways.
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