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Real-life decisions often require a comparison of multi-attribute options with various

benefits and costs, and the evaluation of each option depends partly on the others

in the choice set (i.e., the choice context). Although reinforcement learning models

have successfully described choice behavior, how to account for multi-attribute

information when making a context-dependent decision remains unclear. Here we

develop a computational model of attention control that includes context effects on

multi-attribute decisions, linking a context-dependent choice model with a reinforcement

learning model. The overall model suggests that the distinctiveness of attributes

guides an individual’s preferences among multi-attribute options via an attention-control

mechanism that determines whether choices are selectively biased toward the most

distinctive attribute (selective attention) or proportionally distributed based on the relative

distinctiveness of attributes (divided attention). To test the model, we conducted a

behavioral experiment in rhesus monkeys, in which they made simple multi-attribute

decisions over three conditions that manipulated the degree of distinctiveness between

alternatives: (1) four foods of different size and calorie; (2) four pieces of the same food in

different colors; and (3) four identical pieces of food. The model simulation of the choice

behavior captured the preference bias (i.e., overall preference structure) and the choice

persistence (repeated choices) in the empirical data, providing evidence for the respective

influences of attention and memory on preference bias and choice persistence. Our

study provides insights into computations underlying multi-attribute decisions, linking

attentional control to decision-making processes.

Keywords: decision making, attention, memory, reinforcement learning, cognitive control

INTRODUCTION

Real-world decisions often require a direct comparison of multiple options, each composed
of multiple attributes: for example, selecting among sundry possibilities when grocery
shopping by taking cost, personal taste, brand attractiveness, risk with new items, and
related information into consideration. For animals more generally, foraging decisions
are also based on multiple potential food sources, each with attributes that include
extrinsic factors such as location, size, color, and amount, and intrinsic factors such
as caloric value and taste. To make decisions in these multi-attribute, multi-option
contexts, there are at least two critical barriers. First, such decisions require an efficient
process for dealing with the computational load needed to process vast amounts of
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information. Second, multi-attribute, multi-option decisions
require a flexible adaptive-learning process for dealing with
various choice circumstances.

Thus, decisions based on larger choice sets require an efficient
process for dealing with the computational load to process vast
amounts of multi-attribute information. However, such decisions
can be quite complex, and humans and non-human animals have
evolved cognitive heuristics to simplify the choice set (Kahneman
and Frederick, 2005; Chen et al., 2006; Kralik et al., 2012). One
key cognitive process used to cope with these computational
demands is selective attention, which draws a representation
of choice options out of the otherwise “blooming, buzzing
confusion” of the real world (Corbetta and Shulman, 2002;Wolfe
and Horowitz, 2004; Buschman and Miller, 2007; Beck and
Kastner, 2009). Attention provides such a process because it plays
a critical role in reducing complexity in information processing
by focusing on and concentrating relevant information while
ignoring other information (Corbetta and Shulman, 2002;
Wolfe and Horowitz, 2004; Buschman and Miller, 2007;
Beck and Kastner, 2009). Although much is known about
attentional processes, it is unclear how attention is dynamically
employed to make a decision in larger and various choice
contexts (Gottlieb, 2012).

The reinforcement learning framework, which is frequently
applied in machine learning and behavioral psychology and
neuroscience, has provided a solid background for decision-
making models where an agent adaptively learns a behavioral
strategy that maximize outcomes (Sutton and Barto, 1998).
Although it provides computational, psychological, and neural
accounts of conditioned behavior, existing reinforcement
learning models lack accounts regarding the mechanism for how
multi-attribute options are efficiently evaluated for a decision in
various choice contexts.

More specifically, when multiple options are available, choice
behavior is partly driven by the context provided by the
set of alternatives. The behavioral economics literature has
extensively studied context effects and has provided choice
models that account for context effects in various choice
situations (Chakravarti and Lynch, 1983; Rooderkerk et al.,
2011). The context of the choice set can influence choices
by affecting how values of options are assessed. For multi-
attribute options, each option has different values on different
attributes in multi-attribute space. Thus, a decision amongmulti-
attribute options would require comparisons of values ofmultiple
options on various dimensions. But how multi-attribute, multi-
option choice problems lead to selective attention allocation and
subsequent valuation across the attributes remains unclear.

In addition, memory plays a critical and pervasive role
in processing information about options. In multi-attribute
decisions under various choice contexts, it is important to
efficiently learn the values of multiple options so that improved
performance can be achieved. Current reinforcement learning
models generally assume that learning is independent of memory
already encoded, having a constant learning rate (Sutton and
Barto, 1998; Sugrue et al., 2004; Corrado et al., 2005; Lau
and Glimcher, 2005; Rutledge et al., 2009). This memory-
independent learning could induce inflexibility when values of

multiple options need to be learned. In contrast, more efficient
learning can be achieved when learning depends on the strength
of the memory. But is this more efficient learning actually the
case in decision making, at least by animals with higher cognitive
capabilities such as primates, and if so, how is the memory-
dependent learning realized?

In the current study, we developed a computational model
for multi-attribute, multi-option decision making. The model
incorporates a selective attention mechanism that determines
whether to focus attention on a single attribute or multiple ones
based on the relative distinctiveness of the option attributes
(such as size, color, or reward value). In addition, the model
incorporates memory-dependent learning rates for chosen and
unchosen options. We then tested the model on a multi-
attribute, multi-option decision-making experiment with rhesus
monkeys. We characterized context effects on attribute selection
and reward learning in computational terminology, and used
the model to capture modulation in preference bias (i.e., the
choice distribution) and choice persistence (i.e., the tendency to
repeat choices) observed in the empirical data collected with the
rhesus monkeys.

METHODS

Animal care and use complied with all current laws and
regulations of the United States Department of Agriculture
(USDA), and the Institutional Animal Care and Use Committee
(IACUC) of Dartmouth College.

Subjects
Four male rhesus macaques (Macaca mulatta) participated in
the study. The average age of the monkeys was 8.75 ± 0.48
years (mean ± s.e.m.). They were housed in 32 × 27 ×

68 (width × depth × height) inch cages (Allentown Inc.,
Allentown, NJ, U.S.A.) in a homeroom with automatically
regulated temperature, ventilation, humidity, and lighting
(14:10 h light:dark cycle, with lights turned on at 06:00 h). The
Center for Comparative Medicine and Research (CCMR) at
Dartmouth College maintained a full-time animal care and
veterinary staff that monitored the monkeys’ daily health and
well-being. The monkeys were maintained at ∼95% of their
ad libitum weights to ensure sufficient motivation and good
health, and their diet consisted of primate chow (no. 5038, PMI
Feeds Inc., St. Louis, MO, U.S.A.), supplemented with fresh fruit
and vegetables, as well as various treats that included peanuts,
cereal, and dried fruits (e.g., raisins, bananas). Environmental
enrichment included two or more enrichment items in their
home cages at all times, daily playing of radio or videos in the
room (the latter via amonitormounted in view of all individuals),
and regular access to a larger enrichment cage (68 × 38 × 72
inches) in an adjacent room.

The monkeys were brought to the testing room in the
laboratory in custom-made chairs. The chairs were designed
for maximal comfort and safety, so that the monkey’s collar
slid into a slot that placed the monkey in its preferred natural
sitting position, on a perch raised above the floor. The chair
loosely restrained the left arm of the monkey while allowing free
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movement of the right arm. The monkeys were progressively
acclimated to the chairs by: (a) initially having them sit near
the chairs and eat treats (e.g., raisins, peanuts, fresh fruit,
and vegetables) placed on the chairs; and then (b) feeding
the monkeys treats when they were first seated in the chairs.
After acclimation, the monkeys readily entered the chairs. They
exhibited no signs of stress in the chairs and, once seated,
displayed natural behaviors, such as normal facial expressions
and vocalizations, e.g., food grunts.

For the current study, the chairs were used to: (a) attain precise
attention and behavior control across the experimental testing
conditions; (b) obtain clear, unbiased choice responses, with tray
compartments (described below) at fixed positions relative to the
monkey during every trial; and (c)minimize disruption in the test
subjects’ daily routines, given that they were already acclimated
to them from previous experiments. In particular, the location
of the food items relative to the monkey was one of the critical
option attributes in the experiment, and attention was one of the
key processes under study; thus, both needed to be standardized
across all trials and conditions. We note that similar chairs have
been routinely used in monkey neuroeconomic studies that have
successfully replicated multiple behavioral phenomena studied
with other paradigms, both in the laboratory and field (e.g.,
Glimcher et al., 2008; Platt and Ghazanfar, 2010).

Materials
Each monkey sat across from the experimenter in the chair.
An opaque plastic divider separated the experimenter and the
monkey, thereby preventing the monkey from seeing the face
and upper body of the experimenter. An opening at the bottom
of the divider allowed the experimenter to present a transparent
plastic food tray to the monkey. The experimenter prepared the
tray behind the partition and presented it to the monkey to
begin each trial. The experimenter wore a white lab coat, goggles,
and a medical mask and gloves and, when presenting, placed
his hand in the same position on the back end of the tray (i.e.,
the end farther away from the monkey). The tray contained
four separate compartments, which we labeled according to their
positions relative to the experimenter: left (LL); middle left (ML);
middle right (MR); and right (RR). During a given trial, food
was placed on a circular platform in a compartment so that the
monkey could clearly see and easily select its choice of food item.
Each compartment was covered by a transparent lid, which the
monkey had to lift to gain access to a food item.

Condition 1 used four different types of food: peanut halves
(removed from shell) (PN); yellow BioServ R© Fruity Gems (FG);
BioServ R© banana-flavored dustless precision pellets (PL); and
rice krispies (KR). The sizes of the four food items were ∼0.86,
0.20, 0.12, and 0.50 cm2 for PN, FG, PL, and KR, respectively.
The calorie amounts per piece were ∼2.06, 0.78, 0.15, and 0.08
kcal/piece for PN, FG, PL, and KR, respectively. Condition 2
used FG in four different colors: red, green, orange, and purple;
Condition 3 used identical PL for all compartments for three
monkeys and PN for the other monkey (Monkey 3) whose
motivation was low toward PL. In Condition 3, we excluded the
data of the monkey with PN (Monkey 3) for simulation.

Procedure
For all conditions, four food items were presented to a monkey,
with one food item in each tray compartment. To begin the trial,
the experimenter slid the tray on the table toward the monkey
to a position just out of its reach, and paused for ∼3 s for the
monkey to observe the items. The tray was then moved toward
the monkey to allow it to make a decision by lifting the lid of
the compartment and taking the food item contained within.
The experimenter then withdrew the tray. After ∼3 s to allow
the monkey to eat the selected food item, the tray was again slid
forward, following the same procedure. Each session consisted of
150 trials, and 10 sessions were conducted, for a total of 1,500
trials. In a few of the sessions, a monkey became satiated before
the completion of 150 trials. If the monkey took more than
10 s without choosing a food item, the experimenter noted an
omitted trial. If the monkey had three omitted trials in a row,
the experimenter stopped the session for the day; extra daily
sessions were then carried out to reach the total of 1,500 trials.
In Conditions 1 and 2, the arrangement of the food items by
compartment was pseudo-randomly determined per session. We
recorded all trials in the conditions usingMATLAB (MathWorks,
MA, U.S.A.) and video recording.

Data Analysis
Empirical Choice Sequence vs. Randomly

Shuffled Sequences
For each session, we compared the cumulative run distribution
of an empirical choice sequence with that of a randomly shuffled
choice sequence to measure the trial-by-trial choice dependency
of the empirical data (i.e., a choice history effect), which reflects
persistent choice behavior. We calculated the area test statistic
that represents the area between two cumulative run distributions
in a log-log scale: A =

∫ ∣

∣ln(P1 (u))− ln(P2 (u))
∣

∣ du, where
P1 and P2 are the cumulative distributions of the length of
run, x, and u = ln x, similar to a previous study (Malmgren
et al., 2008) except we set the minimum value of P as 10−12

instead of 0 to prevent extreme values from the logarithmic
transformation in calculating the area test statistics. First, we
obtained 1,000 randomly shuffled choice sequences by randomly
shuffling the empirical sequence. Then we computed the average
area test statistic between the empirical choice sequence and
the randomly shuffled choice sequences. Second, we generated
another randomly shuffled choice sequence and identified it as
the reference sequence. We then computed the average area
test statistic between the reference sequence and the 1,000
randomly shuffled choice sequences. Finally, to determine if the
area test statistics for the empirical sequences were significantly
different from the area test statistics for the reference sequence,
we compared the averaged area test statistic of the empirical
sequences with that of the reference sequence across sessions
using a paired t-test. To determine the overall results for all
monkeys, we generated one long sequence by concatenating the
sequences of each monkey.

Empirical Choice Sequence vs. Sorted Sequences
To examine the degree of dependency across trials in the
empirical choice sequence, we also compared the cumulative run
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distribution of an empirical choice sequence with that of a sorted
one. We used the same area test statistic method described above
for randomly shuffled sequences, except that instead of using a
randomly shuffled sequence, as was done in the reference, the
reference sequence was obtained by sorting the empirical choice
sequence, e.g., AAABABBCACD becomes AAAAABBBCCD.

B- and P-Indices
To quantify the degree of preference bias or persistence in each
condition for each individual, we define two indices that reflect
the degree of each component behavior: the B-index and P-
index, respectively (Jang et al., 2017). Each index was calculated
from the choice sequence of each session. First, the B-index
is an index of the preference bias, and quantifies the degree
of bias toward the option with the highest subjective value vs.
an equal sampling of all options. This index captures the idea
that the goal-directed process adapts to dynamic valuations by
attaining a balance between the exploitation of a high-value
option and intermittent exploration of other options in order
to detect changed values (Sutton and Barto, 1998; Daw et al.,
2006; Frank et al., 2009; Dayan, 2012). We define the B-index

based on the following equation: B-index = 1 −
Semp

Smax
, where

Semp is the entropy of empirical choice sequences; and Smax is
the maximum possible entropy that the choice sequence can
have. The entropies Semp and Smax are computed by the following

equation (Shannon, 1948): Semp = −
∑N

i=1 pilog
(

pi
)

, where N is
the number of options, and pi is the choice rate of option i; and
Smax = −log

(

1
N

)

, where N is the number of options. A B-index
of 0 would indicate completely exploratory behavior; whereas, an
index of 1 would indicate completely exploitative behavior.

The P-index is an index of persistence, which quantifies the
degree of persistence on an option vs. trial-by-trial independence
(Lau and Glimcher, 2005; Rutledge et al., 2009). We define the
P-index as a ratio with the numerator corresponding to the
average of the area test statistics (Malmgren et al., 2008) between
cumulative run distributions of the empirical and randomly
shuffled choice sequences in a log-log scale, Aemp−rand =
∫ ∣

∣ln(P)emp (u) − ln(Prand (u))
∣

∣ du, where P is the cumulative
distribution of the length of run, x, and u = ln x, and
the denominator corresponding to the average area statistics
between cumulative run distributions of sorted and randomly
shuffled choice sequences in a log-log scale, Asorted−rand =
∫ ∣

∣ln (Psorted (u)) − ln(Prand (u))
∣

∣ du:

P-index =
Aemp−rand

Asorted−rand

A P-index of 0 would indicate completely past-independent
behavior; whereas, an index of 1 would indicate completely
perseverative and past-dependent behavior. Note that since goal-
directed behavior is, by definition, based on expected outcome, it
should not be solely dependent on previous choices. Thus, the
P-index should be a relatively pure measure of the persisting
component of behavior.

Model
The choice model presented here extends a reinforcement
learning model using Q-learning that updates an action value for
each option based on its prediction error: the difference between
the experienced outcome and the action value (Watkins and
Dayan, 1992; Sutton and Barto, 1998; Dayan and Abbott, 2001;
Daw et al., 2006; Li and Daw, 2011). Similar to previous models
(Erev and Roth, 1998; Li and Daw, 2011; Prévost et al., 2011;
Jung et al., 2014), the model updates a chosen option based on
its reward outcome, and decays unchosen options simultaneously
presented in a given context. In addition, the model updates
action values of options across all attributes. Thus, at each trial
t, the action value for the chosen option c and for the unchosen
option u on attribute k are updated according to:

Qk, c ( t + 1) = Qk, c ( t) + αcδc (t)

Qk, u ( t + 1) = Qk, u ( t) + αuδu (t)

where αc and αu are learning rates for chosen and unchosen
options and δc (t) and δu (t) are the reward prediction errors at
given trial t for the chosen and unchosen options, respectively.

To capture subjective responses in learning the unchosen
option, we assume that the learning rate of the unchosen option
is proportional to the action value of the unchosen option in our
model: αu = αcQk, u

µ−1, whereµ is the exponent rate parameter
that determines how the learning rate is sensitive to the strength
of the action value. We used a power law to encapsulate the
full range of possible values for the learning rate and to account
for all types of subjective responses in learning the unchosen
option (Stevens, 1957). The learning rate as a function of the
action value of the unchosen option helps explain how the action
value influences the learning rate: the larger the action value, the
faster the learning; or the smaller the action value, the slower the
learning. The exponent µ equals the power to which the action
value is raised, allowing for response compression for µ < 1,
linear response for µ = 1, or response expansion for µ > 1.
That is, for µ < 1, the learning rate of the unchosen option
decreases as the action value increases; for µ = 1, the learning
rate of the unchosen option remains constant regardless of the
action value. For µ > 1, the learning rate of unchosen option
increases as the action value increases.

The reward prediction errors, i.e., the difference between
the expected and received reward values, for the chosen and
unchosen options are as follows:

δc (t) = rk,c − Qk, c (t)

δu (t) = 0 − Qk, u (t)

where rk,c is the reward value of the chosen option on attribute
k. To capture subjective values of reward on each attribute, we
assume that there is a power-law relationship between reward
value and attribute value of an option i on attribute k as follows:
rk,i = Nxki

γ , where γ is the value sensitivity exponent and N is a
normalizing constant.

Once the action values for each attribute are calculated, we
compute an overall action value for an option i at trial t by
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summing the action values of the option on all attributes:

Qi (t) =
∑

k

wkQk,i (t)

where wk is the weight on an attribute k. For multi-attribute
decisions, we determine the weight of the action values on each
attribute based on relative distinctiveness among options on each
attribute as well as its strength.

We capture the relative distinctiveness by using a preference
vector based on valence values of options in choice set S (Tversky
et al., 1988; Wedel et al., 1998; Roe et al., 2001; Rooderkerk et al.,
2011), which connects the initial point that corresponds to the
minimum attribute values of all attributes in se t S with the
terminal point that represents the maximum attribute values of
all attributes in set S in attribute space (Figure 1). The preference
vector in a choice set S is

vSpreference =

[(

max
i∈S

x1i −min
i∈S

x1i

)

, · · · ,

(

max
i∈S

xki −min
i∈S

xki

)]

where xk,i is the normalized attribute value of item i on an
attribute k. Then, the relative distinctiveness of each attribute
is determined by the vector component of a unit preference
vector on attribute k, which is determined by the normalized

FIGURE 1 | A graphical description of the preference vector for a choice set in

two-dimensional attribute space. vS
preference

is the preference vector in the

situation of choosing an option in choice set S = {Option A, Option B, Option

C, Option D}. The horizontal and vertical axes represent the value on distinct

Attribute k1 and Attribute k2, respectively. Each option is then represented as

a point in this two-dimensional attribute space. The component of the vector

on each attribute is determined by the range between the maximum and

minimum values of options in the choice set.

vector projection of a preference vector on attribute k for set S
in attribute space:

uSk = k̂ =

(

max
i∈S

xki −min
i∈S

xki

)

∥

∥

∥
vS
preference

∥

∥

∥

The relative distinctiveness of each attribute depends on the
maximum difference between attribute values and the magnitude
of the preference vector in a given choice context.

Here, two attentional processes are modeled for attribute
selection: selective attention and divided attention (Corbetta et al.,
1991). First, the selective attention process is involved in focusing
on a single attribute to the exclusion of other attributes when a
single attribute is dominant over other attributes. By using this
process, the single dominant attribute is taken into consideration
in a winner-take-all manner. Second, the divided attention
process is employed in distributing attention to competing
attributes simultaneously when no attribute is dominant. These
two attentional processes for multi-attribute decisions determine
the relative weight of each attribute. A threshold gate is applied to
determine which process is used to draw attention on the basis of
the relative distinctiveness. If the angle between the preference
vector and an attribute axis is below the threshold angle in
attribute space, the selective attentional process is employed so
that the most distinctive attribute wins and other attributes are
disregarded (McCulloch and Pitts, 1943). If the angles θ between
the preference vector and all attributes are above the threshold
angle 2threshold, the divided attentional process is employed so
that attention is distributed according to the magnitude of the
projection of the preference vector on each attribute. The angle
θk between the preference vector and an attribute k is:

θk = cos−1 (
vS
preference

· k̂
∥

∥

∥
vS
preference

∥

∥

∥

∥

∥

∥
k̂
∥

∥

∥

)

The output of the threshold gate ak is:

{

ak = 1 and aj = 0 for j 6= k, if θk < 2threshold

ak = uS
k
, if θk ≥ 2threshold

The relative weight on attribute k then iswk = ak for the equation
of Qi (t). An illustration for the two attention processes is shown
in Figure 2.

Finally, for action selection, using overall action values of
choice options in set S, we assume that the probability to choose
an option i at trial t, Pi(t), is determined according to a softmax
choice function (Sutton and Barto, 1998):

Pi (t) =
exp

(

β
∑

k wkQk,i (t)
)

∑n
i=1 exp

(

β
∑

k wkQk,i (t)
) =

exp (βQi (t))
∑n

i=1 exp (βQi (t))

where β is a softmax inverse temperature parameter, which
represents the degree to which choices are biased toward the
highest-valued option, and n is the number of choice options in
set S. Note that, together, different learning rates for the chosen
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FIGURE 2 | Selective and divided attentional control in attribute space.

Depending upon the angle between the preference vector vS
preference

and an

attribute in attribute space, different types of attention are employed. When the

angle between the preference vector vS
preference

and any attribute falls into

2threshold , the attribute is selectively attended. Otherwise, available attributes

can be attended simultaneously (producing divided attention).

and unchosen options and the relative weights for the option
attributes are key components of our model that capture two
key features of sequential dynamics in multi-attribute decisions:
choice persistence (i.e., repeated choices) and preference bias (i.e.,
choice distribution), respectively. For estimation of parameters,
we calculated the negative log-likelihood of the individual’s
choice sequence generated by the softmax choice function
and used a fmincon function in Matlab to find a constrained
minimum of the negative log-likelihood.

RESULTS

Behavioral Experiment With
Rhesus Monkeys
To better understand the influence of attention and memory on
decision-making dynamics, we examined free-choice sequences
of multi-option, multi-attribute decisions in rhesus monkeys as
they compared different food items in view. Rhesus monkeys
are a representative catarrhine primate (comprising Old World
monkeys, apes, and humans) whose findings contribute to our
understanding of the evolutionary origins of decision-making
processes; they are also well-established as a non-human primate
model of human decision making (Glimcher et al., 2008; Platt
and Ghazanfar, 2010; Xu et al., 2011; Kralik et al., 2012; Jung and
Kralik, 2013; Knight et al., 2013). In particular, we addressed the
question of how selective attention and memory relate to the two
key components of sequential decision making: preference bias,
i.e., the overall choice distribution, and choice persistence, i.e., the
tendency to repeat choices.

Because selective attention focuses on one or more stimulus
attributes at the expense of others, evidence for its effect includes
the reduced effect of an attribute on behavior due to the
presence of other attributes (Itti and Koch, 2001; Corbetta and

Shulman, 2002; Carrasco, 2011). In the extreme, the effect of
an option attribute can be completely blocked by others, with
a potentially strong effect uncovered once the other attributes
are removed (Rescorla and Wagner, 1972; Kahneman et al.,
1982; Corbetta and Shulman, 2002; Reynolds and Desimone,
2003; Wolfe and Horowitz, 2004; Slovic et al., 2007; Beck
and Kastner, 2009; Hsee and Zhang, 2010; Kahneman, 2011;
Kralik et al., 2012). Therefore, to test for the influence of
selective attention, we manipulated the relative distinctiveness of
option attributes across three conditions, and examined whether
there was competition among the attributes in their effects on
preference bias and persistence.

To provide a greater range of attribute distinctiveness, as well
as to move toward greater ecological validity in the laboratory
by providing multiple options, four monkeys chose among four
multi-attribute options (as opposed to the conventional two
options) in 1,500 trials in three conditions. In Condition 1,
the monkeys chose among four different food items: peanut
halves (removed from shell) (PN); yellow BioServ R© Fruity Gems
(FG); BioServ R© banana-flavored dustless precision pellets (PL);
and rice krispies (KR) (Figure 3A). The food items differed in
both an external perceptual attribute (size) and internal affective
ones (caloric amount, taste). Choice could also be affected
independently by option location, with items displayed in four
transparent containers: left of center (ML), right of center (MR),
farther left (LL), and farther right (RR). The locations of the
items were counterbalanced across sessions consisting of 150
trials. Thus, although the specific food items changed positions
in each session, the effort to reach for items could have led
to preferences for the center locations, for example. We then
decreased stimulus attribute distinctiveness in two additional
conditions. In Condition 2, the monkeys chose among four
identical food items that differed in color (and potentially taste):
red, green, orange, and purple (Figure 3B). Thus, the size and
calorie attributes were eliminated, leaving one highly distinctive
external perceptual attribute (color), one slightly distinctive
internal attribute (taste), and option location (again, the specific
items were pseudo-randomly assigned locations each session, so
option location would affect choices independently of the specific
items). In Condition 3, they chose among four identical food
items, leaving only the location attribute distinctive (Figure 3C):
PL for three monkeys and PN for the other monkey (Monkey 3)
whose motivation was low toward PL (See Methods for further
experimental specifics).

These manipulations were designed to (a) determine whether
preference bias and choice persistence were differently affected
by external and internal factors, and (b) whether selective
attention and memory-dependent learning influenced these
two components of sequential choice behavior. Regarding
experimental question (a), because preference bias appears to be
based on an affective valuation and decision-making process, we
hypothesized that it would be most affected by internal factors
such as calorie, and would thus decrease across the conditions
(with the decrease in internal attribute distinctiveness). Because
persistence reflects choice history, i.e., what was selected
previously, regardless of the actual item being chosen, we
suspected that it might be more immune to affective attributes,
and more influenced by general saliency or discriminability of
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FIGURE 3 | Overview of experimental conditions. (A) In Condition 1, the monkeys chose among four different food items (KR, RL, PN, and FG). (B) In Condition 2,

they chose among four differently colored food items (Orange, Purple, Red, and Green). (C) In Condition 3, the monkeys chose among four identical food items. Three

attributes—reward (calorie or taste in Condition 1 and possible individual color preference in Condition 2), location/effort, and visual saliency (size in Condition 1 and

color in Condition 2)—are chiefly considered. The degree of eccentricity of the ellipses for the three attributes represents the distinctiveness of options with respect to

the attributes.

the choice options, regardless of attribute type (i.e., whether
internal or external). We therefore hypothesized that choice
persistence would be relatively constant in Conditions 1 and 2
(with the high distinctiveness in external perceptual attributes of
size and color), but to decrease in Condition 3 (with only location
distinctiveness) (Figure 3).

With respect to experimental question (b), evidence for
selective attention would be competition among the attributes,
such that a particular attribute may have little to no effect on
bias or persistence in one condition, but a much greater effect
in a subsequent condition, once the more dominant attributes
were removed. In fact, in the current experiment, we found
evidence for the effect of selective attention on preference bias,
in which option location (held constant across conditions) had
no discernable effect on preference bias in Condition 1, but
exhibited an increasingly stronger effect across Conditions 2
and 3. In contrast, there was no evidence for the effect of
selective attention on choice persistence. Finally, evidence for
the influence of memory-dependent learning would be tested
via the extent to which our computational model captured the
monkeys’ behavior; and our findings suggest that the memory-
dependent learning particularly influenced choice persistence as
detailed below.

Overall Description of Choice Behavior
The choice patterns of a typical monkey (Monkey 4) over the
course of Conditions 1, 2, and 3 are shown in Figure 4. Similar
to Monkey 4, the decision patterns of all the monkeys generally
consisted of a combination of exploitation and exploration
among the four food items, as the monkeys made a specific
choice for consecutive trials and then occasionally switched to
other options. Specifically, in Condition 1 with four different
food items, themonkeys exhibited exploration and intermittently
showed strong bursty choice behavior, represented as a series of
identical choices suddenly occurring, seen as concentrated tally
marks of the identical choices (Figure 4A). We observed that
monkeys showed a large choice bias to the favorite food item,
which provides the highest reward and drives a bursty choice

behavior, indicating that their choices were based on the food
attribute rather than the distance attribute.

In Condition 2 with four differently colored items, compared
with Condition 1, the monkeys showed more exploratory
behavior; this, in turn, resulted in a more diverse distribution
of choices across colors and locations (Figure 4B). In Condition
3 with four identical items of pellets (PL), the monkeys

showed biased choice behavior toward the two middle locations,

MR and ML (Figure 4C). However, the monkeys still showed
intermittent exploration toward other locations throughout the

entire sessions; yet the degree of bursty choice behavior appeared

to decrease, compared to those of Conditions 1 and 2. In
addition, Monkey 3 with peanut halves (PN) for Condition 3

also showed biased choice behavior toward the MR and ML
locations, and intermittent exploration toward other locations

throughout the entire sessions, except that the degree of bursty

choice behavior appeared to be maintained compared to those of
Conditions 1 and 2.

To assess the variation in the degree of the monkeys’ biased
preference over trials, we calculated entropy, a measure of
unpredictability in choices, from choice frequencies every 50
trials in all three conditions (Shannon, 1948); a zero value for
entropy indicates completely biased preference for choosing
a particular option only, whereas a large value represents
equal preference over alternatives. In all three conditions, we

found that the entropy of choice sequences fluctuated around a

particular level throughout the entire sessions (Figures 4D–F).
The relatively constant level of entropy over the whole session

indicates that the subjects sustained a certain degree of bias in

preference throughout the entire session, rather than developing
a completely biased preference or completely equal preference.

In addition, we compared the entropy of the empirical choice
sequences to a randomly shuffled one, in which any given choice
is independent of past choices, in order to examine whether
the degree of biased preference or equal preference depended
on previous choice history. In Condition 1, we found that
the entropies observed in the empirical choice sequences were
significantly lower than in randomly shuffled sequences for all
four subjects at the individual level, indicating that individual’s
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FIGURE 4 | Overall sequential dynamics and preference bias across different choice sets. (A–C) The choice patterns of a typical monkey (Monkey 4). (A) The dynamic

choice pattern in Condition 1 with different food items. Choice in each trial is represented by a tally mark corresponding to the location of the choice made. The tally

mark color represents food type: red, orange, green, and blue for peanut halves (PN), fruity gems (FG), pellets (PL), and rice krispies (KR), respectively. (B) The

dynamic choice pattern in Condition 2 with items of different color. Tally marks are the same colors as the food items. (C) The dynamic choice pattern in Condition 3

with identical food items. The choice in each trial is represented by a tally mark corresponding to the location of the choice made. Tally mark color represents location:

blue, red, orange, and green for left (LL), middle left (ML), middle right (MR), and right (RR), respectively. (D–F) Entropy of choices over trials averaged over all monkeys

for Conditions 1 (D), 2 (E), and 3 (F) except Monkey 3 for Condition 3. Black and red solid lines represent the entropy of empirical data and randomly shuffled data,

respectively. (G–L) Preference bias toward a certain attribute averaged over all monkeys. Choice percentage with respect to four food items in Condition 1 (G) and

with respect to color in Condition 2 (H). (I) The caloric information of the four food items. (J–L) Choice percentage with respect to location in Conditions 1 (J), 2 (K),

and 3 (L). All choice percentages were averaged over all monkeys except Monkey 3 for Condition 3. All error bars are standard error of the mean (s.e.m.).

choices depended on prior choices (paired t-test; p < 0.001
for Monkeys 1 and 4; p < 0.05 for Monkey 2; p < 0.01 for
Monkey 3) (Figure 4D). In Condition 2, the entropy of the
empirical choice patterns was significantly lower than that of the

randomly shuffled ones, which again indicates that choices were
dependent on past choice history (paired t-test; p < 0.001 for
all four monkeys) (Figure 4E). In Condition 3, the entropy of
the choice sequences of the three monkeys with pellets (PL) was
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maintained at a certain level throughout the whole session; this
case, however, did not show a significant deviation from that of
randomly shuffled choice sequences for all three subjects with
PL (paired t-test; p > 0.1 for Monkeys 1, 2, and 4), indicating
that the empirical choice sequences for the three monkeys with
PL appeared to be relatively independent of prior choice history
(Figure 4F). However, the entropy of the choice sequences of
Monkey 3 with peanut halves (PN) showed a significant deviation
from that of randomly shuffled choice sequences (paired t-test; p
< 0.01 for Monkey 3).

Furthermore, we compared the entropy of choice sequences
across the three conditions, excluding that of Monkey 3 in
Condition 3, whose manipulation (PN vs. PL) differed from the
others (see Methods). We found that there was no significant
difference in the entropy of the empirical choice sequences
across the conditions, indicating that the monkeys showed a
similar degree of bias in choices across the conditions [Repeated-
measure ANOVA, F(2,8) = 2.815, p = 0.119]. However, there
was a significant difference in the entropy of the randomly
shuffled choice sequences across the conditions [Repeated-
measure ANOVA, F(2,8) = 11.875, p < 0.01]. The entropy of
the randomly shuffled sequences in Condition 2 was significantly
higher than those in Conditions 1 and 3 (Tukey post-hoc test, p<

0.05 between Conditions 1 and 2; p < 0.01 between Conditions
2 and 3). This indicates that the degrees of overall bias in
the randomly shuffled sequences were different from the global
bias in choices across the conditions. In addition, the averaged
entropies of the choice sequence for Monkey 3 with PN across
conditions were 0.637 for Condition 1, 0.950 for Condition 2, and
0.854 for Condition 3. The averaged entropies of the randomly
shuffled choice sequence forMonkey 3 with PN across conditions
were 0.720 for Condition 1, 1.30 for Condition 2, and 1.02 for
Condition 3.

Preference Bias
One key component of choice behavior is preference bias toward
the options with higher values or ones requiring less effort.
To evaluate which attribute of options was most influential in
choice behavior, we examined choice percentages with respect
to different attributes: food type and location for different food
items in Condition 1; color and location for identical food items
with different colors in Condition 2; and location for identical
food items in Condition 3.

In Condition 1, choice percentages were significantly
influenced by the type of food with peanut halves (PN) being
consumed the most across subjects, followed by fruity gems (FG)
[Two-way ANOVA, F(3) = 207.2, p < 0.001] (Figure 4G), but
not by location [Two-way ANOVA, F(3) = 1.66, p = 0.178]
(Figure 4J). With respect to the factors underlying food type
preferences, we calculated the calorie value of the food items
presented (Figure 4I). We found that the choice distribution
was closely matched to the relative caloric ratios of the food
items, i.e., individual calorie value over total calories of all four
items (r = 0.893, p < 0.001) (compare Figures 4G,I). The strong
matching between choice percentage of food items and their
calorie values indicates a strong bias toward the high-calorie food
item. This bias toward the highest caloric food items indicates

that the intrinsic value of the food items, particularly caloric
value, influenced choice behavior, whereas the absence of spatial
bias indicates that the effort needed to reach each location had no
significant impact.

In Condition 2, choice percentages for each color were
marginally significantly different across all monkeys. In other
words, we found that monkeys’ preference toward a particular
color was marginally significant at the group level [Two-way
ANOVA, F(3) = 2.59, p = 0.055] (Figure 4H). When individual
color preference was considered, we found that monkeys showed
a strong preference toward an individual’s favorite color at the
individual level [Two-way ANOVA, F(3) = 11.69, p < 0.001].
The choice percentages for the four different locations were
significantly different [Two-way ANOVA, F(3) = 8.37, p <

0.001] (Figure 4K). The choice percentage for location MR was
significantly higher than LL and RR (Tukey post-hoc test, MR >

LL, p < 0.001; MR > RR, p < 0.01) and higher than ML with
the margin of statistical significance (MR > ML, p = 0.057),
indicating that the location of items influenced choice behavior
in this condition, unlike in Condition 1 (Figure 4L).

In Condition 3, there was a significant difference in choice
percentage across locations [Two-way ANOVA, F(3) = 82.2, p
< 0.001]. ML was chosen significantly more frequently than the
other three locations (LL, MR, and RR) (Tukey post-hoc test,
ML > LL, p < 0.001; ML > MR, p < 0.001; ML > RR, p <

0.001) (Figure 4L). Additionally, the monkey (Monkey 3) with
four identical items of peanut halves (PN) in Condition 3 (see
Methods) also showed biased choice behavior toward the two
middle locations, MR and ML (Choice rate for LL = 0.099;
ML = 0.266; MR = 0.585; RR = 0.049; χ2 (3) = 1,054.0, p
< 0.001). Comparing Conditions 1–3, the stronger bias toward
the two middle locations indicates that the effect of location on
choice behavior was insignificant in Condition 1 and then became
significant in Conditions 2 and 3, even though the location of
options was held constant across all three conditions.

Choice Persistence
The second key component of sequential choice behavior is
choice persistence: how long an individual continues making
the same choices, which we define as a run. We observed when
monkeys switched to other options and how the length of runs
changed throughout the entire session across three conditions
(Figures 5A–C). In general, runs consisted of a majority of short
runs, as well as a few long runs, for all monkeys. More specifically,
in Condition 1, runs consisted of a majority of short runs,
as well as a few very long runs (Figure 5A). In Condition 2,
while again there were a few long runs, overall the lengths of
runs appeared to decrease compared to those of Condition 1
(Figure 5B), reflecting more switching in choice behavior with
differently colored items. In Condition 3, the lengths of runs
decreased even more compared to those of Conditions 1 and 2
(Figure 5C), and thus the choice behavior with identical items
was the least persistent.

On the surface, it is unclear whether increased switching
across the conditions is due to a less skewed preference bias
or a decrease in choice persistence. That is, bursty sequential
dynamics reflect both bias and persistence effects—with a high
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FIGURE 5 | Choice persistence across different choice sets. (A–C) A trial-dependent run distribution for a typical monkey (Monkey 4) in Conditions 1 (A), 2 (B), and 3

(C). (D–F) The cumulative run distribution of overall choice sequences, as well as those from the sorted and randomly shuffled sequences, averaged across the

monkeys for Condition 1 (D), for Condition 2 (E), and for Condition 3 except Monkey 3 (F) in a log-log scale. (G–I) Example cumulative run distribution of the choice

sequence of Monkey 4 for Condition 1 (G), Monkey 3 for Condition 2 (H), and Monkey 2 for Condition 3 (I) averaged across sessions in a log-log scale (black line).

Red and blue solid lines represent the cumulative distributions of runs obtained from sorted and randomly shuffled choice sequences, respectively. (J–L) The

probability of continuing a run for the overall sequence and for each rank regarding the most contributing attribute: food in Condition 1 (J); location in Condition 2 (K);

and location in Condition 3 (L), as a function of the number of preceding choices in a run for all monkeys except Monkey 3 for Condition 3. The dotted black line

represents the chance level of continuing a run (25%).

bias also leading to more and longer runs of identical choices.
Thus, the bursty dynamics (as seen in Figures 5A–C) needed
to be decomposed into the two components to determine their
relative effects across conditions.

To analyze the properties of persistent choice behaviors, we
examined the cumulative distribution of the length of runs,
which reflects the composition of “switching” and “staying”
behavior. Since the distribution exhibited a long and heavy tail

at the right end of the x-axis in a linear scale, we rescaled
it in a logarithmic scale by using a log-log plot, as shown
in Figures 5D–F. To estimate the degree of persistence, we
compared the cumulative run distribution of the empirical choice
sequences with that of (a) randomly shuffled choice sequences,
and (b) sorted choice sequences in all three conditions (see
Data analysis in Methods). If the cumulative run distribution
of an empirical choice sequence does not significantly deviate
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from that of randomly shuffled choice sequences in which
history independency was inherent, this would indicate that
choices were made independently of past choice history. On
the other hand, if the cumulative run distribution of an
empirical choice sequence does not significantly deviate from
that of sorted choice sequences, this would indicate that choices
were completely dependent on past choice history and were
made deterministically.

Overall Analysis
First, we compared the cumulative run distribution of overall
empirical choice sequences with respect to the most contributing
attribute (Food in Condition 1; Location in Conditions 2 and 3)
with those of the randomly shuffled and sorted ones for the three
conditions. In Condition 1, we found that the cumulative run
distributions of the overall choice sequences for all four monkeys
showed significant deviations from those of the randomly
shuffled choice sequences (overall: p < 0.001; individuals: p <

0.001 for all four monkeys), as well as those of the sorted ones
(overall: p < 0.001; individuals: p < 0.001 for all four monkeys),
indicating that the overall long-term choice behaviors of the
monkeys were persistent (Figure 5D).

In Condition 2, for all four monkeys, the cumulative run
distributions of the overall choice sequences deviated from those
of the randomly shuffled sequences, indicating persistence in
their overall choices as in Condition 1 (overall: p < 0.001;
individuals: p < 0.001 for all four monkeys); at the same time,
there was a high degree of randomness when compared to the
sorted sequences (overall: p< 0.001; individuals: p< 0.001 for all
four monkeys) (Figure 5E).

In Condition 3, the cumulative run distributions of the
three monkeys with PL in Condition 3 were closest to those
of the randomly shuffled sequences (Figure 5F). Generally,
the cumulative run distributions significantly deviated from
those of the randomly shuffled sequences (overall: p < 0.001),
indicating the influence of past choice history. The cumulative
run distributions also significantly deviated from those of the
sorted sequences (overall: p < 0.001). However, individually, the
cumulative run distribution of the three monkeys with PL did
not significantly deviate from those of the randomly shuffled
sequences (individuals: p = 0.90 for Monkey 1; p < 0.001 for
Monkeys 2 and 4). Additionally, the cumulative run distribution
of Monkey 3 with PN significantly deviated from those of the
randomly shuffled sequences (p < 0.001 for Monkey 3).

Second, we compared the cumulative run distributions of the
empirical choice sequences with those of the randomly shuffled
or sorted ones session-by-session. Session-by-session analysis
allowed us to test whether the dependence on past choice history
was due to a potential artifact from counterbalancing locations
across sessions or a prior selection of the most contributing
attribute for analysis because the run distribution within a
session was not affected by counterbalancing or attributes. In
Condition 1, we found that the cumulative run distributions of
three of four monkeys showed significant deviations from those
of the randomly shuffled choice sequences (overall: p < 0.001;
individuals: p < 0.001 for Monkeys 1; p < 0.05 for Monkey 2; p
= 0.15 for Monkey 3; p < 0.01 for Monkey 4), as well as those

of the sorted ones across sessions (overall: p < 0.001; individuals:
p = 0.13 for Monkey 1; p < 0.05 for Monkey 2; p < 0.001 for
Monkeys 3 and 4), indicating that the choice behaviors of three
monkeys were persistent in each session (Figure 5G). In other
words, the choices in each session were significantly influenced
by past choice history, thereby revealing some degree of past
choice dependency.

In Condition 2, for all four monkeys, the cumulative run
distributions deviated from those of the randomly shuffled
sequences, demonstrating a choice history effect (overall: p <

0.001; individuals: p < 0.001 for all four monkeys); at the
same time, there was a high degree of randomness when
compared to the sorted sequences across sessions (overall:
p < 0.001; individuals: p < 0.001 for all four monkeys)
(Figure 5H). Compared with Conditions 1 and 2, the cumulative
run distributions of three monkeys with PL in Condition
3 were closest to those of the randomly shuffled sequences
(Figure 5I). Generally, the cumulative run distributions did
not significantly deviate from those of the randomly shuffled
sequences across sessions (overall: p = 0.07), indicating the
influence of past choice history. However, the cumulative run
distribution significantly deviated from those of the sorted
sequences across sessions (overall: p < 0.001). Individually,
the cumulative run distributions of two monkeys did not
significantly deviate from those of the randomly shuffled
sequences across sessions (individuals: p = 0.94 for Monkey 1; p
= 0.084 for Monkey 2; p < 0.001 for Monkey 4). The cumulative
run distributions of two monkeys among the three monkeys with
PL (see Methods) significantly deviated from those of the sorted
sequences across sessions (individuals: p = 0.286 for Monkey 1;
p < 0.001 for Monkeys 2 and 4). In addition, the cumulative run
distributions of Monkey 3 with PN significantly deviated from
those of the randomly shuffled sequence (p < 0.001) as well as
the sorted sequence (p < 0.001) across sessions.

To further characterize the underlying process for continuing
a run, we calculated the conditional probability of continuing
a run with regard to the number of preceding choices in the
run with respect to the most contributing attribute to preference
bias, namely, food in Condition 1; location in Condition 2; and
location in Condition 3 (Figures 5J–L). In accordance with the
general finding that there was a majority of short runs and a few
very long runs, we found that a run was more easily terminated
when the length of the preceding choices in a run was short. In
contrast, the run was more likely to be continued when the length
of the preceding choices in a run was longer.

Specifically, in Condition 1, the probability of continuing a
run logarithmically increased as a function of the number of
preceding choices in a run and converged to nearly one after
a few runs, resulting in long runs (Figure 5J). The increasing
probability of continuing a run indicates that the monkeys were
more likely to choose what they had repeatedly chosen. As the
monkeys repeated their past actions, a status quo bias developed
in a gradually increasing manner. In Condition 2, similar to
Condition 1, we found that the probability of continuing a
particular run logarithmically increased with the number of
preceding choices in a run (Figure 5K), providing evidence of
an increasing tendency of continuing a run as the length of the
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run increased. In Condition 3, similar to Conditions 1 and 2, we
again found that the probability of continuing a run for three
monkeys with PL increased with the number of preceding choices
in a run. However, we found that the disruption in continuing a
run (i.e., a reduction in the probability of continuing a run at a
certain run length) occurred for the three monkeys with PL in
Condition 3, compared to Conditions 1 and 2 (Figure 5I). This
result indicates that the overall tendency of remaining with a
previously selected option increased in Condition 3, but that the
tendency became progressively unstable as the length of the run
increased, compared to Conditions 1 and 2. In addition, we found
that Monkey 3 with PN also showed the increasing probability of
continuing a run with the number of preceding choices in a run
in Condition 3. However, Monkey 3 with PN exhibited a more
stable tendency of continuing a run than the other three monkeys
with PL without showing an early disruption in continuing a run.

The Degree of Preference Bias
and Persistence
To quantitatively measure the modulation of preference bias and
persistence in choice behavior across the three conditions, we
quantified the degrees of preference bias and persistence with
respect to a certain attribute by proposing the B-index and P-
index, respectively (see the B-index and P-index in Methods)
(Figures 6A,B). Regarding the preference bias, we found that the
B-index of an overall choice sequence with respect to location
gradually increased from Conditions 1 to 3 (Figure 6A; Jung
et al., 2014). Regarding the choice persistence, we found that the
P-index of an overall choice sequence with respect to location
gradually decreased from Conditions 1 to 3 (Figure 6B).

Overall Analysis
To compare the modulation of preference bias and persistence
in overall choice behavior across the three conditions, we
calculated the B-index and P-index with respect to the most
contributing attribute in each condition and plotted them in
two-dimensional coordinates (calculated without the data of
Monkey 3 in Condition 3, whose manipulation, PN vs. PL,
differed from the others—see Methods) (Figure 6E). In both
dimensions, we found significant differences in indices across
conditions, indicating that the modulation occurred in both
preference bias and persistence [One-way ANOVA, F(2,8) =

8.765; p < 0.05 for B-index; F(2,8) = 7.156, p < 0.05 for P-index].
In particular, we found significant differences in the B-indices
between Conditions 1 and 2 (Tukey post-hoc test, p < 0.05) and
between Conditions 2 and 3 (Tukey post-hoc test, p < 0.05);
the B-indices for Conditions 1 and 3 were significantly higher
than for Condition 2. In addition, the B-indices of Monkey 3
were 0.460 for Condition 1, 0.084 for Condition 2, and 0.247 for
Condition 3. The pattern that the B-index in Conditions 1 and 3
was higher than Condition 2 was also observed at an individual
level (Figure 6C).

We also found a significant difference in the P-indices between
Conditions 1 and 3 (Tukey post-hoc test, p < 0.05) and between
Conditions 2 and 3 (Tukey post-hoc test, p < 0.05); the P-
indices for Conditions 1 and 2 were significantly higher than
for Condition 3. P-indices of Monkey 3 with PN were 0.174 for

Condition 1, 0.317 for Condition 2, and 0.272 for Condition 3.
The P-index for each individual monkey is shown in Figure 6D.
The pattern that the P-index in Conditions 1 and 2 was higher
than Condition 3 was also observed at an individual level except
for Monkey 3 (Figure 6D).

Session Analysis
In addition, we conducted a similar analysis session-by-session
in order to test whether the modulation of preference bias
and persistence occurred due to the changes of choice sets
across conditions and not due to a potential artifact from
counterbalancing locations across sessions or a prior selection of
themost contributing attribute for the analysis.We calculated the
B-index and P-index from the choice sequence of each session,
which are uniquely determined within a session irrespective of
counterbalancing or attributes. The session analysis consistently
showed that there were significant differences in the B-indices of
the monkeys across the three conditions (calculated without the
data of Monkey 3 in Condition 3 whose manipulation, PN vs.
PL, differed from the others—see Methods) [One-way ANOVA,
F(3,107) = 36.049, p< 0.001]. Specifically, there was no significant
difference in the B-index between Conditions 1 and 3 (paired
t-test, p = 0.869). However, the B-index in both Conditions 1
(paired t-test, p < 0.001) and 3 (paired t-test, p < 0.001) were
significantly higher than in Condition 2. Thus, Conditions 1 and
3 showed similar degrees of preference bias, whereas Condition
2 exhibited the lowest degree. In addition, the averaged B-indices
of Monkey 3 across sessions were 0.502 for Condition 1, 0.190 for
Condition 2, and 0.292 for Condition 3.

For the session analysis of the P-index, we consistently found
significant differences in the P-indices across the three conditions
(again, calculated without the data of Monkey 3 in Condition 3,
whose manipulation, PN vs. PL, differed from the others—see
Methods) [One-way ANOVA, F(2,107) = 3.206, p < 0.05]. There
was no significant difference in the P-index between Conditions
1 and 2 (paired t-test, p = 0.241). However, there were also
significant differences in the P-indices between Conditions 1 and
3 (paired t-test, p< 0.01) and between Conditions 2 and 3 (paired
t-test, p < 0.05). The lower P-index in Condition 3 indicates
that choice behavior with identical food items was more history-
independent and less persistent than in Conditions 1 and 2. In
addition, the averaged P-indices of Monkey 3 across sessions
were 0.100 for Condition 1, 0.508 for Condition 2, and 0.371 for
Condition 3.

We also examined which attributes contribute to choice
persistence. We considered all possible attributes for each
condition: food rank, food calorie, food size, and location for
Condition 1; color rank, color, and location for Condition 2;
location rank and location for Condition 3. Rank was defined
as the order of an individual’s overall consumption of each
option regarding an attribute, which would reflect the order of
an individual’s subjective values for the qualitatively different
options. We calculated the P-index of each option with respect to
these attributes, excluding Monkey 3 in Condition 3. We tested
the relationships between rank order and the P-index and found
that there were no significant differences in the P-indices for
ranks in all three conditions [One-way ANOVA, F(3,8) = 0.723, p
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FIGURE 6 | Modulation in preference bias and choice persistence. Comparison of the B-index (A) and P-index (B) across the three conditions, which reflect

preference bias and persistence with respect to certain attributes, respectively. The B-index (C) and P-index (D) of each individual monkey with respect to the most

contributing attribute in each condition: food in Condition 1; and location/effort in Conditions 2 and 3. (E) Two dimensional plot of the B-index (x-axis) and P-index

(y-axis) with respect to the most contributing attribute, representing the degrees of preference bias and persistence, respectively. All index values were represented as

means (± s.e.m.) across all monkeys except Monkey 3 for Condition 3 who received a different manipulation from the others (see Methods). (F) The relationship

between the average calorie of choice options presented to the monkeys and P-index. The black solid and dotted lines represent linear fits of the data of three

monkeys (Monkeys 1, 2, and 4) (r = 0.941, p < 0.001), and the data of Monkey 3 (r = 0.095, p = 0.94), respectively.

= 0.566 for Condition 1; F(3,12) = 0.103, p= 0.957 for Condition
2; F(3,6) = 0.625, p = 0.625 for Condition 3]. In addition, there
were no significant correlations between rank order and the P-
index in all three conditions (r=−0.035, p= 0.914 for Condition
1; r = 0.066, p = 0.809 for Condition 2; r = 0.363, p = 0.302
for Condition 3). We also found that there were no significant
differences in the P-indices for the four locations in all three
conditions [One-way ANOVA, F(3,12) = 0.074, p = 0.973 for
Condition 1; F(3,12) = 1.084, p = 0.393 for Condition 2; F(3,6) =
0.647, p = 0.613 for Condition 3]. The P-index with respect to
location for Monkey 3 in Condition 3 was 0.27.

Further, in Condition 1, we found that there was no significant
correlation between calorie of a specific food item and the P-
index (r = −0.031, p = 0.925). We also found that there
was no significant correlation between size of the specific

food item and the P-index in Condition 1 (r = −0.039, p =

0.904). In Condition 2, we found that there was no significant
difference in P-indices for the four different colors [One-way
ANOVA, F(3,12) = 0.164, p = 0.919]. However, we found that
there was a significant correlation between the average calorie
amounts of the presented options and the P-index across the
three conditions excluding the data of Monkey 3 in all three
conditions (r = 0.941, p < 0.001) or excluding the data of
Monkey 3 in Condition 3 (r = 0.802, p < 0.01), indicating
a positive relationship between the average payoff of available
options and choice persistence. For Monkey 3 who experienced
peanut halves (PN) in Condition 3 (see Methods), we found
that there was no significant relationship between the average
calorie amounts of presented options and the P-index (r = 0.095,
p= 0.94) (Figure 6F).
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FIGURE 7 | Preference vectors for different choice sets in the three conditions. The preference vector is illustrated with the two most distinguishable attributes for

each condition: (A) food calorie and location in Condition 1; (B) color and location in Condition 2; (C) calorie and location in Condition 3.

Modeling Results
Our model incorporates the respective influences of attention
and memory on the attribute-selection and reward-learning
processes in multi-attribute decisions. To test whether the model
can satisfactorily describe these processes, we compared model
predictions with empirical data (See Dataset in Methods for
details). For the empirical data, as described in “Behavioral
Experiment With Rhesus Monkeys”, the four rhesus monkeys
freely made choices among four food items in 1,500 trials in
three conditions. In Condition 1, four food items of different
calorie amounts (FG, PN, KR, and PL) were located in four
transparent containers: farther left (LL), left of center (ML), right
of center (MR), and farther right (RR). The locations of the items
were counterbalanced across sessions consisting of 150 trials.
We identified the calorie and the location of items as the main
attributes in Condition 1. For the calorie attribute, the caloric
value of each presented item was calculated: 0.78, 2.06, 0.08,
and 0.15 kcal/piece for FG, PN, KR, and PL, respectively. For
the location attribute, we quantified the value of each location
based on proximity, which corresponds to a reciprocal value of
the actual distance from the monkey to each location. Actual
distances were 18, 15, 15, and 18 cm for LL, ML, MR, and RR,
respectively; thus the proximities for locations were 1/18, 1/15,
1/15, and 1/18. In Condition 2, four of the same food items
in different colors (FG) were located in the four locations (LL,
ML, MR, and RR). Similar to Condition 1, the locations of the
items were counterbalanced across sessions consisting of 150
trials. In Condition 2, color and location of items were considered
the main attributes. Since there are no natural numerical values
for colors, we deductively estimated the relative value of each
color from its choice rate on the basis of the matching law
(Herrnstein, 1961; Jung et al., 2014). The location values were
the same as those in Condition 1. In Condition 3, four identical
food items (PL) were located in the four locations (LL, ML, MR,
and RR). Calorie and location of items were considered the main
attributes. The caloric value of PL is 0.15 kcal/piece. The location
values are the same as those in Conditions 1 and 2. For Condition
3, we excluded the data of the monkey with peanut halves (PN)
(Monkey 3) for simulation, focusing on the three monkeys who
received pellets (PL) (see Methods).

The preference vector based on the values of each item and
location was calculated in each condition. Exemplary preference

vectors for three conditions are shown in Figure 7. In Condition
1, the preference vector mostly points toward the calorie attribute
(Figure 7A); in Condition 2 the preference vector yields an
intermediate angle between the color and location attributes
(Figure 7B); in Condition 3, the preference vector points to
location (Figure 7C).

For model simulation, we used a reinforcement learning
choice model that updates a chosen option based on its reward
outcome, and decays unchosen options simultaneously presented

in a given context (See Model in Methods). We assigned as free

parameters the learning rate constant for chosen options αc,
the exponent for the learning rate µ, the inverse temperature
parameter β , and the value sensitivity exponent γ .

Using the preference vector and quantified values of the
options on each attribute, the four free parameters of the
model were estimated for each individual’s data by minimizing

the negative log-likelihood of the individual’s choice sequence
(Table 1; Daw, 2011). The model simulated an individual’s multi-
attribute decisions in a trial-by-trial manner for each condition.

For testing the quality of behavioral fits of choice models, we

compared the model with updating action values for both chosen
and unchosen options (Qc+u) with the model with updating

action values for only the chosen option. The Qc+u model
produced a lower value of BIC than the Qc model in all three
conditions, indicating that the Qc+u model provides a better fit
to the behavioral data (Table 2).

The behavior of the model for three conditions is illustrated
in Figure 8. First, we compared the cumulative choice graph of
simulated data with that of the empirical data with respect to
each attribute. The cumulative choice graph of simulated data
evolved across trials in a similar way to that of the empirical
data on all attributes, indicating that the model captures the
dynamic evolution of the multi-attribute choice behavior as well
as the overall preference bias among options (Figure 8A). In
addition, we compared the cumulative run distribution of the
simulated data with that of the empirical data in a log-log scale.
The simulations of the model show a close agreement between
the cumulative run distributions of the empirical data and the
simulated data on all attributes (Figure 8B). This indicates that
the model can capture the mechanism that determines how long
monkeys continue to choose the same options and when they
switch to other alternatives.
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TABLE 1 | The estimated parameters of the model.

αc µ β γ

Condition 1 0.79 ± 0.11 2.82 ± 0.14 20.50 ± 1.49 0.09 ± 0.02

Condition 2 0.90 ± 0.04 2.05 ± 0.14 12.37 ± 0.67 0.21 ± 0.08

Condition 3 0.60 ± 0.16 2.51 ± 0.19 20.87 ± 1.41 0.94 ± 0.17

Values are given as themean and s.e.m.: αc, the learning rate constant for chosen options;

µ, the exponent for the learning rate; β, the inverse temperature parameter; γ , the value

sensitivity exponent.

Since the empirical data showed that preference bias and
choice persistence were modulated across the three conditions,
it was necessary to test whether the model could capture
these context effects. Therefore, we quantitatively compared the
preference bias and choice persistence of the simulation data with
those of the empirical data. We calculated the B-index and P-
index for the simulation data with respect to each attribute in
each condition and compared them with those for the empirical
data (see B- and P- indices in Methods for details). The B- and
P-indices of the simulation and empirical data are shown in two-
dimensional B-P coordinates (Figure 9). In both dimensions, the
B- and P- indices predicted from the model closely matched the
indices of the empirical data in all three conditions (Paired t-test,
p = 0.246 for B-index, p = 0.801 for P-index in Condition 1; p
= 0.328 for B-index, p = 0.648 for P-index in Condition 2; p
= 0.247 for B-index, p = 0.561 for P-index in Condition 3). In
addition, the model prediction captured the general patterns in
the modulation of preference bias and choice persistence across
the three conditions: a high preference bias to specific food items
in Condition 1, to specific locations Condition 3, and a robust
choice persistence in Conditions 1 and 2.

DISCUSSION

We examined how selective attention and memory influence
the dynamics of multi-attribute decisions—akin to many of the
consumer choices in everyday life of humans, and many foraging
decisions of non-human animals. Focusing on the influences
of attention, here we presented a possible computational
account of attention control in multi-attribute decisions.
Specifically, we provided the underlying computational
mechanisms for how particular attributes are attended and
how the values of choice options on multiple attributes are
efficiently learned across trials for future decisions. Although
prior context effect and reinforcement learning theory have
provided accounts for discrete choices in various contexts,
and adaptive choice behavior, respectively, the link between
the two has not been firmly forged. This missing link is
necessary to provide a clearer understanding of how the
key cognitive processes lead to multi-attribute decisions. By
extending the standard reinforcement-learning model with the
addition of attention and memory, this study has constructed
a link between context effects and choice behavior based on
reinforcement learning.

Our model has two novel components. First, the model
includes attentional control for attribute selection. It takes

into account the simultaneous evaluation of choice options for
multiple attributes in attribute space. The model extends the
standard choice model, which has typically been applied to
decision making with a single attribute at a time. Applying a
preference vector in attribute space (Tversky et al., 1988; Wedel
et al., 1998; Rooderkerk et al., 2011), relative contributions for
each attribute to choices were calculated. The model suggests
that the direction of the preference vector determines whether
attention is selectively distributed to themost distinctive attribute
or simultaneously distributed to multiple comparable attributes.

An attention mechanism based on a threshold provides
an account for how the relative distinctiveness of attributes
contributes to a succession of choices. In the behavioral data,
the influence of attention on preference bias was evident by
the modulation of preference bias on location across conditions.
In Condition 1, we found a significant relationship between
the preference bias and caloric value of the options, but no
relationship with location (or effort). The choice bias toward the
favorite food item that provides the highest reward shows that
choices were made based on the food attribute rather than the
distance attribute. The lack of a relationship with location could
be due to the following four factors: (1) the differences in the
locations of the food items were not perceptually discernable by
themonkeys; (2) the differences were discernable, but too difficult
to evaluate and were, therefore, neglected by the valuation system
(Hsee, 1996; Tolkamp et al., 1998; Strubbe and Woods, 2004;
Zanutto and Staddon, 2007); (3) they were discernable, but
given equal values by the decision-making valuation process
(e.g., effort was sufficiently similar); or (4) they were discernable,
but selectively neglected by an attentional gating mechanism.
However, we found a significant effect of location on preference
bias in Condition 2, in which the attribute of food items such as
calorie was identical, and even more so in Condition 3, in which
the attributes of food items such as calorie or color were not
distinct features, even though location was held constant across
the conditions. Thus, the location differences were discernable,
evaluable, and not valuated identically. Therefore, we conclude
that the neglect of location in Condition 1, and the increasing
effect across conditions revealed the influence of a selective
attentional gating mechanism on decision making.

The influence of selective attention on the preference bias
is particularly clear when comparing the overall B-indices for
Conditions 1 and 3. Even though the choice options were
very different, i.e., four qualitatively different (Condition 1) and
identical (Condition 3) food items, the B-indices were similar.
This is presumably due to the same underlying decision-making
process on the attended attributes (e.g., calories in Condition 1
and location in Condition 3): choices were biased to maximize
caloric intake in Condition 1 and to minimize the effort to obtain
the foods in Condition 3. Thus, it appears that the preference bias
was influenced by selective attention.

The influence of attention on choice persistence is not clear.
We suggest that attention is involved in spotlighting distinct
attributes. Because persistence depends on choice history, i.e.,
what was selected previously, rather than the preferred attribute,
one might suspect that it is more immune to affective benefit
and cost influences. As opposed to an increased focusing on
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TABLE 2 | Quality of behavioral fits of choice models.

Model -LL AIC BIC p-r2 Number favoring Q c+u

Condition 1 Q c+u 574.0 ± 176.9 1,155.8 ± 353.8 1,177.0 ± 354.0 0.72 ± 0.08 4/4 monkeys

Q c 922.2 ± 130.8 1,850.4 ± 261.6 1,866.3 ± 261.6 0.56 ± 0.06

Condition 2 Q c+u 931.8 ± 157.9 1,871.7 ± 315.8 1,893.0 ± 315.8 0.55 ± 0.08 4/4 monkeys

Q c 1,951.8 ± 25.9 3,909.6 ± 51.8 3,925.5 ± 51.8 0.06 ± 0.01

Condition 3 Q c+u 829.6 ± 263.7 1,667.1 ± 527.4 1,688.3 ± 527.4 0.60 ± 0.13 4/4 monkeys

Q c 984.9 ± 335.0 1,975.6 ± 669.9 1,991.6 ± 669.9 0.53 ± 0.16

Values are given as the mean and s.e.m. –LL, negative log-likelihood; AIC: Akaike information criterion; BIC: Bayesian information criterion; p-r2, pseudo-r2 statistic.

FIGURE 8 | Comparison between empirical choice data and model simulation. Synthetic choice sequences generated from the model were compared with empirical

choice sequences. (A) Cumulative choice frequencies of the empirical data (solid line) from individuals and simulated data (dashed line) on each attribute in each

experimental condition. Red, yellow, green, and blue indicate options on the attribute corresponding to ranks 1, 2, 3, and 4, based on cumulative choice frequency,

respectively. (B) Cumulative run distributions of the empirical data (square black) and simulated data (orange triangle) shown in (A) in each condition in a log-log scale.

the location (or effort) attribute in Condition 3 observed in the
preference bias, leading to a preference bias comparable to that
in Condition 1, choice persistence decreased in Condition 3. This
finding suggests that unlike preference bias, choice persistence
appears to be relatively immune to selective attentional effects,
and might be more directly and singularly influenced by the

general perceptual saliency of the choice options (with high
perceptual saliency in external perceptual attributes of size and
color in Conditions 1 and 2, and low location saliency in
Condition 3). At the same time, another difference between
Conditions 1 and 2, on the one hand, and Condition 3, on
the other, is average reward outcome across the four options,
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FIGURE 9 | Comparison of B-index and P-index between empirical data and model prediction. The B- and P-indices of the empirical data and simulation were

compared on each attribute. Two-dimensional plot of the B-index (x-axis) and P-index (y-axis) with respect to the most contributing attribute: food in Condition 1 and

location in Conditions 2 and 3. The squares and triangles represent the results for empirical data and simulation, respectively. Black, red, and blue represent the

results for Conditions 1, 2, and 3, respectively. All index values were represented as means (± s.e.m.) across all monkeys except Monkey 3 for Condition 3 who

received a different manipulation from the others (see Methods).

and there is some evidence for this effect on choice persistence
discussed further below. Thus, perceptual saliency and/or average
reward outcome may underlie the choice persistence effects, but
either way, choice persistence appears to be relatively unaffected
by selective attention modulation.

Second, our model suggests that, when a choice is made,
learning occurs for both chosen and unchosen options with
different learning rates. According to the model, the action values
of the chosen and unchosen options are all updated trial by
trial based on the prediction error, which signals the difference
between the received reward outcome and the action value
(Schultz et al., 1997). Further, by assuming memory-dependent
learning rates of the value-decay process for unchosen options,
a combination of ever-updating action values of chosen and
unchosen options generates a preference bias and persistent
choices, which correspond to the two key features of sequential
dynamics. In particular, our model shows that a memory-
dependent learning rate for the value-decay process for unchosen
options plays a critical role in generating persistent choice
behavior. The standard reinforcement learning model that
updates the action value of a chosen option accounts for an
underlying control process that guides actions toward a better
outcome (Sutton and Barto, 1998). Although some previous
studies suggested that the value of the unchosen options may
also be updated upon choice (Erev and Roth, 1998; Camerer and
Ho, 1999; Hayden et al., 2009; Abe and Lee, 2011; Li and Daw,

2011; Prévost et al., 2011), the process of updating the value of
unchosen options has not been given enough attention. Along
the lines of our previous study (Jung et al., 2014), the model
presented here, emphasizing value-decay for unchosen options as
an important learning process, suggests that the decay of action
values for the unchosen options results in a greater contrast of
action values between the chosen and unchosen options. This
increased contrast would generate more momentum in choosing
the chosen option again, which in turn leads to persistent
choice behavior.

In contrast to current reinforcement learning choice models
with constant learning rates, our model suggests memory-
dependent learning rates for the value-decay process for
unchosen options. Memory-dependent learning rates imply that
the value of an option with a higher action value decays more
readily when the option is unchosen whereas the value of an
option with a low action value hardly changes. In other words, a
large decay occurs for more-valued options whereas small decay
occurs for less-valued options. Previous studies have suggested
that reward-dependent choice behavior can be explained by
mechanisms of plasticity (Loewenstein and Seung, 2006; Soltani
andWang, 2006). Thus, the value-decay process might be related
to specific mechanisms of synaptic plasticity. A soft-bound
synaptic plasticity mechanism by which strong synapses are
harder to potentiate than weak ones might be related to memory-
dependent learning rates (Fusi and Abbott, 2007; van Rossum
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et al., 2012). Previous studies have suggested that the soft-bound
synaptic plasticity outperforms hard-bound synaptic plasticity
in which learning rate is constant (Fusi and Abbott, 2007; van
Rossum et al., 2012). Considering behavior as a generic outcome
of synaptic plasticity (Loewenstein and Seung, 2006; Soltani and
Wang, 2006), the soft-bound synaptic plasticity may explain why
the choice model with memory-dependent learning rates may
outperform the standard learning model with constant learning
rates in complex decision-making situations. Future studies need
to examine how soft-bound synaptic plasticity may result in
efficient choice behavior.

Having memory-dependent learning rates, it is possible
that the value-decay would guide choice behavior based on
averaged reward outcomes. Our results showed that a model
with these memory-dependent learning rates provides accurate
descriptions for choice behavior by capturing choice persistence
in the behavior. A previous study suggested that memory-
dependent choice behavior is guided by synaptic plasticity based
on the covariance between reward and neural activity, and the
covariance can be approximated with expected reward value
(Loewenstein and Seung, 2006). Thus, in our case, it is possible
that choice behavior with different rewards was guided by
expected reward value of the choice set, which corresponds
to the average reward outcome. This idea is also consistent
with a normative perspective on motivational behavioral control
based on an average reward reinforcement learning model, which
suggests that the average reward rate plays a key role in mediating
vigor of responses and implementation of habitual behavior (Niv
et al., 2006, 2007). This influence can be reflected in tonic activity
levels of dopaminergic neurons (Niv et al., 2006, 2007). Future
studies are needed to clarify neurobiological links between choice
persistence in memory-dependent adaptive choice behavior and
synaptic connectivity.

Although our study has helped clarify the effects of attention
and memory on multi-attribute, multi-option decision making,
there are limitations to address in the future. One limitation
of our study is based on the reward value estimation of
qualitatively different affective rewards such as color preference.
Our behavioral experiment suggested that individual color
preference influenced choice behavior. Compared to other
decision variables such as calorie and effort, there is no natural
corresponding value for each color. Thus, in the model, we
deductively estimated the relative value of colors from their
choice frequencies on the basis of the matching law, by which the
ratio of behavioral responses matches the ratio of outcome values.
However, the accuracy of deductive estimation requires long
choice sequences as well as dissociation from the value for other
attributes such as location. Although the locations of each color
in the behavioral data were counter-balanced across sessions,
the value for each color was still confounded with the value for
each location within a session. This confound would limit precise
estimation for values of qualitatively different rewards. Thus,
future experiments designed to eliminate this problem are needed
for further validation of the model.

Another limitation is that our model does not take into
account other potential perceptual features of the options
in the decision-making process. Visual saliency of choice
options related to their size, color, texture, and distinctiveness

could nudge stimulus-driven bottom-up attention toward a
visually salient option. The accumulation of information about
available options over time could be considered as costs and
possibly influence perceptual decision-making processes when
decision time is limited (Drugowitsch et al., 2012). Although
our previous study has shown that choice persistence is not
directly correlated with specific features of each option including
its size, color, calorie, and rank order, it is still possible
that the overall distinctiveness among a given choice set
influences choice behavior (Jung et al., 2014). Indeed, in our
model, each component of a preference vector is determined
by the overall distinctiveness of each attribute. Thus, future
studies need to clarify the distinct influences of top-down and
bottom-up attention on multi-attribute decisions, the process
of accumulating information, and the relationships between
distinctiveness of attributes and their contributions to choices.

In sum, taking into account influences of attention and
memory on decision making, our model provides a plausible
computational mechanism for the interplay between attention,
memory, and reward in multi-attribute decisions. This
study provides insights into the computational mechanisms
of cognitive dynamics for effective decisions in complex
environments. Our study also points the way for future research
to uncover neural mechanisms for how complex multi-attribute
information is interactively processed in relation to attention
and memory. Such work should lead to the development of
therapeutic interventions for poor decision making, resulting
from disorders such as attention deficit disorder. Future
work based on ours should also continue to help uncover
and characterize the mechanisms by which animals negotiate
complex, real-world environments—a feat not yet realized in
artificial systems.
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