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This article develops a model of how reactive and planned behaviors interact in real time.
Controllers for both animals and animats need reactive mechanisms for exploration,
and learned plans to efficiently reach goal objects once an environment becomes
familiar. The SOVEREIGN model embodied these capabilities, and was tested in a 3D
virtual reality environment. Neural models have characterized important adaptive and
intelligent processes that were not included in SOVEREIGN. A major research program
is summarized herein by which to consistently incorporate them into an enhanced
model called SOVEREIGN2. Key new perceptual, cognitive, cognitive-emotional, and
navigational processes require feedback networks which regulate resonant brain states
that support conscious experiences of seeing, feeling, and knowing. Also included
are computationally complementary processes of the mammalian neocortical What
and Where processing streams, and homologous mechanisms for spatial navigation
and arm movement control. These include: Unpredictably moving targets are tracked
using coordinated smooth pursuit and saccadic movements. Estimates of target and
present position are computed in the Where stream, and can activate approach
movements. Motion cues can elicit orienting movements to bring new targets into
view. Cumulative movement estimates are derived from visual and vestibular cues.
Arbitrary navigational routes are incrementally learned as a labeled graph of angles
turned and distances traveled between turns. Noisy and incomplete visual sensor data
are transformed into representations of visual form and motion. Invariant recognition
categories are learned in the What stream. Sequences of invariant object categories
are stored in a cognitive working memory, whereas sequences of movement positions
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and directions are stored in a spatial working memory. Stored sequences trigger
learning of cognitive and spatial/motor sequence categories or plans, also called
list chunks, which control planned decisions and movements toward valued goal
objects. Predictively successful list chunk combinations are selectively enhanced or
suppressed via reinforcement learning and incentive motivational learning. Expected
vs. unexpected event disconfirmations regulate these enhancement and suppressive
processes. Adaptively timed learning enables attention and action to match task
constraints. Social cognitive joint attention enables imitation learning of skills by learners
who observe teachers from different spatial vantage points.

Keywords: invariant object category learning, spatial navigation, visual search, working memory, reinforcement
learning, motion perception, attention, adaptive resonance theory

1. PERCEPTION, LEARNING, INVARIANT
RECOGNITION AND PLANNING DURING
SEARCH AND NAVIGATION CYCLES

This article contributes to an emerging scientific and
computational revolution aimed at understanding and designing
increasingly autonomous adaptive intelligent algorithms and
mobile agents. In particular, it summarizes an emerging neural
architecture that is capable of visually searching and navigating
an unfamiliar environment while it autonomously learns to
recognize, plan, and efficiently navigate toward and acquire
valued goal objects. This article accordingly reviews, and outlines
how to extend, the SOVEREIGN architecture of Gnadt and
Grossberg (2008) (Figure 1A). The purpose of that architecture
is described in the subtitle of the article: An autonomous neural
system for incrementally learning planned action sequences to
navigate towards a rewarded goal.

The architecture was called SOVEREIGN because it describes
how Self-Organizing, Vision, Expectation, Recognition,
Emotion, Intelligent, and Goal-oriented Navigation processes
interact during adaptive mobile behaviors. The term Self-
Organizing emphasizes that SOVEREIGN’s learning is carried
out autonomously and incrementally in real time, using
unconstrained combinations of unsupervised or supervised
learning. Expectation refers to the fact that key learning
processes in SOVEREIGN learn expectations that match
incoming data, or predict future outcomes. Good enough
matches focus attention upon expected combinations of
critical features, while mismatches drive memory searches to
learn better representations of an environment. Recognition
acknowledges that SOVEREIGN learns object categories, or
“chunks,” whereby to recognize objects and events. Emotion
denotes that SOVEREIGN carries out reinforcement learning
whereby unfamiliar objects can learn to become conditioned
reinforcers, as well as sources of incentive motivation that can
maintain attention upon valued goals, while actions to acquire
those goals are carried out. Reinforcement learning also supports
the learning of value categories that can recognize valued
combinations of homeostatic drive inputs. Intelligent means that
SOVEREIGN includes processes whereby sequences, or lists, of
objects and positions may be temporarily stored in cognitive
and spatial working memories as they are experienced in real

time. Stored sequences trigger learning of sequence categories or
plans, also called list chunks, that recognize particular sequential
contexts and learn to predict the most likely future outcomes
as they are modulated by reinforcement learning and incentive
motivational learning. Goal-oriented navigation means that
SOVEREIGN includes circuits for controlling exploratory
and planned movements while navigating unfamiliar and
familiar environments.

1.1. Learning Routes as a Labeled Graph
of Angles Turned and Distances Traveled
SOVEREIGN used these capabilities to simulate how an animal,
or animat, can autonomously learn to reach valued goal objects
through planned sequences of navigational movements within
a virtual reality environment. Learning was simulated in a
cross maze (Figure 2A) that was seen by the animat as a
virtual reality 3D rendering of the maze as it navigated it
through time. At the end of each corridor in the maze, a
different visual cue was displayed (triangle, star, cross, and
square). Sequences of virtual reality views on two navigational
routes, shown in color for vividness, are summarized in
Figures 2B,C, where the floor is green, the walls are blue,
the ceiling in black, and the interior corners where pairs of
maze corridors meet are in red. Figure 2B illustrates how
the views change as the animat navigates straight down one
corridor, and Figure 2C illustrates how the views change as
the animal makes a turn from facing one corridor to facing a
perpendicular one.

SOVEREIGN incrementally learned how to navigate
to a rewarded goal object in this cross maze, which is
the perhaps the simplest environment that requires all of
the SOVEREIGN designs to explore an unfamiliar visual
environment (Figure 2D) while learning efficient routes
whereby to acquire a valued goal, rather than less efficient or
valued routes (Figure 2E). Several different types of neural
circuits, systems, and learning are needed to achieve this
competence. They will be described in the subsequent sections.
The same mechanisms generalize to much more complex visual
environments, especially because, as will be described below,
all the perceptual, cognitive, and affective learning mechanisms
scale to more complex environments and dynamically self-
stabilize their memories using learned expectation and attention
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FIGURE 1 | (A) The main interactions between functional systems of the SOVEREIGN model. (B) The Motor Approach and Orienting System flow diagram depicts
the control hierarchy that generates outflow motor commands. See the text for details [Reprinted with permission from Gnadt and Grossberg (2008)].

FIGURE 2 | (A) The 3D graphical simulation of the virtual reality plus maze generates perspective views from any position within the maze. (B) Snapshots from the
3D virtual reality simulation depict changes in the scene during reactive homing toward the triangle cue. (C) During reactive approach to the triangle cue, visual
motion signals trigger a reactive head orienting movement to bring the star cue into view. Two overhead views of a plus maze show (D) a typical initial exploratory
reactive path, and (E) an efficient learned planned path to the goal [Adapted with permission from Gnadt and Grossberg (2008)].

mechanisms, while the spatial and motor mechanisms are
platform independent.

One key SOVEREIGN accomplishment is worthy of mention
now because it illustrates how SOVEREIGN goes beyond
reactive navigation to autonomously learn the most efficient

routes whereby to acquire a valued goal, while rejecting less
efficient routes that were taken early in the exploratory process.
SOVEREIGN explains how arbitrary navigational trajectories
can be incrementally learned as sequences of turns and linear
movements until the next turn. In other words, the model
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explains how route-based navigation can learn a labeled graph
of angles turned and distances that are traveled between turns.
The angular and linear velocity signals that are experienced at
such times are used in the model to learn the angles that a
navigator turns, and the distances that are traveled in a straight
path before the next turn.

The prediction that a labeled graph is learned during
route navigation has recently received strong experimental
support in Warren et al. (2017) who show how, when humans
navigate in a virtual reality environment, such a labeled graph
controls their navigational choices during route finding, novel
detours, and shortcuts.

1.2. From SOVEREIGN to SOVEREIGN2:
New Processes and Capabilities
SOVEREIGN did not include various brain processes and
psychological functions of humans that are needed to realize a
more sophisticated level of autonomous adaptive intelligence.
This article summarizes some of the neural models that have
been developed to explain these functions, and that can be
consistently incorporated into an enhanced architecture called
SOVEREIGN2. These processes have been rigorously modeled
and parametrically simulated over a 40-year period, culminating
in recent syntheses such as Grossberg (2013, 2017, 2018). They
are reviewed heuristically here to bring together in one place the
basic design principles, mechanisms, and architectures that they
embody. Rigorous embodiment of all of these competences in
SOVEREIGN2 will require a sustained research program. The
current article provides a roadmap for that task.

The most important new perceptual, cognitive, and
navigational properties emerge within feedback networks that
regulate one or another kind of attention as part of resonant brain
states that support conscious experiences of seeing, feeling, and
knowing. These resonant states are modeled as part of Adaptive
Resonance Theory, or ART. Table 1a also lists resonances that
arise during auditory processing. Auditory processing will not be
considered below, but is described with the others in Grossberg
(2017). SOVEREIGN2 will embody such resonant dynamics,
including states that in humans support consciousness, because
of a deep computational connection that has been modeled
between conscious states and the choice of effective task-relevant
actions. ART hereby provides explanations of what goes on in
each of our brains when we consciously see, hear, feel, or know
something; where it is going on; and why evolution may have
been driven to discover conscious states of mind.

Additional processes in SOVEREIGN2 include circuits for
target tracking with smooth pursuit and saccadic eye or camera
movements (see section 3.2); visual form and motion perception
in response to noisy and incomplete sensor signals (see section
4.13); incremental unsupervised view-, size-, and position-
specific object category learning and hypothesis testing in real
time in response to arbitrarily large non-stationary databases
that may include unexpected events (see sections 4.2–4.9, 6.2,
and 6.3); incremental unsupervised learning of view-, size-, and
position- invariant object categories during free scanning of a
scene with eye or camera movements (see sections 4.1, 6.1,

TABLE 1 | (a) Types of resonances and the conscious experiences that they
embody. (b) Complementary What and Where cortical stream properties.

Cortical What stream perceptual and cognitive representations can solve the
stability-plasticity dilemma, using brain regions like inferotemporal (IT) cortex,
where recognition categories are learned. These processes carry out excitatory
matching and match-based learning. Cortical Where stream spatial and motor
processes do not solve the stability-plasticity dilemma, but rather adapt to
changing bodily parameters, using brain regions like posterior parietal cortex
(PPC). Whereas the recognition categories in the cortical What stream become
increasingly invariant at higher cortical levels with respect to object views, positions,
and sizes, the cortical Where stream elaborates spatial representations of object
positions and mechanisms whereby to act upon them. Together the two streams
can learn to recognize and become conscious of valued objects and scenes,
while directing appropriate actions toward them [Reprinted with permission from
Grossberg (2017)].

and 6.4); selective storage in working memory of task-relevant
object, spatial, or motor event sequences (see sections 4.10,
6.9, 6.10, and 7); unsupervised learning of cognitive and motor
plans based upon working memory storage of event sequences
in real time, and Where’s Waldo search for currently valued
goal objects (see sections 6.10 and 7); unsupervised learning
of reaching behaviors that automatically supports accurate tool
manipulation in space (see section 5.4); unsupervised learning of
present position in space using path integration during spatial
navigation (see sections 6.11 and 8); platform-independent
navigational control using either leg or wheel movements (see
section 5.6); unsupervised learning of adaptively timed actions
and maintenance of motivated attention while these actions
are executed (see sections 6.7 and 6.8); and social cognitive
capabilities like joint attention and imitation learning whereby
a classroom of robots can learn spatial skills by each observing a
teacher from its own unique spatial perspective (see section 5.5).

2. BRAINS ASSEMBLE EQUATIONS AND
MICROCIRCUITS INTO MODAL
ARCHITECTURES: CONTRAST DEEP
LEARNING

ART architectures embody key design principles that are
found in advanced brains, and which enable general-purpose
autonomous adaptive intelligence to work. These designs have
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enabled biological neural networks to offer unified principled
explanations of large psychological and neurobiological databases
(e.g., see Grossberg, 2013, 2017, 2018) using just a small set
of mathematical laws or equations−such as the laws for short-
term memory or STM, medium-term memory or MTM, and
long-term memory or LTM−and a somewhat larger set of
characteristic microcircuits that embody useful combinations
of functional properties−such as properties of cognitive and
cognitive-emotional learning and memory, decision-making,
prediction, and action. Just as in physics, only a few basic
equations are used to explain and predict many facts about
mind and brain, when they are embodied in a somewhat larger
number of microcircuits that may be thought of as the “atoms”
or “molecules” of intelligence. Specializations of these laws
and microcircuits are then combined into larger systems that
are called modal architectures, where the word “modal” stands
for different modalities of intelligence, such as vision, speech,
cognition, emotion, and action. Modal architectures are less
general than a general-purpose von Neumann computer, but far
more general than a traditional algorithm from AI.

As I will illustrate throughout this article, these designs
embody computational paradigms that are called complementary
computing, hierarchical resolution of uncertainty, and adaptive
resonance. In addition, the paradigm of laminar computing shows
how these designs may be realized in the layered circuits of the
cerebral cortex and, in so doing, achieve even more powerful
computational capabilities. These computational paradigms
differ qualitatively from currently popular algorithms in AI and
machine learning, notably Deep Learning (Hinton et al., 2012;
LeCun et al., 2015) and its variants like Deep Reinforcement
Learning (Mnih et al., 2013). Despite their successes in
demonstrating various recent applications, these algorithms do
not come close to matching the generality, adaptability, and
intelligence that is found in models that more closely emulate
brain designs. As just one of many problems, Deep Learning
algorithms are susceptible to undergoing catastrophic forgetting,
or an unexpected collapse of the memory of previously learned
information while new information is being learned, a property
that is shared by all variants of the classical back propagation
algorithm (Grossberg, 1988). This kind of problem becomes
increasingly destructive as a Deep Learning algorithm tries to
learn from very large databases. The ART-based systems that are
summarized below do not experience these problems.

No less problematic is that Deep Learning is just a
feedforward adaptive filter. It does not carry out any of the
basic kinds of information processing that are typically identified
as “intelligent,” but which are carried out within ART and
other biological learning algorithms that are embedded within
neural network architectures. Deep Learning has none of the
architectural features, such as learned top-down expectations,
attentional focusing, and mismatch-mediated memory search
and hypothesis testing, that are needed for stable learning in a
non-stationary world of Big Data.

Perhaps these problems are why Geoffrey Hinton said in an
Axios interview on September 15, 2017 (LeVine, 2017) that he is
“deeply suspicious of back propagation. . .I don’t think it’s how
the brain works. We clearly don’t need all the labeled data. . .My

view is, throw it all away and start over” (italics mine). This essay
illustrates that we do not need to start over.

Section 17 in Grossberg (1988) lists 17 different learning
and performance properties of Back Propagation and Adaptive
Resonance Theory. The third of the 17 differences between
Back Propagation and ART is that ART does not need labeled
data to learn. ART can learn using arbitrary combinations
of unsupervised and supervised learning. ART also does
not experience any of the computational problems that
compromise Back Propagation and Deep Learning, including
catastrophic forgetting.

3. BUILDING UPON THREE BASIC
DESIGN THEMES: BALANCING
REACTIVE AND PLANNED BEHAVIORS

The original SOVEREIGN architecture contributed models of
three basic design themes about how advanced brains work. The
first theme concerns how brains learn to balance between reactive
and planned behaviors. During initial exploration of a novel
environment, many reactive movements may occur in response
to unfamiliar and unexpected environmental cues (Leonard and
McNaughton, 1990). These movements may seem initially to
be random, as an animal orients toward and approaches many
stimuli (Figure 2D). As the animal becomes familiar with its
surroundings, it learns to discriminate between objects likely
to yield a reward and those that lead to punishment or to
no valued consequences. Such approach-avoidance behavior is
typically learned via reinforcement learning during a perception-
cognition-emotion-action cycle in which an action and its
consequences elicit sensory cues that are associated with them.
When objects are out of direct viewing or reaching ranges,
reactive exploratory movements may be triggered to bring them
closer. Eventually, reactive exploratory behaviors are replaced by
more efficient planned sequential trajectories within a familiar
environment (Figure 2E). One of the main goals of SOVEREIGN
was to explain how erratic reactive exploratory behaviors trigger
learning to carry out organized planned behaviors, and how both
reactive and planned behaviors may remain balanced so that
planned behaviors can be carried out where appropriate, without
losing the ability to respond quickly to novel reactive challenges.

3.1. Parallel Streams for Computing
Visual Form and Motion
One way that SOVEREIGN realizes a flexible balance between
reactive and planned behaviors is its organization into parallel
streams for computing visual form and motion. In Figure 3A,
these streams are labeled PARVO and MAGNO, corresponding
to contributions at early visual processing stages of parvocellular
cells to form processing and magnocellular cells to motion
processing (e.g., Maunsell and Newsome, 1987; DeYoe and
Van Essen, 1988; Maunsell et al., 1990; Schiller et al., 1990).
Roughly speaking, the form stream supports sustained attention
upon foveated objects, whereas the motion stream attracts
attention and bodily movements in response to sudden changes,
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including motions, in the periphery. sections 3.2 and 4.13 will
further describe how SOVEREIGN carries out form processing
and will outline how SOVEREIGN2 can achieve much more
powerful form processing capabilities. Figure 3B provides a
more detailed summary of the early motion processing that
enables SOVEREIGN to track objects moving at variable
speeds (Chey et al., 1997; Berzhanskaya et al., 2007). Orienting
movements to a source of motion were controlled algorithmically
in SOVEREIGN; e.g., see the Head-Orienting Movement
Module in Figure 3A.

3.2. Log Polar Retinas and Fixating
Unpredictably Moving Targets With Eye
Movements
Many primate retinas have a localized region of high visual acuity
that is called the fovea, with resolution decreasing with distance
from the fovea (see Supplementary Figure S4) to realize a cortical
magnification factor whereby spatial representations of retinal
inputs in the visual cortex get coarser as they move from the
foveal region to the periphery (Daniel and Whitteridge, 1961;
Fischer, 1973; Tootell et al., 1982; Schwartz, 1984; Polimeni et al.,
2006). The cortical magnification factor is approximated by a log-
polar function, which allows a huge reduction in the number
of cells that are needed to see Schwartz (1984), Wallace et al.
(1984), Schwartz et al. (1995). However, because of this retinal
organization, eye and head movements are needed to move the
fovea to look at objects of interest.

Both smooth pursuit movements and saccadic eye movements
are used to keep the fovea looking at objects of interest. During
a smooth pursuit movement, as the eyes track a moving target
in a given direction, the entire scene moves in the opposite
direction on the retina (Supplementary Figure S1). Why does
not this background motion interfere with tracking by causing an
involuntary motion, called nystagmus, in the opposite direction
than the target is moving? How does accurate tracking continue,
even after the eye catches up with the moving target, so that there
is no net speed of the target on the fovea, and thus no retinal
slip signals from the foveal region of the eyes to move them
toward the target?

Remarkably, both of these questions seem to have the same
answer, which includes the fact that the background motion
facilitates tracking, rather than interfering with it, in the
manner that is summarized in Supplementary Figures S1, S2.
Supplementary Figure S1 summarizes the fact that, for fixed
target speed, as the target speed on the retina decreases due
to increasingly good target tracking, the background speed in
the opposite direction on the retina increases. Supplementary
Figure S2 schematizes the smooth pursuit eye movement, or
SPEM, model of Pack et al. (2001) of how cells in the dorsal
Medial Superior Temporal region (MSTd), which are activated
by the background motion, excite cells that are sensitive to
the opposite direction in the ventral MST (MSTv) region. The
MSTv cells are the ones that control the movement commands
whereby the eyes pursue the moving target. When the eyes catch
up to the target, they can maintain accurate foveation even in
the absence of retinal slip signals, because background motion

signals compensate for the reduced retina speed of the target,
and can thus be used to accurately move the eyes in the desired
direction at the target speed (Supplementary Figure S1). This
kind of SPEM model can replace the Head-Orienting Movement
Module in SOVEREIGN if an animat with orienting eyes or
cameras is used.

When a valued target suddenly changes its speed or direction
of motion, then smooth pursuit movements may be insufficient.
Ballistic saccadic movements can then catch up with the target.
Animals such as humans and monkeys can coordinate smooth
pursuit and ballistic saccadic eye movements to catch up
efficiently. Indeed, the current speed and direction of smooth
pursuit when the target suddenly changes its speed or direction
may be used to calibrate a ballistic saccade with the best chance
to catch up. This kind of predictive coordination is achieved
by the SAC-SPEM model of Grossberg et al. (2012). The sheer
number of brain regions that work together to accomplish such
coordination (Supplementary Figure S3) will challenge future
mobile robotic designers to embody this tracking competence in
the simplest possible way.

4. BUILDING UPON THREE BASIC
DESIGN THEMES: COMPLEMENTARY
COMPUTING, HIERARCHICAL
RESOLUTION OF UNCERTAINTY, AND
ADAPTIVE RESONANCE

The second design theme is that advanced brains are organized
into parallel processing streams with computationally
complementary properties (Grossberg, 2000, 2017).
Complementary computing means that each stream’s properties
are related to those of a complementary stream much as a key fits
into a lock, or two pieces of a puzzle fit together. The mechanisms
that enable each stream to compute one set of properties prevent
it from computing a complementary set of properties. As a result,
each of these streams exhibits complementary strengths and
weaknesses. Interactions between these processing streams use
multiple processing stages to overcome their complementary
deficiencies and generate psychological properties that lead to
successful behaviors. This interactive multi-stage process is called
hierarchical resolution of uncertainty.

Two of these complementary streams are the ventral What
cortical stream for object perception and recognition, and the
dorsal Where (or Where/How) cortical processing stream for
spatial representation and action (Ungerleider and Mishkin,
1982; Mishkin, 1982; Mishkin et al., 1983; Goodale et al., 1991;
Goodale and Milner, 1992). Key properties of these cortical
processing streams have been shown to be computationally
complementary (Table 1b).

4.1. Invariant Object Category Learning
One of several basic reasons for this particular kind of
complementarity is that the cortical What stream learns object
recognition categories that become substantially invariant under
changes in an object’s view, size, and position at higher
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FIGURE 3 | (A) The Visual Form System (PARVO) and Motion System (MAGNO) flow diagrams depict the stages of visual processing in SOVEREIGN. (B) Detailed
stages of motion processing within the Motion System are shown in this diagram. The Directional Transient Cell Network module comprises multiple stages of
processing. The Motion Left/Right Decision generates signals that are capable of eliciting a reactive left or right head-orienting signal. The several transient cell
stages enable the Motion System to retain its directional selectivity in response to motions at variable speeds. See the text for details.

cortical processing stages, such as at the anterior inferotemporal
cortex (ITa) and beyond (Tanaka, 1997, 2000; Booth and Rolls,
1998; Fazl et al., 2009; Cao et al., 2011; Chang et al., 2014).
These invariant object categories have a compact representation
that enables valued objects to be recognized without causing
the combinatorial explosion that would have occurred if our
brains needed to store every individual exemplar of every
object that was ever experienced. However, because they are
invariant, these categories cannot, by themselves, locate and
act upon a desired object in space. Cortical Where stream
spatial and motor representations can locate objects and trigger
actions toward them, but cannot recognize them. By interacting
together, the What and Where streams can consciously see and
recognize valued objects and direct appropriate goal-oriented
actions toward them.

The original SOVEREIGN model explained simple properties
of how such invariant categories are learned as an animal,
or animat, explores a novel environment. It used log-polar
preprocessing of input images, followed by coarse-coding and
algorithmic shift operations, to generate size-invariant and
position-invariant input images. These preprocessed images were
then input to a Fuzzy ART classifier (Carpenter et al., 1991b)
for learning invariant visual 2D view-specific categories whereby
SOVEREIGN could recognize an object at variable distances.
These view-specific categories were converted into categories that
were view-invariant, as well as positionally invariant and size-
invariant, by algorithmically associating multiple view-specific
categories with a shared view-invariant category (Figure 4A).

Since SOVEREIGN was published, the 3D ARTSCAN
SEARCH model was developed to explain how humans and other
primates may accomplish incremental unsupervised learning

of view-, position-, and size-invariant categories, without any
algorithmic shortcuts, and how these invariant categories can be
used to trigger a cognitively or motivationally driven Where’s
Waldo search for a desired object in a cluttered scene (Fazl
et al., 2009; Grossberg, 2009b; Cao et al., 2011; Foley et al.,
2012; Chang et al., 2014; Grossberg et al., 2014). These important
Recognition and Where’s Waldo search capabilities, which will be
further discussed in sections 6.1 and 6.4, can also be incorporated
into SOVEREIGN2 instead of the bottom two category learning
processes in Figure 4A.

4.2. Adaptive Resonance Theory: A
Universal Design for Autonomous
Classification and Prediction
The ART in the Fuzzy ART algorithm abbreviates Adaptive
Resonance Theory, which was introduced in 1976 (Grossberg,
1976a,b) and developed into the most advanced cognitive
and neural theory of how advanced brains learn to attend,
recognize, and predict objects and events in complex changing
environments that may be filled with unexpected events. ART
currently has an unrivalled explanatory and predictive range
about how processes of consciousness, learning, expectation,
attention, resonance, and synchrony interact in advanced brains.
Along the way, all of the foundational hypotheses of ART
have been confirmed by later psychological and neurobiological
experiments. See Grossberg (2013, 2017, 2018) for recent
reviews and syntheses.

ART’s significance is highlighted by the fact that its design
principles and mechanisms can be derived from a thought
experiment whose simple assumptions are familiar to us all
as facts that we experience ubiquitously in our daily lives.
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FIGURE 4 | (A) The Visual Working Memory and Planning System computes motivationally reinforced representations of sequences of 3D object categories. (B) The
Motor Working Memory and Planning System computes motivationally reinforced representations of sequences of motor map positions/directions. See the text for
details. [Reprinted with permission from Gnadt and Grossberg (2008)].

These facts embody environmental constraints which, taken
together, define a multiple constraint problem that evolution
has solved in order to enable humans and other higher animals
to be able to autonomously learn to attend, recognize, and
predict their unique and changing worlds. Such a competence
is essential in autonomous adaptive mobile agents, which
is why some ART algorithms were already algorithmically
implemented in SOVEREIGN.

4.3. Predictive Brain: Intention, Attention,
and Resonance Solve the
Stability-Plasticity Dilemma
One of the critical properties of ART that enable it to support
open-ended incremental autonomous learning is that resonant
states can trigger rapid learning about a changing world while
solving the stability-plasticity dilemma. This dilemma asks how
can our brains learn quickly without being forced to forget
previously learned, but still useful, memories just as quickly?

The stability-plasticity dilemma was articulated before the
catastrophic forgetting problem was stated (French, 1999), and
clarifies that it is a problem of balance between fast learning
and stable memory. Catastrophic forgetting means that an
unpredictable part of previously learned memories can rapidly
and unpredictably collapse during new learning. This problem
becomes particularly acute when learning any kind of Big Data
problem, notably during the kind of open-ended incremental
learning that an autonomous adaptive robot might need to do
as it navigates unfamiliar environments. A catastrophic collapse
of previous memories while trying to completely learn about
a huge database, not to mention a database that is continually

changing through time, is intolerable in any application that can
have serious real world consequences. Popular machine learning
algorithms such as Back Propagation and its recent variant,
Deep Learning (Hinton et al., 2012; LeCun et al., 2015), do
not solve the catastrophic forgetting problem. In brief, Deep
Learning is unreliable.

A resonant brain state is a dynamical state during which
neuronal firings across a brain network are amplified and
synchronized when they interact via reciprocal excitatory
feedback signals during an attentive matching process that occurs
between bottom-up and top-down pathways. In the case of
learning recognition categories, the bottom-up pathways are
adaptive filters that tune their adaptive weights, or LTM traces,
to more reliably activate the category that best matches the
input feature patterns that activate them. The top-down pathways
are learned recognition expectations whose LTM traces focus
attention upon a prototype of critical features that best predict
the active category. As will be explained in greater detail below
(see Figure 7 below), a resonance of this kind is called a feature-
category resonance in order to distinguish it from the multiple
other kinds of resonances that dynamically stabilize learning in
different brain systems.

A resonance represents a system-wide consensus that the
attended information is worthy of being learned. It is because
resonances can trigger fast learning that they are called
adaptive resonances, and why the theory that explicates them
is called Adaptive Resonance Theory. ART’s proposed solution
of the stability-plasticity dilemma mechanistically links the
process of stable learning and memory with the mechanisms
of Consciousness, Expectation, Attention, Resonance, and
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Synchrony that enable it. Due to their mechanistic linkage, these
processes are often abbreviated as the CLEARS processes.

ART hereby predicts that interactions among CLEARS
mechanisms solve the stability-plasticity dilemma. That is why
humans and other higher animals are intentional and attentional
beings who use learned expectations to pay attention to salient
objects and events, why “all conscious states are resonant
states,” and how brains can learn both many-to-one maps
(representations whereby many object views, positions, and
sizes learn to activate the same invariant object category), and
one-to-many maps (learned representations that enable us to
expertly know many things about individual objects and events).

As will be explained in greater detail below, the link between
Consciousness, Learning, and Resonance is a particularly
important one for understanding both characteristically human
experiences and how future machine learning algorithms
may embody them.

4.4. Object Attention Dynamically
Stabilizes Learning Using the ART
Matching Rule
ART solves the stability-plasticity dilemma by using learned
expectations and attentional focusing to selectively process only
those data that are predicted to be relevant in any given situation.
Because of the CLEARS relationships, such selective attentive
processing also solves the stability-plasticity dilemma.

For this to work, the correct laws of object attention
need to be used. ART has predicted how object attention
is realized in human and other advanced primate brains
(e.g., Grossberg, 1980, 2013; Carpenter and Grossberg, 1987a,
1991). In order to dynamically stabilize learning, the learned
expectations that focus attention obey a top-down, modulatory
on-center, off-surround network. This network is said to obey the
ART Matching Rule.

In such a network, when a bottom-up input pattern is received
at a processing stage, it can activate its target cells, if nothing else
is happening. When a top-down expectation pattern is received
at this stage, it can provide excitatory modulatory, or priming,
signals to cells in its on-center, and driving inhibitory signals
to cells in its off-surround, if nothing else is happening. The
on-center is modulatory because the off-surround network also
inhibits the on-center cells, and these excitatory and inhibitory
inputs are approximately balanced (“one-against-one”). When a
bottom-up input pattern and a top-down expectation are both
active, cells that receive both bottom-up excitatory inputs and
top-down excitatory priming signals can fire (“two-against-one”),
while other cells are inhibited. In this way, only cells can fire
whose features are “expected” by the top-down expectation, and
an attentional focus starts to form at these cells. As a result
only attended feature patterns are learned. The system wherein
category learning takes place is thus called an attentional system.

The property of the ART Matching Rule that bottom-up
sensory activity may be enhanced when matched by top-
down signals is in accord with an extensive neurophysiological
literature showing the facilitatory effect of attentional feedback
(e.g., Sillito et al., 1994; Luck et al., 1997; Roelfsema et al., 1998).

This property contradicts popular models, such as Bayesian
Explaining Away models, in which matches with top-down
feedback cause only suppression (Mumford, 1992; Rao and
Ballard, 1999). A related problem is that suppressive matching
circuits cannot solve the stability-plasticity dilemma.

An ART expectation is a top-down, adaptive, and specific event
that activates its target cells during a match within the attentional
system. “Adaptive” means that the top-down pathways contain
adaptive weights that can learn to encode a prototype of the
recognition category that activates it. “Specific” means that each
top-down expectation reads out its learned prototype pattern.
One psychophysiological marker of such a resonant match is the
processing negativity, or PN, event-related potential (Grossberg,
1978, 1984b; Näätänen, 1982; Banquet and Grossberg, 1987).

4.5. ART Is a Self-Organizing Production
System: Lifelong Learning of Expertise
The above properties of an expectation are italicized because, as
will be seen below, they are computationally complementary to
those of an orienting system that enables ART to autonomously
learn about arbitrarily many novel events in a non-stationary
environment without experiencing catastrophic forgetting. As
will be explained more fully below, if a top-down expectation
mismatches an incoming bottom-up input pattern too much, the
orienting system is activated and drives a memory search and
hypothesis testing for either a better-matching category if the
input represents information that is familiar to the network, or
a novel category if it is not.

Taken together, the ART attentional and orienting systems
constitute a self-organizing production system that can learn to
become increasingly expert about the world that it experiences
throughout the life span of the individual or machine into
which it is embedded.

4.6. ART Can Carry Out Open-Ended
Stable Learning of Huge Non-stationary
Databases
Our ability to achieve learning throughout life can be stated
in another way that emphasizes its critical importance in
human societies no less than in designing autonomous adaptive
robots with real intelligence: Without stable memories of past
experiences, we could learn very little about the world, since
our present learning would wash away previous memories
unless we continually rehearsed them. But if we had to
continuously rehearse everything that we learned, then we
could learn very little, because there is just so much time
in a day to rehearse. Having an active top-down matching
mechanism greatly amplifies the amount of information that
humans can quickly learn and stably remember about the
world. This capability, in turn, sets the stage for developing a
sense of self, which requires that we can learn and remember
a record of many experiences that are uniquely ours over a
period of years.

With appropriately implemented ART algorithms on board,
a SOVEREIGN2 robot can continue to learn indefinitely for its
entire lifespan.
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4.7. Large-Scale Machine Learning
Applications in Engineering and
Technology
ART enables a general-purpose category learning, recognition,
and prediction capability that has already been used in multiple
large-scale applications in engineering and technology. When
it is embodied completely enough in SOVEREIGN2, then
SOVEREIGN2 can also be used to carry out such applications,
and can do so with the advantage being able to navigate
environments where these applications occur.

Fielded applications include: airplane design (including
the Boeing 777); medical database diagnosis and prediction;
remote sensing and geospatial mapping and classification;
multidimensional data fusion; classification of data from artificial
sensors with high noise and dynamic range (synthetic aperture
radar, laser radar, multi-spectral infrared, night vision); speaker-
normalized speech recognition; sonar classification; music
analysis; automatic rule extraction and hierarchical knowledge
discovery; machine vision and image understanding; mobile
robot controllers; satellite remote sensing image classification;
electrocardiogram wave recognition; prediction of protein
secondary structure; strength prediction for concrete mixes;
tool failure monitoring; chemical analysis from ultraviolet
and infrared spectra; design of electromagnetic systems; face
recognition; familiarity discrimination; and power transmission
line fault diagnosis. Some of these applications are listed at http:
//techlab.bu.edu/resources/articles/C5/.

4.8. Mathematically Provable ART
Learning Properties Support Large-Scale
Applications
It is because the good learning properties of ART have been
mathematically proved and tested with comparative computer
simulation benchmarks that ART has been used with confidence
in these applications (e.g., Carpenter and Grossberg, 1987a,b,
1990; Carpenter et al., 1989, 1991a,b, 1992, 1998).

These theorems prove how ART can rapidly learn, from
arbitrary combinations of unsupervised and supervised trials,
to categorize complex, and arbitrarily large, non-stationary
databases, dynamically stabilize their learned memories, directly
access the globally best matching categories with no search during
recognition, and use these categories to predict the most likely
outcomes in a given situation.

In particular, ART provably solved the catastrophic forgetting
problem that other approaches to machine learning have
failed to solve.

4.9. ART Solves the Explainable AI
Problem and Extracts Knowledge
Hierarchies From Data
ART offers a solution of another problem that other researchers
in machine learning and AI are still seeking. The learned
weights of the fuzzy ARTMAP algorithm (Carpenter et al., 1992)
translate, at any stage of learning, into fuzzy IF-THEN rules
that “explain” why the learned predictions work. Understanding

why particular predictions are made is no less important than
their predictive success in applications that have life or death
consequences, such as medical database diagnosis and prediction,
to which ART has been successfully applied. This problem has
not yet been solved in traditional AI, as illustrated by the current
DARPA Explainable AI program (XAI1).

In addition, ART can self-organize hierarchical knowledge
structures from masses of incomplete and partially incompatible
data taken from multiple observers who do not communicate
with each other, and who may use different combinations of
object names and sensors to incrementally collect their data
at different times, locations, and scales (Carpenter et al., 2005;
Carpenter and Ravindran, 2008). If swarms of SOVEREIGN2
robots collect data in this distributed way, then they can share
it wirelessly to self-organize such cognitive hierarchies of rules.

4.10. Cognitive and Spatial Working
Memories and Plans
Figure 4A also summarizes higher cognitive and cognitive-
emotional processes that are modeled in SOVEREIGN. Together
with Figure 4B, these contribute to SOVEREIGN’s Intelligent
and Goal-oriented navigation processing whereby cognitive
working memories (Figure 4A) and spatial working memories
(Figure 4B) provide the information whereby cognitive plans
(Figure 4A) and spatial plans (Figure 4B) are learned and used
to control actions to acquire valued goals. The cognitive working
memory temporarily stores the temporal order of sequences of
invariant object categories that represent recently experienced
objects. These sequences are themselves categorized during
learning of cognitive plans, or list chunks, that fire selectively in
response to particular stored object sequences. Such a network of
list chunks is called a Masking Field (Grossberg, 1978; Cohen and
Grossberg, 1986, 1987; Grossberg and Myers, 2000; Grossberg
and Kazerounian, 2011; Kazerounian and Grossberg, 2014).
The corresponding spatial working memory and Masking Field
in Figure 4B do the same thing for the stored sequences of
navigational movements—notably combinations of turns and
straight excursions in space—that SOVEREIGN carries out while
exploring the maze. These processes will be discussed further in
sections 6.9, 6.10, and 7, notably how they need to be enhanced in
SOVEREIGN2 to achieve selective processing and storage of only
task-relevant sequences of information.

4.11. Reinforcement Learning and
Incentive Motivation to Acquire Valued
Goals
These cognitive and spatial processes do not themselves compute
indices of predictive success and failure. The processes that
accomplish goal-oriented selectivity—including gated multipoles
and drive representations—occur next (See Figure 12 below).
These reinforcement learning and incentive motivational
processes enable SOVEREIGN to select, amplify, and sustain
in working memory those previous event sequences that have
led to predictive success in the past, and to use these list

1https://www.darpa.mil/program/explainable-artificial-intelligence
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categories to predict the actions most likely to achieve valued
goals in the future. These processes will be further discussed
in sections 6.5–6.7.

4.12. Prefrontal Regulation of Cognitive
and Cognitive-Emotional Dynamics
Since SOVEREIGN appeared, the predictive Adaptive Resonance
Theory, or pART, model (Grossberg, 2018) has proposed how
several parts of the prefrontal cortex (PFC) learn to interact
with multiple brain regions to carry out cognitive and spatial
working memory, planning, and cognitive-emotional processes.
The seven prefrontal cortical regions marked in green in
Figure 5 illustrate this complexity. As one of its several
explanatory accomplishments, pART clarifies how a top-down
cognitive prime from the PFC can bias object attention in
the What cortical stream to anticipate expected objects and
events, while it also focuses spatial attention in the Where
cortical stream to trigger actions that acquire currently valued
objects (Fuster, 1973; Baldauf and Desimone, 2014; Bichot et al.,
2015). Section 7 will summarize several of these enhanced
capabilities of pART. As these enhanced capabilities of pART
are incorporated into SOVEREIGN2, it will be able to carry out
more sophisticated cognitive, cognitive-emotional, and Where’s
Waldo search capabilities than can the SOVEREIGN or the 3D
ARTSCAN SEARCH models.

The pART model embodies several different kinds of brain
resonances. In particular, the Fuzzy ART classifier in Figure 4A
is an algorithmic realization of the kind of feature-category
resonance that links cortical areas V4 and ITp in Figure 5.
Such a resonance focuses attention upon salient combinations of
features while it triggers learning in the bottom-up adaptive filters
and top-down learned expectations that bind the attended feature
patterns to the object categories that are used to recognize them.
Adaptive Resonance Theory, or ART, explicates several different
kinds of brain resonances and their different functional roles, as
will be further discussed in sections 4.15 and 4.16.

4.13. From Incomplete Early Sensory
Representations to Conscious
Awareness and Effective Action
Hierarchical resolution of uncertainty occurs even at the
earliest cortical processing levels. One of the most important
consequences of hierarchical resolution of uncertainty arises
from the fact that the perceptual representations that are
computed at early processing stages may not be able to control
effective actions. These processing stages did not have to be
included in SOVEREIGN because it directly processed simplified
virtual reality images (Figure 2). SOVEREIGN thus did not
have to deal with problems that are raised when images are
processed by noisy detectors that are made from biological or
physical components.

For example, visual images that are registered on the retina of
a human eye are noisy and incomplete due to the existence of the
blind spot and retinal veins, which prevent visual features from
being registered on the retina at their positions (Supplementary
Figure S4). Supplementary Figure S5 illustrates this problem

FIGURE 5 | Macrocircuit of the main brain regions, and connections between
them, that are modeled in the predictive Adaptive Resonance Theory (pART)
model of working memory and cognitive-emotional dynamics. Abbreviations in
green denote brain regions used in working memory dynamics, whereas
abbreviations in red denote brain regions used in cognitive-emotional
dynamics. Black abbreviations refer to brain regions that process visual data
during visual perception and are used to learn visual object categories. Arrows
denote non-adaptive excitatory synapses. Hemidiscs denote adaptive
excitatory synapses. Many adaptive synapses are bidirectional, thereby
supporting synchronous resonant dynamics among multiple cortical regions.
The output signals from the basal ganglia that regulate reinforcement learning
and gating of multiple cortical areas are not shown. Also not shown are output
signals from cortical areas to motor responses. V1, striate, or primary, visual
cortex; V2 and V4, areas of prestriate visual cortex; MT, middle temporal
cortex; MST, medial superior temporal area; ITp, posterior inferotemporal
cortex; ITa, anterior inferotemporal cortex; PPC, posterior parietal cortex; LIP,
lateral intraparietal area; VPA, ventral prearcuate gyrus; FEF, frontal eye fields;
PHC, parahippocampal cortex; DLPFC, dorsolateral hippocampal cortex;
HIPPO, hippocampus; LH, lateral hypothalamus; BG, basal ganglia; AMGY,
amygdala; OFC, orbitofrontal cortex; PRC, perirhinal cortex; VPS, ventral bank
of the principal sulcus; VLPFC, ventrolateral prefrontal cortex. See text for
further details. [Reprinted with permission from Grossberg (2018)].

with the simple example of a line that is occluded by the blind
spot and some retinal veins. The parts of the line that are occluded
need to be completed at higher processing stages before actions
like looking and reaching can be directed to these positions.
Processes of boundary completion and surface filling-in are
needed to generate a sufficiently complete, context-sensitive,
and stable visual surface representation upon which subsequent
actions can be based (Grossberg, 1994, 1997, 2013, 2017).

The front end of SOVEREIGN2 can be consistently extended
to include these boundary completion and surface filling-in
processes, instead of the Render 3-D Scene and Figure-Ground
Separation processes in Figure 3A. SOVEREIGN2 can then
function even using sensory detectors that may be pixelated or
degraded in various ways due to use. Such detectors include
artificial sensors such as Synthetic Aperture Radar, Laser Radar,
and Multispectral Infrared. Synthetic Aperture Radar, or SAR,
can be used to process images that can see through the weather.
Figure 6 shows a computer simulation of how a SAR image
can be processed by boundary completion and surface filling-in
processes that compensate for sensor failures.
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FIGURE 6 | A Synthetic Aperture Radar (SAR) input image (upper left panel) is
normalized (upper right panel) before it is used to compute boundaries (lower
left panel) that join statistically regular pixel contrasts. Then the still highly
pixelated normalized image fills-in the compartments defined by the
boundaries (lower right image) to generate a representation of a scene in
upper New York State in which a diagonal road crosses over a highway in a
wooded area. See text for details. [Adapted with permission from
Mingolla et al. (1999)].

Boundary completion and surface filling-in processes
illustrate one of the best known examples of complementary
computing (Grossberg, 1984a, 1994, 1997; Grossberg and
Mingolla, 1985): Boundaries are completed inwardly between
pairs or greater numbers of inducers in an oriented fashion.
Boundary completion is also triggered after the processing
stage where cortical complex cells pool signals from simple
cells that are sensitive to opposite contrast polarities, thus
becoming insensitive to direction of contrast. Because they
pool over opposite contrast polarities−including achromatic
black–white contrasts, and chromatic red–green and blue–
yellow contrasts−boundaries cannot represent conscious visual
qualia. That is, all boundaries are invisible. Surface filling-in of
brightness and color spread outwardly in an unoriented fashion
until they hit a boundary, or attenuate due to their spatial spread.
Surface filling-in is also sensitive to direction of contrast. All
conscious percepts of visual qualia are surface percepts. These
three pairs of properties (inward vs. outward, oriented vs.
unoriented, and insensitive vs. sensitive to direction of contrast)
are manifestly complementary.

4.14. Why Did Evolution Discover
Consciousness? Conscious States
Control Adaptive Actions
The above review of some of the early processing stages in
the visual system provides a foundation for understanding how
ART provides a rigorous computational proposal both for what
happens in each brain and how and where it happens as it
learns to consciously see, hear, feel, or know something, as
well as for why evolution was driven to discover conscious

FIGURE 7 | During an adaptive resonance, attended feature patterns interact
with recognition categories, both stored in short-term memory (STM), via
positive feedback pathways that can synchronize, amplify, and prolong the
resonating cell activities. Such a resonance can trigger learning in the adaptive
weights, or long-term memory (LTM) traces, within both the bottom-up
adaptive filter pathways and the top-down learned expectation pathways. In
the present example, the resonance is a feature-category
resonance (see Table 1a).

states in the first place (Grossberg, 2017). In particular, as
noted above, in order to resolve the computational uncertainties
caused by complementary computing, the brain needs to use
multiple processing stages that include interactions between
pairs of complementary cortical processing streams to realize a
hierarchical resolution of uncertainty.

Because the light that falls on our retinas may be occluded by
the blind spot, multiple retinal veins, and all the other retinal
layers through which light passes before it reaches the light-
sensitive photoreceptors (Supplementary Figures S4, S5), these
retinal images are highly noisy and incomplete. Using them to
control actions like looking and reaching could lead to incorrect,
and potentially disastrous, actions.

In order to compute the functional units of visual
perception, namely 3D boundaries and surfaces, three pairs
of computationally complementary uncertainties need to be
resolved using a hierarchical resolution of uncertainty. If this
is indeed the case, then why do not the earlier processing
stages undermine behavior by causing incorrect, and potentially
disastrous, actions to be taken? In the case of visual perception,
the proposed answer is that brain resonance, and with it conscious
awareness of visual qualia, is triggered at the cortical processing
stage that represents 3D surface representations, after they are
complete, context-sensitive, and stable enough to control visually
based actions like attentive looking and reaching. The conscious
state is an “extra degree of freedom” that selectively “lights up”
this surface representation and enables our brains to selectively
use it to control adaptive actions.

ART hereby links the evolution of consciousness to the ability
of advanced brains to learn how to control adaptive actions.
In the case of visual perception, this surface representation is
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predicted to occur in prestriate visual cortical area V4, where
a surface-shroud resonance that supports conscious seeing is
predicted to be triggered between V4 and the posterior parietal
cortex, or PPC (Figure 5), before it propagates both top-down to
V2 and V1 and bottom-up to the PFC. The PPC is in the dorsal
Where cortical stream. An attentional shroud is spatial attention
that fits itself to the shape of an attended object surface (Tyler and
Kontsevich, 1995). An active surface-shroud resonance maintains
spatial attention on the surface throughout the duration of the
resonance. When spatial attention shifts, the resonance collapses
and another object can be attended.

While a surface-shroud resonance is still active, it regulates
saccadic eye movement sequences that foveate salient features
on the attended object surface. These properties mechanistically
explain the distinction between two different functional roles
of PPC: its control of top-down attention from PPC to V4
and its control of the intention to move, a distinction that has
been reported in both psychophysical and neurophysiological
experiments (e.g., Andersen et al., 1985; Gnadt and Andersen,
1988; Snyder et al., 1997, 1998). How spatial attention regulates
the learning of invariant object categories during free scanning of
a scene using its intentional choice of scanning eye movements
that foveate sequences of salient surface features will be
summarized in section 6.4.

The proposed link between consciousness and action
is relevant to the design of future autonomous adaptive
robots, and provides a new computational perspective for
discussing whether machine consciousness is possible, and
how it may be necessary to control a robot’s choice of
context-appropriate actions.

4.15. Synchronized Resonances for
Seeing and Knowing: Visual Neglect and
Agnosia
Many psychological and neurobiological data have been
explained using ART resonances. For example, surface-shroud
resonances for conscious seeing and feature-category resonances
for conscious knowing of visual events can synchronize via
shared visual representations in the prestriate cortical areas V2
and V4 when a person sees and knows about a familiar object
(Figure 5). A lesion of the parietal cortex in one hemisphere
can prevent a surface-shroud resonance from forming, thereby
leading to the clinical syndrome of visual neglect, whereby an
individual may draw only one half of the world, dress only one
half of the body, and make erroneous reaches. A lesion of the
inferotemporal cortex can prevent a feature-category resonance
from forming, thereby leading to the clinical syndrome of visual
agnosia, whereby a human can accurately reach for an object
without knowing anything about it. See Grossberg (2017) for
mechanistic explanations.

4.16. Classification of Adaptive
Resonances for Seeing, Hearing,
Feeling, Knowing, and Acting
In addition to the surface-shroud resonances that supports
conscious seeing and the feature-category resonances that

support conscious knowing, ART explains what resonances
support hearing and feeling, and how resonances supporting
knowing are synchronously linked to them. All of these
resonances support different kinds of learning that solve the
stability-plasticity dilemma; e.g., visual and auditory learning,
reinforcement learning, cognitive recognition learning, and
cognitive speech and language learning.

In summary, surface-shroud resonances support conscious
percepts of visual qualia. Feature-category resonances support
conscious learning and recognition of visual objects and
scenes. Both kinds of resonances may synchronize during
conscious seeing and recognition, so that we know what
a familiar object is as we see it. Stream-shroud resonances
support conscious percepts of auditory qualia. Spectral-
pitch-and-timbre resonances support conscious learning and
recognition of sources in auditory streams. Stream-shroud
and spectral-pitch-and-timbre resonances may synchronize
during conscious hearing and recognition of auditory streams.
Item-list resonances support conscious learning and recognition
of speech and language. They may synchronize with stream-
shroud and spectral-pitch-and-timbre resonances during
conscious hearing of speech and language, and build upon
the selection of auditory sources by spectral-pitch-and-timbre
resonances in order to recognize the acoustical signals that are
grouped together within these streams. Cognitive-emotional
resonances support conscious percepts of feelings, as well
as learning and recognition of the objects or events that
cause these feelings. Cognitive-emotional resonances can
synchronize with resonances that support conscious qualia and
knowledge about them.

These resonances embody parametric properties of individual
conscious experiences that enable effective actions to be
chosen without interference from earlier processing stages.
For example, surface-shroud resonances help to control
looking and reaching; stream-shroud resonances help to
control auditory communication, speech, and language;
and cognitive-emotional resonances help to acquire valued
goal objects. In autonomous adaptive systems that solve the
stability-plasticity dilemma using ART dynamics, formal
mechanistic homologs of such different states of resonant
consciousness may be needed to choose the different kinds
of actions that they control. More information will be
summarized below about cognitive-emotional resonances
in sections 6.5–6.7.

5. BUILDING UPON THREE BASIC
DESIGN THEMES: HOMOLOGOUS
CIRCUITS FOR REACHING AND
NAVIGATING

A third design theme that is realized by the SOVEREIGN
model is that advanced brains use homologous circuits to
compute arm movements during reaching behaviors, and
body movements during spatial navigation. In particular, both
navigational movements and arm movements are controlled
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by circuits which share a similar mismatch learning law—
called a Vector Associative Map, or VAM (Gaudiano and
Grossberg, 1991, 1992; see section 5.3)—that enables learned
calibration of difference vectors in the manner described
below. This proposed homology clarifies how navigational and
arm movements can be coordinated when a body navigates
toward a goal object before grasping it. SOVEREIGN used
difference vectors to model navigational movements. It did
not, however, include a controller for arm movements that
could grasp a valued object when it came within range. The
text below indicates how unsupervised incremental learning in
SOVEREIGN2 realizes such a capability and can, moreover, do
so using a tool (see section 5.4).

5.1. Arm Movement Control Using
Difference Vectors and Volitional GO
Signals
Neural models of arm movement trajectory control, such as the
Vector Integration to Endpoint, or VITE, model (Bullock and
Grossberg, 1988) (Figure 8, left panel) and their refinements
(e.g., Bullock et al., 1993) (Figure 8, right panel) propose how
cortical arm movement control circuits compute a representation
of where the arm wants to move (i.e., the target position vector
T) and subtracts from it an outflow representation of where the
arm is now (i.e., the present position vector P). The resulting
difference vector D between target position T and present position
P represents the direction and distance that the arm needs to
move to reach its goal position. Basal ganglia (BG) volitional
signals of various kinds, such as a GO signal G, transform the
difference vector D into a motor trajectory that can move with
variable speed by multiplying D with G, before this product
is integrated by P. Because P integrates the product DG, DG
represents the commanded outflow movement speed. Then P
moves at a speed that increases with G, other things being
equal. As P approaches T, D approaches zero, along with the
outflow speed DG, so the movement terminates at the desired
target position.

5.2. Computing Present Position for
Spatial Navigation From Vestibular
Signals: Place Cells
Because the arm is attached to the body, the present position of
the arm can be computed using outflow, or corollary discharge,
commands P that are derived directly from the movement
commands to the arm itself (Figure 8, left panel). In contrast,
when a body moves with respect to the world, no such
immediately available present position command is available. The
ability to compute a difference vector between a target position
and the present position of the body−in order to determine
the direction and distance that the body needs to navigate to
acquire the target−requires more elaborate brain machinery. At
the time SOVEREIGN was published, computation of such a
Present Position Vector, called NET in SOVEREIGN, used an
algorithm to estimate the information that vestibular signals
compute in vivo.

FIGURE 8 | (Left) Vector Integration To Endpoint, or VITE, model circuit for
reaching. A present position vector (P) is subtracted from a target position
vector (T ) to compute a difference vector (D) that represents the distance and
direction in which the arm must move. The rectified difference vector ([D]),
where [D] = max(D, 0), is multiplied by a volitional GO signal (G) before the
velocity vector [D]G is integrated by P until P equals T, hence the model name
Vector Integration to Endpoint. [Adapted with permission from Bullock and
Grossberg (1988)]. (Right) DIRECT model circuit. This refinement of VITE
processing enables the brain to carry out motor equivalent reaching. DIRECT
can move a tool under visual guidance to its correct endpoint position on the
first try, without measuring the dimensions of the tool or the angle that it
makes with the hand. DIRECT hereby clarifies how a spatial affordance for
tool use may have arisen from the ability of the brain to learn reaches in space
during infant development. An endogenous random generator, or ERG,
provides the “energy” to drive motor learning during a critical developmental
period of motor babbling. The ERG activates a motor direction vector (DVm)
that moves the hand/arm via the motor present position vector (PPVm). As the
hand/arm moves, the eyes reactively track the position of the moving hand,
and thereby compute the visually activated spatial target position vector
(TPVs) and the spatial present position vector (PPVs). These vectors, which
coincide during reactive tracking, are used to compute the spatial difference
vector (DVs). This spatial transformation, along with the mapping from spatial
directions into motor directions, gives the model its motor equivalent reaching
capabilities. To compute them, the PPVs activates the spatio-motor present
position vector (PPVsm), which is subtracted from the TPVs. As a result, the
PPVs signal that reaches the TPVs is slightly delayed, thereby enabling the
DVs computation to occur. The PPVsm stage is one of two stages in the
model where spatial and motor representations are combined. The subscripts
“s” and “m” denote spatial and motor, respectively. A transformation, called a
circular reaction (Piaget, 1945, 1951, 1952), is learned from spatial-to-motor
and motor-to-spatial representations at two adaptive pathways that are
denoted by hemispherical synapses. The spatial direction vector (DVs) is
hereby adaptively mapped into the motor direction vector (DVm) to transform
visual Direction Into joint Rotation that gives the DIRECT model its name.
[Reprinted with permission from Bullock et al. (1993)].

SOVEREIGN breaks down spatial navigation into sequences
of straight excursions in fixed directions, after which a
head/body turn changes the direction before another straight
excursion occurs. In vivo, vestibular signals provide angular
velocity and linear velocity signals that can be integrated
to compute these head/body angles and straight movement
distances. The SOVEREIGN algorithm adds the head/body
turn angles, as well as the body approach distances for each
straight excursion, to compute NET. Then, as Figure 1B
summarizes, NET is subtracted from the Reactive Visual TPV
Storage to compute a Reactive DV, which controls the next
straight movement in space. Each head/body turn resets NET
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to allow the next NET estimate to be computed. Using
such computations, SOVEREIGN was able to learn how to
navigate toward valued goals in structured environments like the
maze in Figure 2.

In sufficiently advanced terrestrial animals, from rats to
humans, an animal’s position in space is computed from a
combination of both visual and path integration information. The
visual information is derived from 3D perceptual representations
that are completed by processes such as boundary completion
and surface filling-in. The path integration information is
derived from vestibular angular velocity and linear velocity
signals that are activated by an animal’s navigational movements.
This vestibular information is transformed by entorhinal grid
cells and hippocampal place cells into representations of the
animal’s present position in space (O’Keefe and Nadel, 1978;
Hafting et al., 2005). The GridPlaceMap model simulated how
these cells learn their spatial representations as the animal
navigates realistic trajectories (e.g., Grossberg and Pilly, 2014).
Key properties of the GridPlaceMap model and some of
the grid cell and place cell data that it can explain are
summarized in section 8.

When SOVEREIGN2 replaces the algorithmic computations
of NET in Figure 1B by circuits that learn grid and place cells, it
can then autonomously learn spatial NET estimates as the animat
navigates novel environments that may be far more complicated
than the plus maze in Figure 2. When such a self-organized
NET estimate is used to compute a difference vector between the
present and target positions, a volitional GO signal can move
the animat toward the desired target, just as in the case of
an arm movement.

5.3. From VITE to VAM: How a Circular
Reaction Drives Mismatch Learning to
Calibrate VITE
In order for VITE dynamics to work properly, its difference
vectors need to be properly calibrated. In particular, when T
and P represent the same position in space, D must equal zero.
However, T and P are computed in two different networks of cells.
It is too much to expect that the activities of these two networks,
and the gains of the pathways that carry their signals to D, become
perfectly matched without the benefit of some kind of learning.
The Vector Associative Map, or VAM model explains how this
kind of learning occurs (Gaudiano and Grossberg, 1991, 1992).
In brief, the VAM model corrects this problem using a form of
mismatch learning that adaptively changes the gains in the T-to-
D pathways until they match those in the P-to-D pathways, so
that when T = P, D = 0.

The VAM model does this using what has been called
a circular reaction since the pioneering work of Jean Piaget
on infant development (Piaget, 1945, 1951, 1952). All infants
normally go through a babbling phase, and it is during such
a babbling phase that a circular reaction can be learned. In
particular, during a visual circular reaction, babies endogenously
babble, or spontaneously generate, hand/arm movements to
multiple positions around their bodies. As their hands move
in front of them, their eyes automatically, or reactively, look

at their moving hands. While the baby’s eyes are looking
at its moving hands, the baby learns an associative map
from its hand positions to the corresponding eye positions,
and from eye positions to hand positions. Learning of the
map between eye and hand in both directions constitutes the
“circular” reaction.

After map learning occurs, when a baby, child, or adult looks at
a target position with its eyes, this eye position can use the learned
associative map to generate a movement command to reach the
corresponding position in space. In order for the command to be
read out, a volitional GO signal from the BG−notably from the
substantia nigra pars reticulata, or SNr—opens the corresponding
movement gate (Prescott, 2008). Such a gate-opening signal
realizes “the will to act.” Then the hand/arm can reach to the
foveated position in space under volitional control. Because our
bodies continue to grow for many years as we develop from
babies into children, teenagers, and adults, these maps continue
updating themselves throughout our lives.

In a VAM, endogenous babbling is accomplished by an
Endogenous Random Generator, or ERG+, that sends random
signals to P that cause the arm to automatically babble a
movement in its workspace. This movement is thus not under
volitional control. When P gets activated, in addition to causing
the arm to move, it sends signals that input an inhibitory copy of
itself to D.

The ERG has an opponent organization. It is the ERG ON,
or ERG+, component that energizes the babbled arm moment.
When ERG+ momentarily shuts off, ERG OFF, or ERG−, is
disinhibited and opens a gate that lets P get copied at T, where
it is stored. At this moment, both T and P represent the same
position in space. If the model were correctly calibrated, the
excitatory T-to-D and inhibitory P-to-D signals that input to D in
response to the same positions at T and P would cancel, causing
D to equal zero. If D is not zero under these circumstances,
then the signals are not properly calibrated. The VAM model
uses such non-zero D vectors as mismatch teaching signals that
adaptively calibrate the T-to-D signals. As perfect calibration is
achieved, D approaches zero, at which time mismatch learning
self-terminates.

Another refinement of VITE showed how arm movements can
compensate for variable loads and obstacles, and interpreted the
hand/arm trajectory formation stages in terms of identified cells
in motor and parietal cortex, whose temporal dynamics during
reaching behaviors were quantitatively simulated (Bullock et al.,
1998; Cisek et al., 1998).

5.4. Motor-Equivalent Reaching With
Clamped Joints and Tools: The DIRECT
Model
Yet another VITE model refinement, called the DIRECT model
(Figure 8, right panel), builds upon VAM calibration to propose
how motor-equivalent reaching is learned (Bullock et al., 1993).
Motor-equivalent reaching explains how, during movement
planning, either arm, or even the nose, could be moved
to a target position, depending on which movement system
receives a GO signal.
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The DIRECT model also begins to learn by using a circular
reaction that is energized by an ERG (Figure 8, right panel).
Motor-equivalent reaching emphasizes that reaching is not just a
matter of combining visual and motor information to transform
a target position on the retina into a target position in body
coordinates. Instead, these visual and motor signals are first
combined to learn a representation of the space around the
actor which can then be downloaded to move any of several
motor effectors.

Remarkably, after the DIRECT model uses its circular reaction
to learn its spatial representations and transformations, its motor-
equivalence properties enable it to accurately move an arm, even
when its joints are clamped, to any position in its workspace on
the first try. DIRECT can also manipulate a tool in space. The
conceptual importance of this result cannot be overemphasized:
Without measuring tool length or angle with respect to the
hand, the model can move the tool’s endpoint to touch the
target’s position correctly under visual guidance on its first
try, in a single reach without later corrective movements, and
without additional learning. In other words, the spatial affordance
for tool use, a critical foundation of human societies, follows
from the brain’s ability to learn a circular reaction for motor-
equivalent reaching in space. Adding these reaching capabilities
to SOVEREIGN2 will enable it to use tools to manipulate target
objects after it navigates to them.

5.5. Social Cognition: Joint Attention and
Imitation Learning Using CRIB Circular
Reactions
The DIRECT model shows how the spatial affordance for
tool use could arise as a result of the circular reactions
that enable reaching behaviors to develop. With DIRECT
on board, a child, monkey, or robot could then volitionally
reach objects with its own hand, or even using a tool like
a stick. If a monkey happened to pick up a stick in this
way, put it into an ant hill, and pulled it out with some
ants on it, it could learn this skill to eat ants in the future
whenever it wanted to do so. However, another monkey looking
at this skill could not learn it from the first one without
further brain machinery, because the two monkeys experience
this event from two different spatial vantage points. This
additional brain machinery is needed for social cognitive skills
to be learned, including the learning of joint attention and
imitation learning. These are competences upon which all human
societies have built.

Grossberg and Vladusich (2010) develops the Circular
Reactions for Imitative Behavior, or CRIB, model to explain
how imitation learning utilizes inter-personal circular reactions
that take place between teacher and learner, notably how a
learner can follow a teacher’s gaze to fixate a valued goal
object, and distinguishes them from the classical intra-personal
circular reactions of Piaget that take place within a single
learner, such as the one that enables reaching behaviors to
be learned. After a learner can volitionally reach objects on
its own, it can also learn, using an inter-personal circular
reaction, to reach an object at which a teacher is looking,

such as a stick with which to retrieve ants from an anthill. By
building upon intra-personal circular reactions that are capable
of learning motor-equivalent reaches, the CRIB model hereby
clarifies how a pupil can learn from a teacher to manipulate
a tool in space.

In order to achieve joint attention and imitation learning, the
learner needs to be able to bridge the gap between the teacher’s
coordinates and its own. In the neurobiological literature, this
capability is often attributed to mirror neurons that fire either
if an individual is carrying out an action or just watching
someone else perform the same action (Rizzolatti and Craighero,
2004; Rizzolatti, 2005). This attribution does not, however,
mechanistically explain how the properties of mirror neurons
arise. The CRIB model proposes that the “glue” that binds these
two coordinate systems, or perspectives, together is a surface-
shroud resonance. How this works is modeled in Grossberg
and Vladusich (2010). It is also known that a breakdown of
joint attention can cause severe social difficulties in individuals
with autism. How these and other breakdowns in learning
cause symptoms of autism are modeled by the iSTART model
(Grossberg and Seidman, 2006).

If CRIB-like social cognition capabilities are incorporated
into a “classroom” of SOVEREIGN2 robots, they can then all
learn sensory-motor skills from a teacher who they see from
different vantage points.

5.6. Platform Independent Movement
Control
If SOVEREIGN2 is used to control an embodied mobile robot,
then an important design choice is whether to use legs or
wheels with which to navigate. Difference vector (DV) control
of direction and distance that is gated by a GO signal can be
used in either case.

To help guide the development of a legged robot, neural
network models have shown how leg movements can be
performed with different gaits, such as walk or run in bipeds, and
walk, trot, pace, and gallop in quadrupeds, as the GO signal size
increases (Pribe et al., 1997).

An example of DV-GO control in a wheeled mobile robot
was developed by Zalama et al. (1995) and Chang and Gaudiano
(1998) and tested on robots such as the Khepera and Pioneer 1
mobile robots to demonstrate VAM learning of how to approach
rewards and avoid obstacles in a cluttered environment, with
no prior knowledge of the geometry of the robot or of the
quality, number, or configuration of the robot’s sensors. Learning
in one environment generalized to other environments because
it is based on the robot’s egocentric frame of reference. The
robot also adapted on line to miscalibrations produced by wheel
slippage, changes in wheel sizes, and changes in the distance
between the wheels.

In summary, both navigational movements in the world and
movements of limbs with respect to the body use a difference
vector computational strategy.

Sections 6–8 provide a deeper and broader conceptual and
mechanistic insight into the themes that the earlier sections
have introduced.
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6. RESONANT DYNAMICS FOR
PERCEPTION, COGNITION, AFFECT,
AND PLANNING

6.1. Invariant Object Category Learning
Uses Feature-Category Resonances and
Surface-Shroud Resonances
Many of the enhanced capabilities of SOVEREIGN2 will use
resonant processes. In particular, in order for SOVEREIGN2
to learn view-, position-, and size-invariant object categories
as it scans a scene with eye, or camera, movements, two
different types of resonances need to be coordinated: feature-
category resonances and surface-shroud resonances. In vivo,
view-, position-, and size-specific visual percepts in the striate and
prestriate visual cortices V1, V2, and V4 are transformed into
view-, position-, and size-specific object recognition categories
in the posterior inferotemporal cortex (ITp) via feature-
category resonances (Table 1a and Figure 7) within the What
cortical stream.

Within SOVEREIGN, the specific categories in ITp were
learned using the unsupervised Fuzzy ART model (Figure 4A).
Fuzzy ART can also be used for this purpose in SOVEREIGN2,
with visual inputs now coming from 3D boundary and surface
representations. Recognition learning may be supervised by
replacing Fuzzy ART with Fuzzy ARTMAP (Carpenter et al.,
1992) or any similar dynamical or algorithmic supervised
version of ART. As will be summarized below, however, truly
autonomous invariant object category learning that avoids
the algorithmic tricks of SOVEREIGN will require more
sophisticated network interactions.

Despite its simplicity, Fuzzy ART is an algorithmic realization
of dynamical properties of ART that embody both a feature-
category resonance (Figure 6) and a classical example of
complementary computing. Complementary computing enables
feature-category resonances to continuously learn to recognize
novel objects using interactions between an attentional system
in which category learning occurs, and an orienting system
that drives memory searches and hypothesis testing for
novel categories in response to large enough mismatches
between bottom-up and top-down input patterns (Figure 9)
(Grossberg, 1976b, 1980, 2017).

6.2. Complementary Computing: ART
Hypothesis Testing and Learning of
Predictive Categories
The need for an orienting system can be seen by answering
the question: If learning can occur only if there is a sufficiently
good match between bottom-up input patterns and top-down
expectations, then how is anything truly novel ever learned?
Here is where complementary properties of attentional matching
and orienting search are crucial: A sufficiently bad mismatch
between an active top-down expectation and a bottom-up input,
say because the input is unfamiliar, can drive a memory search
and hypothesis testing. Such a mismatch within the attentional
system activates the complementary orienting system, which

FIGURE 9 | ART cycle of match-induced resonant learning and
mismatch-induced reset and search. (A) The input pattern I is instated across
feature detectors at level F1 as an activity pattern X, as it also inputs to the
orienting system A with a gain ρ called vigilance. Activity pattern X sends
inhibitory signals to A and a bottom-up excitatory input pattern S to the
category level F2. Balanced excitatory inputs from I and inhibitory inputs from
X keeps A quiet. S inputs are multiplied by learned adaptive weights to define
the input pattern T to F2. Inputs T are contrast-enhanced and normalized
within F2 by recurrent lateral inhibitory signals that obey the membrane
equations of neurophysiology, also called shunting interactions. A small
number of cells within F2 that receive the largest inputs are chosen by this
competition. These cells represent the category Y that codes the feature
pattern at F1. A winner-take-all category is shown. (B) Category Y generates
top-down signals U that are multiplied by adaptive weights to form a
prototype, or critical feature pattern, V. V represents the expectation that Y
has learned of the feature pattern to expect at F1. If V mismatches I at F1,
then a new STM activity pattern X∗ (the hatched pattern), is chosen at cells
where the patterns match well enough; that is, X∗ is active at I features that
are confirmed by V. Mismatched features (white area) are inhibited. When X
changes to X∗, total inhibition decreases from F1 to A. (C) If inhibition
decreases sufficiently, A triggers non-specific arousal to F2, thereby
instantiating that “novel events are arousing.” Vigilance ρ determines how bad
a match will be tolerated before non-specific arousal is triggered. Arousal
initiates a memory search for a better-matching category in the following way:
First, arousal resets F2 by inhibiting Y. (D) After Y is inhibited, X is reinstated
and Y stays inhibited as X activates a different category Y∗ at F2. Search
continues until a better matching, or novel, category is selected. When search
ends, a resonance develops that supports learning of the attended data in the
adaptive weights within both the bottom-up and top-down pathways. After
learning, inputs I can activate the globally best-matching categories directly
through the adaptive filter without activating the orienting system. [Adapted
with permission from Carpenter and Grossberg (1993)].

is sensitive to unexpected and unfamiliar events. The ART
attentional system includes the inferotemporal and prefrontal
cortices, whereas the orienting system includes the non-specific
thalamus and hippocampal system. See Carpenter and Grossberg
(1993) and Grossberg and Versace (2008) for supportive
neurobiological data.

The fact that ART learns only if a sufficiently good match
occurs also imposes constraints upon how top-down adaptive
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weights are initially chosen to enable category learning to get
started: In any ART system, the top-down adaptive weights that
represent learned expectations need to be broadly distributed and
large before learning occurs, so that they can match whatever
input pattern first initiates learning of a new category. Indeed,
when a new category is first activated, it is not known at the
category level what pattern of features caused the category to
be activated. Whatever feature pattern was active needs to be
matched by the top-down expectation on the first learning trial,
so that resonance and weight learning can begin. Hence the
need for the initial values of top-down weights to be broadly
distributed and sufficiently large to match any feature pattern.

Given that top-down weights are initially broadly distributed,
the learning of top-down expectations is a process of pruning
weights on subsequent learning trials, and uses mismatch-
based reset events to discover categories capable of representing
the environment. The large initial adaptive weights in top-
down expectations helps to explain otherwise mysterious
neurobiological data, such as why there is an Inverted-U through
time in the power of beta oscillations when an animal first
navigates a new maze (Berke et al., 2008; Grossberg, 2009a).

6.3. Complementary PN and N200 Event
Related Potentials During Attention and
Memory Search
In contrast to the top-down, adaptive, specific, and match
properties that occur during an attentive match, an orienting
system mismatch is bottom-up, non-adaptive, non-specific, and
mismatch: A mismatch occurs when bottom-up activation of
the orienting system cannot be adequately inhibited by the
bottom-up inhibition from the matched pattern (Figure 9B).
The signals to and from the orienting system are non-adaptive,
or not subject to learning. Mismatch-activated output from the
orienting system non-specifically arouses all the category cells
because the orienting system cannot determine which categories
read out the expectation that led to mismatch (Figure 9C). Any
category may be responsible, and may thus need to be reset by
arousal (Figure 9D). Finally, the orienting system is activated by
a sufficiently big mismatch.

These are properties of the N200 event-related potential, or
ERP (Näätänen et al., 1982; Sams et al., 1985). More generally,
during an ART memory search, sequences of the predicted
mismatch, arousal, and reset events occur that exhibit properties
of the sequentially occurring P120, N200, and P300 ERPs,
respectively (Banquet and Grossberg, 1987).

In summary, four sets of properties of the attentional system
are complementary to those of the orienting system (top-
down vs. bottom-up, adaptive vs. non-adaptive, specific vs.
non-specific, match vs. mismatch), with the PN and N200
ERPs illustrating these complementary properties. The orienting
system can detect that an error has occurred, but does know
what category prediction caused it. The attentional system knows
what categories are active, but not if these categories adequately
represent current inputs. By interacting, these systems can
determine what the error is and discover and learn a new category
to correct it. Complementary computing hereby accomplishes

incremental learning and autonomous error correction of a
large non-stationary database, without incurring the risk of
catastrophic forgetting.

6.4. Autonomous Solution of the
Invariant Pattern Recognition Problem
During Active Vision
In our brains, as ITp categories are learned using feature-category
resonances, they create the substrate for learning view-, position-,
and size-invariant object recognition categories within the
ventral What cortical processing stream, notably in the anterior
inferotemporal cortex, or ITa. The 3D ARTSCAN Search model
has been incrementally developed to explain in detail how our
brains learn to solve the invariant pattern recognition problem
during active vision, a problem that is just as important for
human survival as it is for designing machine learning algorithms
that can autonomously learn in the real world (Fazl et al., 2009;
Cao et al., 2011; Grossberg et al., 2011, 2014; Foley et al., 2012;
Chang et al., 2014; Grossberg, 2017). When it is implemented
in SOVEREIGN2, the 3D ARTSCAN Search architecture can
be used to provide previously unavailable machine learning,
recognition, and prediction abilities in autonomous adaptive
mobile systems, notably self-training robots.

To carry out effective invariant category learning, the model
needed to solve a basic View-to-Object Binding Problem, which
concerns how our brains automatically know, without external
supervision or prior learning, which views of a novel scene
belong to the same object−and thus can be associated with
the same invariant category−and which do not−so should
not be associated. As a result, the model can learn invariant
object categories in response to arbitrary combinations of
unsupervised and supervised learning trials as the eyes freely scan
a complex scene.

As ITp categories are learned using feature-category
resonances (Figure 7), they are associated with cells in the
anterior inferotemporal (ITa) cortex that learn to become view-,
position-, and size-invariant object recognition categories.
Figure 10 illustrates how the View-to-Object Binding Problem is
solved during invariant object category learning in ITa within the
What cortical stream, with the help of modulation by the PPC in
the Where cortical stream, including the inferior parietal sulcus
(IPS), the lateral intraparietal area (LIP), and the medial superior
parietal lobule (SPL). Surface-shroud resonances that are
triggered between V4 and IPS play a critical role in modulating
this invariant category learning modulation process, while they
also support conscious visibility of the attended object surface.

An active surface-shroud resonance embodies the brain state
that maintains spatial attention upon the object that is being
learned about. While the object is attended, its shroud also
inhibits category reset cells in SPL (Figure 10). While the surface-
shroud resonance maintains attention on an object surface, it
also regulates eye movements that successively foveate the most
salient features on the attended surface (not shown in Figure 10),
but not other objects in the scene, thereby solving the View-to-
Object Binding Problem. Each foveation can lead to the learning
of a different specific ITp category. The first such ITp category to
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FIGURE 10 | Learning of view-invariant categories in the What cortical stream
is modulated by surface-shroud resonances in the Where cortical stream. The
surface-shroud resonance prevents the invariant category from being reset as
multiple view-specific categories are learned and associated with it as the
eyes scan an attended object surface. See the text for details.

be learned chooses cells in ITa with which it will be associated via
typical ART dynamics (Figure 10). As successive ITp categories
are learned, they can all be associated with the same ITa cells
because they cannot be inhibited by SPL. These ITa calls hereby
learn to become an invariant object category by being associated
with multiple specific ITp categories.

When spatial attention shifts from the object, its shroud
collapses, thereby disinhibiting the reset cells in SPL. A transient
burst of inhibition from these SPL cells resets the active invariant
object category in ITa (Chiu and Yantis, 2009; Fazl et al., 2009).
As the invariant object category collapses and the eyes attend
another object’s surface, new specific ITp and invariant ITa
object categories can be learned to represent other objects in a
scene. The cycle can then repeat itself. The model can hereby
autonomously learn invariant object categories in response to
arbitrary combinations of unsupervised and supervised learning
trials as its eyes or cameras are directed to scan a complex scene.

After invariant categories are learned, the system can also solve
the Where’s Waldo Problem; that is, it can search a scene for
a desired goal object within it. Such a search requires What-to-
Where stream interactions.

6.5. Conditioned Reinforcer and
Motivational Learning Use
Cognitive-Emotional Resonance
Invariant object categories in ITa (sensory cortex in Figure 11A)
learn to activate value categories via conditioned reinforcer
pathways, whereas value categories learn to activate object-
value categories in the orbitofrontal cortex (OFC) via incentive
motivational pathways. Both kinds of learning occur during
a cognitive-emotional resonance that is triggered when a
conditioned stimulus, such as a buzzer sound, activates its
invariant object category while an unconditioned stimulus, or

primary reward such as presentation of food to a hungry animal,
activates its value category.

A cognitive-emotional resonance begins when object-value
categories fire in response to converging inputs from sensory
cortex and a value category. Then top-down feedback from the
object-value category to its invariant object category closes a
feedback loop between sensory cortex, amygdala (AMYG), and
OFC that supports the cognitive-emotional resonance. This kind
of resonance focuses motivated attention upon valued objects,
while triggering context-appropriate actions toward them.

The model in Figure 11A that accomplishes conditioned
reinforcer learning, incentive motivational learning, and release
of motor actions toward valued goal objects is called the
Cognitive-Emotional-Motor, or CogEM, model. CogEM has
been getting incrementally developed since it was introduced
in 1971 (e.g., Grossberg, 1971, 1982, 1984b; Grossberg and
Gutowski, 1987; Dranias et al., 2008). The drive representations
of the CogEM model include opponent processing channels
called gated dipoles (Grossberg, 1972a,b, 1984b) that organize
affective processing into opponent channels such as fear vs.
relief, and hunger vs. frustration, which help to regulate
behaviors like approach vs. avoidance, and exploration vs.
consummation (cf. exploration vs. exploitation). Each gated
dipole controls the balance between one pair of opponent
affective representations. Variations of the gated dipole design
occur in multiple brain processes, including the representation
of opponent colors such as red vs. green, opponent directions
such as up vs. down, and opponent muscles such as agonists
vs. antagonists. Gated dipoles are thus a general design that
helps to reset brain dynamics in response to sudden changes in
environmental contingencies, and to restore brain dynamics to
an unbiased state.

6.6. Antagonistic Rebounds Enable
Opponent Extinction and Learning From
Disconfirmations
Gated dipole reset takes the form of an antagonistic rebound
during which activation in its ON channel is replaced by
a transient activation, or rebound, in its OFF channel. An
antagonistic rebound can be triggered in response to a sudden
decrease in the phasic input that was activating the ON
channel, or to an unexpected event that causes a sudden
increase in the arousal that activates both the ON and
OFF channels (Grossberg, 1984b; Grossberg and Schmajuk,
1987). In this way, changing environmental contingencies,
including the disconfirmation of expected events, can have
reinforcing properties that can modulate which learned plans
will be chosen to triggered goal-oriented actions in a particular
environmental context.

When adaptive weights learn from both ON channel
activations and OFF channel rebounds in response to
disconfirmations of previous learning, then approximately
equal learned inputs to both the ON and OFF channels can
occur and lead to competitive suppression of output signals. The
emotional and motivational support for such behaviors is then
eliminated; the behavior has been extinguished. Recurrent gated
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FIGURE 11 | (A) Cognitive-Emotional-Motor (CogEM) model macrocircuit. CogEM models how invariant object categories in sensory cortex can activate value
categories, also called drive representations, in the amygdala and hypothalamus, and object-value categories in the orbitofrontal cortex. Converging activation from
an object category and its value category can fire the corresponding object-value category. An invariant object category can activate an object-value category by
itself if prior conditioned reinforcer learning and incentive motivational learning strengthen the pathways that pass through the value category. An active object-value
category sends positive feedback to sensory cortex that enhances the activity of its invariant object category. This motivationally enhanced object representation can
then better compete with other object representations via a recurrent competitive network (not shown) and draw attention to itself. Maintaining feedback between
object, value, and object-value categories via a cognitive-emotional resonance can induce a conscious percept of having a particular feeling about the attended
object, as well as knowing what it is. The active object-value category can also generate output signals to activate cognitive expectations and actions through other
brain circuits. [Adapted from Grossberg (1971) and subsequent CogEM articles]. (B) Macrocircuit of the neurotrophic Spectrally Timed Adaptive Resonance Theory,
or nSTART, model. The sensory cortex sends signals to the prefrontal cortex, notably the inferotemporal cortex, as in (A). In addition to the connections between
these regions and the amygdala, nSTART also includes adaptively timed inputs from the sensory cortex to the hippocampus, which then inputs to prefrontal cortex.
A similar circuit (not shown) connects thalamus to sensory cortex, amygdala, and hippocampus. nSTART also includes adaptive connections from thalamus to
sensory cortex, and from sensory cortex to orbitofrontal cortex, that support object category learning. An adaptively timed cortico-hippocampal resonance can
maintain the cognitive-emotional resonance that passes through amygdala, thereby supporting conscious feelings and awareness of the objects that cause them.
The pontine nuclei serve as a final common pathway for reading-out conditioned responses. Cerebellar dynamics are not simulated in nSTART. Key:
arrowhead = excitatory synapse; hemidisc = adaptive weight; square = habituative transmitter gate; square followed by a hemidisc = habituative transmitter gate
followed by an adaptive weight. See the text for details. [Reprinted with permission from Franklin and Grossberg (2017)]. (C) In the START model, conditioning,
attention, and timing are integrated. Adaptively timed hippocampal signals R maintain motivated attention via a cortico-hippocampal-cortical feedback pathway, at
the same time that they inhibit activation of orienting system circuits A via an amygdala drive representation D. The orienting system A is also assumed to occur in
the hippocampus. The adaptively timed signal is learned at a spectrum of cells whose activities respond at different rates rj and are gated by different adaptive
weights zij . A transient Now Print learning signal N drives learned changes in these adaptive weights. In the nSTART model in (B), the hippocampal feedback circuit
operate in parallel to the amygdala, rather than through it. See the text for details. [Adapted with permission from Grossberg and Merrill (1992)].

dipoles called READ circuits, for Recurrent Associative Dipole,
enable opponent learning and extinction to go on throughout
life, without ever saturating the learned weights, no matter
how many learning and extinction trials they may experience
(Grossberg and Schmajuk, 1987).

SOVEREIGN models an array of gated dipoles, called gated
multipoles (Figures 4, 12), in which multiple opponent affective
states compete with each other to decide which one of them has
the momentarily best combination of sensory and motivational
inputs to control behavioral choices as environmental conditions
change. Gated multiples within CogEM circuits will also
occur in SOVEREIGN2.

6.7. Adaptively Timed
Cortico-Hippocampal Resonances
Support Learning Across Temporal Gaps
Learning often requires that learned associations form between
sensory cues and reinforcers that are separated in time, with
the sensory cues shutting off hundreds of milliseconds or even
seconds before the reinforcer turns on. The CogEM model
cannot learn in such situations because the AMYG cannot
bridge temporal gaps of such a long duration. In vivo, the
hippocampus (HIPPO) enables conditioning to bridge temporal
gaps using a type of adaptively timed learning (Figure 11B)
that is called spectral timing (Grossberg and Schmajuk, 1989;
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FIGURE 12 | The Gated Multipole network includes multiple gated dipoles that regulate reinforcement learning and incentive motivational learning to help chose
those object and spatial list chunks that control actions which predict the most valued outcomes in the current environment. See the text for details. [Reprinted with
permission from Gnadt and Grossberg (2008)].

Grossberg and Merrill, 1992, 1996). Spectrally timed learning can
bridge time intervals of hundreds of milliseconds between the
offset of a conditioned stimulus (CS) and the onset of a rewarding
unconditioned stimulus (US), as occurs during reinforcement
learning paradigms like trace conditioning and delayed-non-
match to sample. It does so using populations of cells that each
respond at different times (the “spectrum”), but for much shorter
time intervals than the population response as a whole can span.

How do neurons, which typically fire on a millisecond
time scale, span hundreds of milliseconds? Fiala et al. (1996)
developed a detailed spectral timing model of cerebellar adaptive
timing that links biochemistry, neurophysiology, neuroanatomy,
and behavior, and predicts how the metabotropic glutamate
(mGluR) receptor system may create a spectrum of delays
during cerebellar adaptively timed learning. mGluRs are a form
of glutamate receptor that is different from the ionotropic
glutamate receptors that support widespread excitatory signaling
throughout the brain. Unlike ionotropic glutamate receptors,
which directly activate ion channels, mGluR receptors activate
biochemical cascades. Spectral timing properties are predicted to
be an example of such a biochemical cascade, with intracellular
calcium regulating the different response rates of the cells
within such a spectrum. This prediction has been supported by
several subsequent experiments (e.g., Finch and Augustine, 1998;
Takechi et al., 1998; Ichise et al., 2000; Miyata et al., 2000).

In addition to the mGluR spectral timing circuits that have
modeled adaptively timed actions using the cerebellum (Fiala
et al., 1996), similar mGluR circuits have modeled maintenance of
adaptively timed incentive motivation that supports such actions
using the HIPPO (Grossberg and Schmajuk, 1989; Grossberg

and Merrill, 1992, 1996), and adaptively timed reinforcement
learning in response to unexpected rewards and punishments
using the BG (Brown et al., 1999, 2004). Indeed, variants of
spectral timing seem to be an ancient evolutionary discovery that
includes non-neural systems. Simpler versions of such calcium-
modulated spectra also occur in non-neural tissues such as HeLa
cancer cells (Bootman and Berridge, 1996), the puffs in Xenopus
oocytes (Yao et al., 1995), and the sparks in cardiac myocytes
(Cannell et al., 1995; López-López et al., 1995).

In particular, the Spectrally Timed Adaptive Resonance
Theory, or START, model has explained and simulated how
spectrally timed learning may occur in dentate-hippocampal
circuits (Figure 11C) (Grossberg and Schmajuk, 1989; Grossberg
and Merrill, 1992, 1996). Data about both normal and abnormal
learned timing have been explained by this model, including
explanations of timing failures in individuals with autism and
Fragile X syndrome (Grossberg and Seidman, 2006; Grossberg
and Kishnan, 2018).

The neurotrophic START, or nSTART, model (Figure 11B)
developed hippocampal spectral timing properties a different
direction by proposing how spectral timing supports memory
consolidation of previously learned associations using a
combination of endogenous hippocampal bursting and
modulation by brain-derived neurotrophic factor, or BDNF,
during the consolidation period, which often occurs during
periods of sleep (Franklin and Grossberg, 2017). If the HIPPO is
ablated shortly after learning, then memory consolidation cannot
take place, and medial temporal amnesia can be caused. More
generally, the nSTART model explains and simulates why lesions
of thalamus, AMYG, HIPPO, and OFC have different effects
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on memory consolidation, depending on the phase of learning
when they occur.

Both START and nSTART explain how a cortico-hippocampal
resonance sustains cognitive-emotional resonances using its
adaptively timed learning long enough for brains to become
conscious of feelings and the events that caused them. The pART
model circuit in Figure 5 includes spectrally timed interactions
between anterior inferotemporal cortex (ITa), HIPPO, and OFC,
which then closes the adaptively timed feedback loop with ITa.

Adaptively timed behaviors are essential for success in an
autonomous adaptive mobile system, including learning to
properly time goal-oriented actions and to maintain motivated
attention upon desired goal objects long enough to do so.
A model HIPPO and cerebellum can be joined to the CogEM
multipole model to enable SOVEREIGN2 to learn and control
both of these kinds of adaptively timed behaviors.

6.8. Expected vs. Unexpected
Disconfirmations Regulate
Consummation vs. Exploration
Combining ART and START circuits into a larger architecture
enables a brain to adaptively cope with situations wherein cues
that have led to expected consequences in the past no longer do
so. In particular, it enables humans to wait for delayed rewards,
yet also prevents perseveration of behaviors to acquire a goal that
is no longer forthcoming, with possibly disastrous consequences,
such as starvation if food is no longer available. This competence
is achieved by distinguishing expected disconfirmations−also
called expected non-occurrences−of reward from unexpected
disconfirmations−or unexpected non-occurrences−of reward.

In particular, why do not animals treat expected non-
occurrences of reward as predictive failures? Why do they not
always become frustrated by the immediate non-occurrence of
a reliable reward that is typically delayed in time, and trigger
exploratory behavior to find it elsewhere, leading to relentless
exploration for immediate gratification? And if animals do
wait, but the reward does not appear at the expected time,
how does the animal adaptively respond to the unexpected
non-occurrence of the reward−that is, to the occurrence of
nothing? In normal animals, expected disconfirmations do not
prevent acquisition of a delayed reward, even though unexpected
disconfirmations can trigger reset of working memory, attention
shifts, frustrative rebounds that can extinguish unsuccessful gated
dipole associations, and the release of exploratory behaviors to
discover better sources of the desired goal object.

In either case, if the reward happens to occur earlier than
expected, the animal could still perceive it via a cognitive-
emotional resonance and release a consummatory response.
Thus, the registration of ART-like sensory matches is not
inhibited during either expected or unexpected non-occurrences
(Figure 9). However, during an expected disconfirmation, the
effects of mismatches upon activation the ART orienting system,
which cause a reduction of ART inhibition there (Figure 9B),are
compensated by the addition of adaptively timed input from
the HIPPO (Figure 11C). Activation of the orienting system is
hereby prevented during an expected disconfirmation, and with

it reset of working memory, attention shifts, frustrative rebounds,
and the release of exploratory behaviors. In contrast, during an
unexpected non-occurrence, the orienting system is disinhibited
by the ART mismatch because the spectral timing circuit is
not active then, so reset of working memory, attention shifts,
frustrative rebounds, and the release of exploratory behaviors can
occur with which to correct the predictive error.

A spectral timing response begins immediately after its
triggering stimulus, and builds throughout the interstimulus
interval, or ISI, between the CS and US (Grossberg and Schmajuk,
1989; Grossberg and Merrill, 1992, 1996). It can thus maintain
inhibition of the orienting system until the expected time of
occurrence of the rewarding stimulus (Figure 11C). Adaptively
timed excitation can also maintain motivated attention upon the
correct orbitofrontal representation throughout this time interval
(Figure 11C). By peaking at the expected time of the reward,
motivated attention can most probably elicit a learned response
when the reward is expected.

6.9. Working Memories and Learning of
List Chunk Plans Using Item-List
Resonances
During cognitive and cognitive-emotional learning and action
cycles, as an animal or animat navigates through its environment,
sequences of object categories may be temporarily stored
in an object working memory (Figure 4A) that occurs in
human and other primate brains in the ventrolateral prefrontal
cortex (VLPFC), at the same time that sequences of the
positions/directions where they are found in a scene are
temporarily stored in a spatial working memory (Figure 4B) in
the dorsolateral prefrontal cortex (DLPFC; see Figure 5).

As they are stored in working memory, object category
sequences trigger learning of object plans, or object list chunks,
while stored position/direction sequences trigger learning of
spatial plans, or spatial list chunks, that selectively respond
to the particular sequences that are stored in their working
memory. A network that can learn list chunks of variable length
is called a Masking Field (Figure 4) (Cohen and Grossberg,
1986, 1987; Grossberg and Kazerounian, 2011; Kazerounian and
Grossberg, 2014). As illustrated in Figure 13, a Masking Field
contains cells of variable size in which larger cells respond
selectively to longer working memory lists. Masking Fields can
learn these properties using simple laws of activity-dependent
cell growth during their development, which leads to a multiple-
scale network of self-similar cells whose cell body sizes and
connection strengths covary (Cohen and Grossberg, 1987;
Kazerounian and Grossberg, 2014).

The learning of list chunks by a Masking Field in SOVEREIGN
used only bottom-up adaptive filter pathways (Figure 4).
In vivo, list chunk learning is dynamically stabilized by item-
list resonances in the corresponding parts of the PFC (Table 1a).
Figure 13 illustrates the fact that the top-down learned
expectation pathways that interact with bottom-up adaptive
filter pathways to trigger and sustain an item-list resonance
can also regulate choice of the most predictive list chunk in
each environment and prime the sequences of working memory
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FIGURE 13 | An Item-Order-Rank working memory (lower level) for the
short-term sequential storage of item chunks (e.g., M, Y, S, E, L, F) can
activate a multiple-scale Masking Field list chunking network (upper level)
through a bottom-up adaptive filter. The larger cell sizes and interaction
strengths of the list chunks that categorize longer lists (e.g., MYSELF vs. MY)
enable the Masking Field to choose the list chunk that currently receives the
largest total input, and thus best predicts the sequence that is currently stored
in the Item-Order-Rank working memory. The chosen list chunk can then
read-out the most likely prediction of what will happen next in that temporal
context. Green connections are excitatory. Red connections are inhibitory.
Arrowheads at the ends of Masking Field inhibitory recurrent pathways denote
connections that undergo no learning. Hemidiscs denote connections that can
undergo learning, both in the bottom-up filter connections and the top-down
expectation connections. Recurrent on-center off-surround connections in the
Item-and-Order working memory are not shown, for simplicity. Recurrent
self-excitatory connections in the Masking Field are also not shown, again for
simplicity. [Reprinted with permission from Grossberg (2018)].

items that support that choice. Such item-list resonances in
SOVEREIGN2 can greatly increase the stability of this kind of
learning under multiple kinds of perturbations.

6.10. Masking Fields Learn List Chunks
From Resonating Item-Order-Rank
Working Memories
These particular working memories and list chunking networks
are used because they embody fundamental design principles
that are needed for autonomous adaptive storage and learning
of event sequences. In particular, feedback interactions between
both types of circuits solve a Temporal Chunking Problem,
which concerns how a new word, motor skill, or navigational
route gets learned when it is composed of familiar subsequences,
without undermining previous learning of the subsequences. In
the case of language, for example, suppose that the new word is
composed of syllables that are themselves already familiar words.
The problem is: Why is not the brain forced to process the
new word as a sequence of smaller familiar words? How does a
not-yet-established word representation overcome the salience of
already well-learned phoneme, syllable, or word representations
to enable learning of the novel word to occur? How does this
occur, moreover, under unsupervised learning conditions?

For example, suppose that the words MY, ELF, and SELF have
already been learned, and have their own list chunks. When
the novel word MYSELF is presented for the first time, all of
its familiar subwords also get presented as part of this longer

sequence. What mechanisms prevent the familiarity of MY, ELF,
and SELF, which are trying to activate their own list chunks, from
forcing the novel longer list MYSELF from being processed as a
sequence of these smaller familiar chunks, rather than eventually
as a newly learned unitized whole? If this did happen, then longer
words could never be learned. Nor could longer navigational
routes that include familiar subroutes, or more complex motor
skills that include familiar gestures. Our brains would experience
a reductio ad absurdum. It is because the multiple scales of a
Masking Field are self-similar that the larger scale that is activated
by MYSELF can inhibit the smaller scales that are activated by
MY, ELF, and SELF, even before the list chunk for MYSELF is
tuned by category learning. The multiple self-similar spatial scales
of Masking Fields hereby enable them to learn how to categorize
lists of variable lengths.

Even if a novel longer list like MYSELF could overcome
competition from its familiar subwords, what would prevent
its new learning from forcing catastrophic forgetting of the list
chunks of its familiar subwords? A solution of this problem is said
to obey the LTM Invariance Principle. Item-Order-Rank working
memories solve the LTM Invariance Principle (Grossberg, 1978,
2017; Bradski et al., 1992, 1994; Grossberg and Myers, 2000;
Grossberg and Pearson, 2008; Grossberg and Kazerounian, 2011;
Silver et al., 2011; Kazerounian and Grossberg, 2014). They
store the temporal order of sequences of events occurring in
time into an evolving spatial gradient of activities over content-
addressable item representations that can represent items that
are repeated multiple times; that is, have different ranks (e.g.,
ABACAD). Thus, Item-Order-Rank working memories can store
sequences of events with repeats while satisfying the LTM
Invariance Principle. They do so by preserving the relative
activities of stored items as new items in a sequence are stored,
even while the total activity of all stored items can change
greatly through time.

Because all working memories need to satisfy the LTM
Invariance Principle, all working memories, whether linguistic,
motor, or spatial, were predicted to be realized by a similar kind
of circuit. This circuit was shown to be a specialized version of a
type of circuit that is ubiquitous in the brain; namely, a recurrent
shunting on-center off-surround network, thereby clarifying how
such a seemingly sophisticated design as a working memory
could be discovered during evolution. Masking Fields are also
recurrent shunting on-center off-surround networks, and thus
are also working memories, albeit working memories that also
represent list chunks.

Feedback interactions between an Item-Order-Rank working
memory and a Masking Field solve the Temporal Chunking
Problem, and can do so under unsupervised learning conditions.
These feedback interactions trigger an item-list resonance that
dynamically stabilizes the bottom-up list chunk learning and the
learning of the top-down expectations that enable list chunks
to activate sequences of events in working memory for skilled
performance. Item-list resonances hereby illustrate how ART
dynamics solve the stability-plasticity dilemma in the temporal
domain, and include predictions about the oscillatory dynamics,
including gamma and beta oscillations, that occur during these
resonances in primate brains.
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All of the predicted properties of Item-Order-Rank working
memories have been supported by subsequent psychological data
(e.g., Jones et al., 1995; Page and Norris, 1998; Farrell and
Lewandowsky, 2004; Agam et al., 2005, 2007) and neurobiological
data (e.g., Averbeck et al., 2002, 2003a,b; Bastos et al., 2018;
Lundqvist et al., 2018).

In SOVEREIGN2, with item-list feedback signals
implemented, each learned list chunk, or plan, can be selectively
activated by motivationally salient sequences of previously
experienced objects and positions/directions, and can then
read out context-sensitive predictions of the objects and
positions/directions that should be acquired next, thereby
generalizing the SOVEREIGN interactions in Figure 4. This
learning and performance cycle can continue through time in
an unsupervised way using only the world itself as a teacher, but
may also be supervised by a human teacher at arbitrary times.
As noted in sections 6.5 and 6.6, CogEM includes supervision
by rewards, punishments, and unexpected outcomes to drive its
reinforcement learning.

6.11. Entorhinal-Hippocampal
Resonances That Support Spatial
Navigation Are Not Conscious
Yet another kind of resonance may be incorporated into
SOVEREIGN2. This is the entorhinal-hippocampal resonance that
supports learning and stable memory of entorhinal grid cells
and hippocampal place cells during spatial navigation that were
mentioned in section 5.2. This kind of resonance will be discussed
in section 8. It illustrates the claim that, although “all conscious
states are resonant states,” the converse statement is not true. In
order for a resonant state to become conscious, it is necessary
for it to include either representations of external sensory cues,
such as visual or auditory cues, or internal sensory cues, such
as emotional cues.

7. PREFRONTAL COORDINATION OF
WORKING MEMORY, PLANNING, AND
COGNITIVE-EMOTIONAL DYNAMICS

The kind of adaptive mobile intelligence that is exhibited by
humans and other primates required a major expansion of the
PFC to enable its working memory and planning networks
to flexibly interact with multiple other brain systems, notably
cognitive-emotional systems. The predictive ART, or pART,
model (Figure 5) (Grossberg, 2018) has clarified how these
properties arise through interactions of orbitofrontal cortex
(OFC), VLPFC, and DLPFC with the inferotemporal cortex
(ITp and ITa), perirhinal cortex (PRC), parahippocampal cortex
(PHC), ventral bank of the principal sulcus (VPS), ventral
prearcuate gyrus (VPA), frontal eye fields (FEF), hippocampus
(HIPPO), amygdala (AMYG), basal ganglia (BG), hypothalamus
(LH), PPC, lateral intraparietal cortex (LIP), and visual cortical
areas V1, V2, V3A, V4, MT, and MST.

pART model explanations more fully embody and extend
many of the processes that were included in SOVEREIGN,

including how the value of visual objects and events is computed,
which objects and events cause desired consequences and
which may be ignored as predictively irrelevant, and how to
plan and act to realize these consequences. To achieve this
properties, pART includes reinforcement learning and incentive
motivational learning; object and spatial working memory
dynamics; and category learning, including the learning of object
categories, value categories, object-value categories, and sequence
categories, or list chunks. pART also explains properties that
go beyond SOVEREIGN and other neural models, such as how
to selectively filter expected vs. unexpected events to determine
which events get stored in working memory, and how such
filtering controls movements toward, and conscious perception
of, expected events.

Incorporating this level of sophistication in SOVEREIGN2
will require a coordinated research program. Here primarily
the new competences will be reviewed of how events can be
selectively filtered before being stored in working memory, and
how that ability alters the understanding of how a top-down
cognitive prime from the PFC can bias object attention in the
What cortical stream to anticipate expected objects and events,
while it also focuses spatial attention in the Where cortical stream
to trigger actions that acquire currently valued objects (Fuster,
1973; Baldauf and Desimone, 2014; Bichot et al., 2015).

7.1. Minimal Anatomy for Foveating
Valued Objects in a Scene: Where’s
Waldo?
As explained in greater detail in the pART model (Grossberg,
2018), after Where-to-What stream interactions help to learn
invariant object categories, What-to-Where stream interactions
regulate how to foveate valued target objects in a scene. Previous
models like ARTSCAN Search and ARTSCENE Search proposed
a minimal anatomy that could carry out this function, while
also simulating challenging reaction time (RT) data about visual
search for target objects (Huang and Grossberg, 2010; Chang
et al., 2014). Such a minimal anatomy models how an invariant
object representation in the What stream can activate a positional
representation in the Where stream that can be used to foveate
a valued target object in a scene. However, it did not try
to solve the problem of how the brain can selectively filter
desired targets from a stream that also contains distractors,
so that it only attends, stores, and foveates matched targets.
This additional computational property is explained by the
pART model (Figure 5). However, given the ability of the
minimal anatomy to quantitatively simulate challenging RT data
in many visual search experiments, it may have evolved before
the prefrontal mechanisms of selective working memory storage
did, and may operate in parallel with them. It may be worth
testing if these simpler circuits are still functional when prefrontal
mechanisms are lesioned.

In the minimal anatomy of ARTSCENE Search, winning
VLPFC activities send a top-down attentional prime to ITa using
a circuit that obeys the ART Matching Rule. In order to transform
the primed ITa cells into firing cells, an additional input must
converge on ITa. This kind of signal is regulated by the BG
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(cf. BG in Figure 5). A volitional gate-opening signal from
the BG−notably from the substantia nigra pars recitulata, or
SNr−lets the primed ITa cells fire. The activated ITa cells then
prime the positionally sensitive categories in ITp with which
they were associated when ITa was being learned using resonant
bottom-up and top-down interactions (Figure 5). If one of the
primed ITp categories also receives a bottom-up input from an
object at its position, then it can fire and activate positional
representations in eye movement control regions like LIP and
FEF. These positional representations can then move the eyes to
the position in space that they represent.

7.2. Cortical What Working Memory
Filtering and Activation of Where Target
Positions
Multiple experiments show that selective working memory
storage in the PFC does occur. The pART model offers an
explanation of how this is predicted to work (Figure 5).
For example, PFC working memory cells do not fire during
such tasks that do not require storage of visual information
(Fuster, 1973; Kojima and Goldman-Rakic, 1984). Moreover,
given the presentation of identical stimuli, neural selectivity in
PFC depends on subsequent task demands (Warden and Miller,
2010). Imaging data show that success on working memory
tasks covaries with an individual’s ability to selectively identify
and store task-related stimuli from a larger sequence of stimuli
(Awh and Vogel, 2008; McNab and Klingberg, 2008). Subliminal
distracters can damage performance in attention tasks, but
making distracters supra-threshold can improve performance
deficits by facilitating the ability to filter them out (Tsushima
et al., 2008). During a memory saccade task in which a salient
distractor is flashed at a variable time and position during
the memory delay, responses to the salient distractor are more
strongly suppressed and correlated with performance in DLPFC
than in LIP (Suzuki and Gottlieb, 2013).

In addition to this kind of task-sensitive filtering of individual
items before they reach the working memory, a mechanistically
distinct processes enables all the items that get through the filter
to be stably stored after they reach the working memory; namely,
keeping an SNr gate open to enable the recurrent excitatory
connections within PFC to maintain working memory storage.
Closing this SNr gate can rapidly reset, or delete, the entire stored
sequence from working memory when there is an attention shift
to do a different task.

7.3. Interacting Feature-Based Attention,
Saccadic Choice, and Selective Working
Memory Storage
The property of selective working memory storage clarifies the
functional role of neurophysiological data about the role of VPA
as “a source for feature-based attention” (Bichot et al., 2015,
p. 832), notably why VPA cells selectively match desired
combinations of object features, resonate with a target
that matches these features, and activate an FEF positional
representation that commands a saccade to the target. These
properties were discovered when fixating monkeys were

presented with a central cue object that defined a search
target, followed by a delay during which the monkeys held
a representation of the target in memory. Then an array of
eight stimuli appeared which included the search target and
seven distractors. The monkeys were rewarded for foveating and
maintaining fixation on the target for 800 ms. While the monkeys
performed, Bichot et al. (2015) simultaneously recorded from
IT, VPA, and FEF in two monkeys, and VPS, VPA, and FEF in
two other monkeys.

pART proposes the following mechanistic and functional
explanation of how these cells interact together to enable matched
objects to be selectively processed and stored by PFC (Figure 5):
Both ITp (TEO) and ITa (TE) topographically project to PFC
(Barbas and Pandya, 1989; Webster et al., 1994; Tanaka, 1996).
The ITp projection is to VPA, whose cells, just like the ones in
ITp (Tanaka, 1996), exhibit significant sensitivity to extrafoveal
positions (Bichot et al., 2015). The ITa projections are to PRC and
VPS, which in turn projects to VLPFC. In the data of Bichot et al.
(2015), VPS had the largest spatial tuning curves of any cells in
their data, consistent with ITa invariance properties.

Active VLPFC top-down signals project to both VPS and VPA,
and learn modulatory top-down expectations when VPS and VPA
cells are also active. In pART, these expectations obey the ART
Matching Rule that is realized by a top-down, modulatory on-
center, off-surround network.

VPA cells that receive a previously learned VLPFC-to-VPA
prime are enhanced when an extrafoveal object matches its target
features, and are suppressed when the object mismatches them,
properties that are consistent with the ART Matching Rule.
This enhanced VPA activity is sufficient to trigger an output
signal to FEF at the corresponding FEF positional representation
in FEF. This property is supported by Bichot et al. (2015)
data showing VPA activating around 20 ms. before FEF does.
FEF can then trigger a saccade to foveate the target. Because
objects that mismatch the VPA expectation are inhibited, they
are not foveated.

A similar match-mismatch dichotomy regulates the activity
of VPS cells when they receive an active VLPFC-to-VPS
prime. Their activity is enhanced when an ITa invariant object
category matches their receptive field, and are suppressed by a
mismatch, again consistent with the ART Matching Rule. When
a match occurs, a synchronous VPS-ITa resonance develops that
enables the category’s temporal order to be stored in VLPFC.
This resonance can also propagate top-down through multiple
cortical areas (e.g., ITa-ITp-V4-V2-V1 in Figure 5) and supports
conscious recognition of the object.

8. LEARNING THE PRESENT POSITION
IN SPACE OF A NAVIGATOR USING GRID
CELLS AND PLACE CELLS

Section 5.2 noted that a representation of an animal’s Present
Position Vector, or NET, as it navigates in space is derived in
SOVEREIGN from an algorithm that computes a head/body
turn angle as well the length of the next straight distance
that is navigated. That section also noted that, in order for
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NET to be computed without algorithmic short cuts, an animal
or animat needs to learn a representation of its present
position in space as it navigates in different environments.
The GridPlaceMap model of spatial navigation (Figure 14A)
proposes how entorhinal grid cells and hippocampal place cells
accomplish this as they are learned in a hierarchy of self-
organizing maps. This model forms part of a larger entorhinal-
hippocampal system that shows how learning of these maps
may be dynamically stabilized by an entorhinal-hippocampal
resonance (see section 6.11; Figure 14B; Grossberg and Pilly,
2014). This larger system explains why hippocampal place cells
may be viewed as learned spatial categories in an entorhinal-
hippocampal ART system that enables a stable computation
of NET to be autonomously learned in a wide variety of
navigated environments.

The GridPlaceMap model and its variants have explained
and simulated many behavioral and neurobiological data about
spatial navigation and how its circuits learn and remember
(e.g., Grossberg and Pilly, 2012, 2014; Mhatre et al., 2012;
Pilly and Grossberg, 2012; Grossberg, 2013; Grossberg et al.,
2014). A comprehensive review of such data goes beyond the
explanatory goals of the current exposition. Some basic facts are
nonetheless worth mentioning here:

The model responds to realistic rat navigational trajectories
by learning both grid cells with hexagonal grid firing fields
of multiple spatial scales, and place cells with one or more
firing fields, that match neurophysiological data about their
development in juvenile rats. The fact that individual grid cells
can fire at positions on a hexagonal lattice when rats navigate in
an open field is one of the most remarkable facts in contemporary
neuroscience (Hafting et al., 2005). The GridPlaceMap model
and its variants show that this property emerges in a grid
cell self-organizing map model (Figure 14) as a result of basic
trigonometric properties of navigation in a two-dimensional
space. The fact that hippocampal place cells may be viewed as
learned spatial categories in an entorhinal-hippocampal ART
system that are dynamically stabilized by top-down attention
from hippocampal cortex to entorhinal cortex is supported by
neurophysiological data from several labs (Morris and Frey, 1997;
Kentros et al., 1998, 2004; Bonnevie et al., 2013).

Other properties of the GridPlaceMap model are also worth
summarizing both because they are so parsimonious and data-
predictive, and because they will simplify their embodiment
in SOVEREIGN 2. For example, the same self-organizing map
model equations can learn both grid cells and place cells.
The different response properties seem to arise entirely due
to their different stages of processing in a hierarchy of self-
organizing maps (Figure 14B). In this hierarchy, hexagonal
grid cell response fields are learned in response to stripe cells,
which are derived from vestibular angular head velocity and
linear velocity signals as realistic spatial trajectories are navigated
(Figure 14). Place cells with unimodal response fields are learned
in response to inputs from the emerging grid cells. Despite
their very different response properties, both grid cells and
place cells can develop by detecting, learning, and remembering
the most frequent and energetic co-occurrences of their inputs.
Because each place cell learns to respond to grid cells of several

different spatial scales, the spatial scale of the resulting place cell
is the least common multiple of the grid cell scales that input
to it. Thus grid cells that respond on a centimeter scale can
support learning of place cells that can represent spaces that are
many meters in size.

Figure 14B also includes the known direct pathway from
entorhinal cortex (EC111) to the hippocampal CA1 region that
bypasses the grid cells. This pathway may learn place cells in
CA1 with small spatial scales while, for example, rat pups are
still in their nests. An explosion of coordinated grid cell and
place cell development occurs as rats emerge from their nests
(Langston et al., 2010; Wills et al., 2010), and presumably helps
to learn the much larger spatial scales that are needed for adult
spatial navigation.

Parsimonious properties also occur at the earliest stages of
the GridPlaceMap model. For example, similar ring attractor
networks are used to convert vestibular angular velocity signals
into responses of head direction cells, and linear velocity signals
into responses of stripe cells (Figure 14B). Both spatial and
temporal learning in the entorhinal-hippocampal system seem
to use homologous mechanisms to create a gradient from
small to large scales along a dorsoventral axis. The temporal
learning is the adaptively timed hippocampal learning that was
described in sections 6.7 and 6.8. In particular, during both
spatial and temporal learning, cells in different positions along
the gradient respond at slower rates from dorsal to ventral. Spatial
learning of grid cells and place cells along the dorsoventral axis
passes through the medial entorhinal cortex to HIPPO, with
the largest grid and place cell spatial scales occurring at ventral
positions. Spatial learning hereby converts slower cell response
rates into larger learned spatial scales. Temporal learning along
the dorsoventral axis passes through the lateral entorhinal
cortex to HIPPO, with the longest time intervals spanned at
the most ventral positions in this gradient. Temporal learning
uses spectrally timed conditioning with cells in the spectrum
responding more slowly at more ventral positions (Figure 11C).

This computational homology provides a harmonious
explanation of why both spatial and temporal representations
occur in the entorhinal-hippocampal system. Many challenging
neurophysiological data are explained by this homology between
spatial learning in the medial entorhinal-hippocampal system
and adaptively timed temporal learning in the lateral entorhinal-
hippocampal system (e.g., Hargreaves et al., 2005; Aminoff et al.,
2007; Kerr et al., 2007; Eichenbaum and Lipton, 2008; van Strien
et al., 2009; Keene et al., 2016). When comparing these spatial
and temporal circuits, the GridPlaceMap model is called spectral
spacing to match the term spectral timing. The computational
homology between them is called neural relativity.

The top-down hippocampus-to-entorhinal attentional
network that stabilizes map learning uses the same ART
Matching Rule that stabilizes learning of all ART circuits,
including object categories learned via a feature-category
resonance (Figures 7, 9). In the entorhinal-hippocampal system,
this attentive matching process helps to explain neurobiological
data about theta, beta, and gamma oscillations, such as, as
mentioned above, why there is an Inverted-U through time in
the power of beta oscillations when an animal first navigates a
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FIGURE 14 | (A) The GridPlaceMap model circuit for spatial representation defines a hierarchy of self-organizing maps (SOM) that learns both grid cell and place cell
maps. Stripe cells (Sdas) in the deeper layer of medial entorhinal cortex (MEC), self-organizing grid cells (Gjs) in layer II of MEC, and self-organizing place cells (Pk ) in
hippocampal area CA3 learn to represent increasingly large spaces in response to internally generated signals based on vestibular linear velocity and angular velocity
signals that are activated by navigational movements through the environment. Notice bigger stripe fields and spacings going from dorsal to ventral locations in the
model organization. [Adapted with permission from Pilly and Grossberg (2012)]. (B) The hierarchy of self-organizing maps that learn grid cell and place cell maps is
part of an ART system in which top-down feedback from place cells to stripe cells can dynamically stabilize the learned grid and place fields. See the text for details.

new maze (Berke et al., 2008; Grossberg, 2009a). Also explained
are data about how hippocampal, septal, or acetylcholine
inactivation may disrupt grid cell learning and performance.

9. CONCLUDING REMARKS

This article summarizes basic design principles, networks, and
functional capabilities of the SOVEREIGN architecture (Gnadt
and Grossberg, 2008) and outlines a major research program
whereby additional brain mechanisms and psychological
functions can be consistently added to create a SOVEREIGN2
architecture with much greater capabilities for autonomous
adaptive navigation and goal-oriented cognition, emotion, and
action in changing environments.

SOVEREIGN was designed to serve as an autonomous neural
system for incrementally learning planned action sequences to
navigate toward a rewarded goal. SOVEREIGN also illustrates
how brains may, at several different organizational levels,
regulate the balance between reactive and planned behaviors,
and proposes how homologous circuit designs regulate spatial
navigation and reaching behaviors. These capabilities were
demonstrated by learning efficient routes whereby to navigate to
a valued goal in a virtual reality environment.

Some of the designs in SOVEREIGN were realized
algorithmically, and can be realized dynamically in
SOVEREIGN2. Other processes that are needed to achieve
a more comprehensive autonomous adaptive intelligence in an
embodied mobile system were not included at all. This article
summarizes neural models of important missing capabilities
with enough detail to define a research program that that can
consistently incorporate them into SOVEREIGN2. Missing
designs occur across both the What and Where processing
streams of SOVEREIGN (e.g., Figure 4).

In order to include these missing designs, SOVEREIGN2
embodies foundational brain design principles such as

complementary computing, hierarchical resolution of
uncertainty, and adaptive resonance that enable biological
brains to realize their autonomous adaptive intelligence. Some of
the missing designs in the What stream occur at early processing
stages, such as visual boundary completion and surface filling-in.
These processes require hierarchical resolution of uncertainty to
be completed. How this occurs sheds light on deep computational
reasons for how and why animals like humans and other primates
become conscious in order to generate effective actions.

Other missing What stream processes occur at higher
processing stages, such as autonomous learning of view-,
position-, and size-invariant recognition categories. Such
invariant learning requires modulatory interactions from parietal
regions of the Where cortical stream to inferotemporal regions
of the What cortical stream in order to ensure that only views
of a single object get bound together by associative learning in a
single invariant object category. The surface-shroud resonances
that support invariant category learning also play a role in
enabling social cognitive skills such as joint attention and
imitation learning to occur between a teacher and a student who
experience the world through different spatial perspectives.

Still higher levels of processing have parallel object and spatial
processing systems in both the What and Where cortical streams.
For example, prefrontal object and spatial working memories
need to be able to selectively filter targets from distractors before
storing them and their target positions in working memory. The
filtering machinery that does this also allows attention to be paid
to salient targets, and to use those targets to drive orienting
movements toward them.

Cognitive-emotional circuits are needed to enhance
predictions and actions that lead to valued outcomes, and
to attenuate those that do not. In order to do this effectively,
cognitive-emotional learning needs to be able to associate
sensory and rewarding cues that are separated in time.
Spectral timing circuits in the HIPPO help to support
cognitive-emotional learning in inferotemporal-amygdala/
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hypothalamus-orbitofrontal circuits. These circuits, in turn,
amplify or suppress cognitive and spatial working memory
circuits and plans according to whether they generate successful
goal-oriented actions or not.

Although looking and reaching behaviors can use target
position and present position estimates that can both be
directly computed from either external sensory cues or internally
generated movement commands, navigational movements need
more sophisticated networks to learn a navigator’s present
position in space. Entorhinal grid cells and hippocampal place
cells interact to incrementally learn place cells that can represent
spatial scales that are sufficiently large to support navigation
in ecologically relevant spaces. These learned spatial categories
are dynamically stabilized using the same Adaptive Resonance
Theory, or ART, Matching Rule that is found in the resonant
dynamics of many of the missing competences from which
SOVEREIGN2 can benefit.

These resonances include feature-category resonances,
surface-shroud resonances, cognitive-emotional resonances,
entorhinal-hippocampal resonances, and item-list resonances.
All of these resonances help to dynamically stabilize the learned
memories of their respective networks, and thereby enable
them to successfully operate in open-ended non-stationary
environments without experiencing the learning and forgetting
problems, notably catastrophic forgetting, that plagues all
algorithms of back propagation type, including the currently
popular and useful Deep Learning algorithms, and Bayesian
Explaining Away algorithms, among others.
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FIGURE S1 | Smooth pursuit of a target moving with a fixed speed and direction
creates retinal slip signals on the retina until the target is foveated, as well as
background motion signals in the opposite direction. As the target is acquired, the
background motion signals increase, and can maintain predictive pursuit that
maintains the target on the fovea. See the text for details. [Reprinted with
permission from Pack et al. (2001)].

FIGURE S2 | (a) A leftward eye movement channel. All connections are
excitatory. The retinal image is processed by two types of cells in MT. MT cells
with inhibitory surrounds (MT−) connect to MSTv cells, with MT cells preferring
greater speeds weighted more heavily. MT cells with excitatory surrounds (MT+)
connect to MSTd cells. MSTv cells have excitatory connections with
MSTd cells that prefer opposite directions. MSTv cells drive pursuit eye
movements in their preferred direction, and the resulting eye velocity is fed back to
MSTv and MSTd cells (thick arrows). Leftward eye rotation causes rightward
retinal motion of the background. The MT and MST cells are drawn so as to
approximate their relative receptive field sizes. (b) Model MST connectivity.
Excitatory connections are shown by solid lines. Inhibitory connections are
indicated by dashed lines. Thick line emanating from the pursuit pathway indicate
efference copy inputs. The leftward eye movement channel consists of an MSTv
cell preferring leftward motion and an MSTd cell preferring rightward motion, and
receives an efference copy signaling leftward eye movement. The rightward
eye channel is defined analogously. [Reprinted with permission from
Pack et al. (2001)].

FIGURE S3 | In this figure, black boxes denote areas belonging to the saccadic
eye movement system (SAC), white boxes the smooth pursuit eye movement
system (SPEM), and gray boxes, both systems. The abbreviations for the different
brain regions are: LIP, lateral intra-parietal area; FPA, frontal pursuit area; MST,
middle superior temporal area; MT, middle temporal area; FEF, frontal eye fields;
NRTP, nucleus reticularis tegmenti pontis; DLPN, dorso-lateral pontine nuclei; SC,
superior colliculus; CBM, cerebellum; MVN/rLVN, medial and rostro-lateral
vestibular nuclei; PPRF, a peri-pontine reticular formation; TN, tonic neurons.
Although an analysis of how this system works is beyond the scope of this article,
the macrocircuit does serve as a reminder that seemingly effortless behavioral
competences are often emergent properties of beautifully coordinated brain
dynamics among multiple brain regions with different functional roles to play
[Reprinted with permission from Grossberg et al. (2012)].

FIGURE S4 | Two views of the eye and retina. The top image shows a drawing of
a cross-sectional cut through the eye showing the retinal veins occluding the light
coming into the pupil before it reaches the photoreceptors. The photoreceptors
send axons to the brain via the optic nerve which, as seen in the bottom image of
a top-down view of retina, creates a blind spot that is comparable in size to the
fovea [Adapted with permission from Kolb, Fernandez, and Anderson
(http://retina.umh.es/Webvision/sretina.html)].

FIGURE S5 | This image emphasizes that, even the retinal image of a simple
object like a line can be occluded in multiple places by retinal veins and the blind
spot, thereby creating multiple positions along the line that do not provide reliable
inputs to the brain for directing actions to those positions.
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