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Time is a continuous, homogeneous, one-way, and independent signal that cannot be

modified by human will. The mechanism of how the brain processes temporal information

remains elusive. According to previous work, time-keeping in medial premotor cortex

(MPC) is governed by four kinds of ramp cell populations (Merchant et al., 2011). We

believe that these cell populations participate in temporal information processing in

MPC. Hence, in this the present study, we present a model that uses spiking neuron,

including these cell populations, to construct a complete circuit for temporal processing.

By combining the time-adaptive drift-diffusion model (TDDM) with the transmission of

impulse information between neurons, this new model is able to successfully reproduce

the result of synchronization-continuation tapping task (SCT). We also discovered that

the neurons that we used exhibited some of the firing properties of time-related neurons

detected by electrophysiological experiments in other studies. Therefore, we believe that

our model reflects many of the physiological of neural circuits in the biological brain and

can explain some of the phenomena in the temporal-perception process.

Keywords: time-related neuron, time-processing circuit, spiking-neuron, synaptic learning, ramp activity, SCT

INTRODUCTION

When we use visual cues to observe the environment, we need to grasp both the time interval
and the sequence of various events. When we wish to understand speech, we need to distinguish
between the arrival times of the audio signals. We need to accurately control the order of execution
of motor commands to skeletal muscle to perform activities such as speaking and playing the
piano. When we solve problems, we also need to plan the chronological order of all sub-goals.
These frequent daily tasks indicate that the capacity for temporal information processing, like other
cognitive abilities such as working memory, must be one of the basic functions of the brain. Clearly,
humans can perceive a broad spectrum of time scales. At present, the neurocognitive community
usually divides the temporal-processing range of the brain into four categories: microsecond-
scale processing, millisecond-scale processing, second-to-minutes-scale processing, and circadian-
rhythm processing (Merchant and Lafuente, 2014). In our work, we focus on millisecond-scale
processing. The processing of millisecond-scale timing information is the most common, and it is
usually accompanied by various types of sensing and motor control. Most research on millisecond-
scale processing concernsmotion control and auditory time perception. Temporal processing in the
hundreds of milliseconds is quite sophisticated. And its neural underpinnings are largely unknown
yet. In a study on motion control, researchers discovered that neurons in the motor cortex convey
information via spike timing far more often than via spike rate (Tang et al., 2014). In addition,
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they found that the amount of information conveyed at the
millisecond timescale greatly exceeds the information available
from spike counts. The findings of this important study have
guided our time-perception model.

There are many tasks used to study perceptual and motor
timing. Perceptual timing is considered as a subjective judgement
of perceived timing and is not defined by movement. However,
motor timing is a kind of temporal process where the temporal
decision is intrinsically tied with movement. Hence, perceptual
and motor tasks represent two different kinds of tasks used to
study temporary-processing mechanisms in our brain. Classic
motor and perceptual timing tasks have been summarized
previously (Merchant and Lafuente, 2014). The task applied in
our work, called the synchronization-continuation tapping task
(SCT), is a kind of motor timing task.

In the current paper, we present a complex network in order
to simulate the synchronization-continuation experiment with
as much biological feasibility as possible. Here, we designed our
model from the perspective of structure just like the work we used
to do (Wei et al., 2017; Hui and Dawei, 2018). We considered not
only complex topologies, but also synaptic plasticity in order to
determine the time interval. And via the considered structure,
we were able to simulate the SCT experiment and obtain the
spiking neuron with a firing rate similar to that observed in
electrophysiological experiments.

Synchronization-Continuation Tapping
Task
In this study, the model we employed was based on experiments
on the millisecond scale. A recent study found that the activity of
cells in the medial prefrontal cortex (MPC) of macaques could
characterize the time course of SCT experiments (Merchant
et al., 2014). In an SCT experiment, the subject first responds
synchronously with a visual or auditory metronome and then
continues to produce the same interval without the metronome
(Figure 1). In addition, they tested the neurophysiological
properties of two macaque MPCs in the SCT experiment and
found that the timing function of the MPC is determined
by different cell populations. These researchers proposed four
different types of neurons, which they labeled as swing cells,
relative-timing cells, absolute-timing cells, and time-accumulator
cells. During the SCT experiment, these neuronal types were
discovered to display different forms of ramp activity, which
encodes the elapsed time since the last motion or the remaining
time until the next tap. This experiment showed that the MPC
has a mechanism for the time-correlated analysis of rhythmic,
time-series, and repetitive signals. This was a sub-second task. It
remains to be elucidated what kind of neural circuit can acquire
the time interval during the synchronization phase and repeat the
action at this time frequency in the continuous phase.

There are several neurophysiological underpinnings of beat-
based timing during SCT investigations (Merchant and Bartolo,
2018). In addition to the ramp activity in SCT mentioned above
(Merchant et al., 2011), another study found that MPC neuronal
populations dynamically represent the duration and serial order
during the SCT (Crowe et al., 2014). It has also been found

FIGURE 1 | Schematic overview of intervals in the synchronization-

continuation tapping task (SCT), showing periodic stimuli (gray line), and push

button responses (black line). Each trial began when the monkey held a lever.

that there is tuning for interval and/or serial order as an orderly
change in the power of transient modulations in β- and γ- bands
across putaminal LFPs during the execution of the SCT (Bartolo
et al., 2014). Recent research shows that the neural population
trajectories during SCT in SMA/preSMA can act as a neural clock
(Gámez et al., 2019). However, the neural code linked to the
temporal production of this neural clock during SCT remains
unknown. Moreover, elucidating the neural underpinnings of
motor timing is critical to understanding how sensorimotor
systems can predict the regular pulse and then respond with
temporal precision.

The two goals of the current paper are as follows: (1)
to establish a network circuit model of spiking neuron to
simulate pyramidal cells and interneurons in order to achieve
the time interval learning of the synchronous phase and the
spontaneous follow-up function of the continuous phase in the
SCT experiment; and (2) to simulate the SCT experiment in
macaques by implementing the ramp activity of the four different
neuron types proposed previously by Merchant et al. (2011).

Ramp Activity
One of the most important tasks of the brain is to anticipate
upcoming events in order to prepare for behavior, anticipate
reactions, and plan. The phenomenon of ramping firing
rates prior to behavioral responses is commonly observed in
behavioral neuroscience, and—in many cases—is anticipatory
in nature.

Ramp activity, which can be defined as delayed activity that
steadily increases between two subsequent stimuli, has been
associated with the anticipation of various events, such as motor
responses (Constantinidis and Steinmetz, 1996), the end of the
delay interval (Romo et al., 1999; Reutimann et al., 2001), or the
identity of the sample or match stimulus in delayed matching-
to-sample (DMS) tasks [retrospective vs. prospective coding
(Rainer et al., 1999; Mongillo et al., 2003)]. The increasing
delayed activity can also be associated with reward expectation,
such as that found in the prefrontal cortex (Watanabe, 1996),
striatum (Kawagoe et al., 1998; Hassani et al., 2001), thalamus
(for review, see Schultz, 2000; Komura et al., 2001), and motor
cortex (Merchant et al., 2004). Some experiments have addressed
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the question of how a change in the duration of the delay
period is reflected in the time-varying delay activity (Kojima and
Goldman-Rakic, 1982; Komura et al., 2001; Brody et al., 2003).
In these experiments the build-up of activity is stretched in time,
rather than shifted. The stretching causes the slope of the activity
profile to decrease with the length of the delay period. This is
in agreement with the scaling property of interval timing found
in psychophysical studies on humans (Rakitin et al., 1998) and
has recently confirmed by in vivo experiments in monkeys (Leon
and Shadlen, 2003). When the duration of a time interval is
estimated, the error distribution scales linearly with the length
of the interval.

Prediction requires animals to extract and exploit the
temporal structure of their world, or the temporal relationship
between environmental events or their own behavior and
associated effects. Prediction is seen as a symbol of expectation
in time-perception tasks. Ramp activity, sometimes referred to
as climbing activity, is considered to be prospective. Recordings
from different areas in the cortices of monkeys suggest the
existence of neurons representing time by ramp (climbing)
activity, which is triggered by an initial event and peaks at the
expected time of a second event, such as a visual stimulus and a
reward. The activity of this neuron is often a good indicator of
the duration of the two events. In studies provided by Leon and
Shadlen (2003), we see that different slopes of climbing activity
can be used to calibrate different time intervals. This not only
reveals that the slope of neuronal climbing activity can be used to
characterize time, also that different time intervals can be learned
by determining the slope of the climbing activity.

Structure of This Paper
The remainder of this paper details our research as follows:
related works are presented in section Related Work. Section
A Spiking-Neuron Circuit For Temporal Signal-Processing
describes our spiking-neuron circuit for temporal signal-
processing and the synaptic learning algorithm we used. In
this section, we also introduce the structure of our neural
circuit in detail. In section Computational Simulation Results,
we compare the simulation results of our computational model
with biological results found in SCT experiments from previous
studies and explain some electrophysiological phenomena.
Finally, we present conclusions and discuss our research in
section Conclusion and Discussion.

RELATED WORK

There are many computational models for time-dependent
signal processing, including pacemaker accumulator models
(Treisman, 1963), state dependent network models (Buonomano
and Maass, 2009), long short-term memory models(LSTM)
(Rivest et al., 2010), time-adaptive drift–diffusion models
(TDDM) (Rivest and Bengio, 2011), and recurrent synaptic
networks (Mendoza et al., 2018).

The pacemaker accumulator model is a traditional timemodel
proposed many years ago (Treisman, 1963), the concept of which
was derived from mechanical clocks. This model assumes that
there is a pacemaker or an oscillator in our brain that sends pulses

consistently at a certain frequency, and these are received and
recorded by an accumulator. Within this framework, the pulse
count provides a linear metric of time, and temporal judgments
rely on comparing the current pulse count with that of a reference
time. This process becomes the foundation for characterizing
time in this model. The pacemaker accumulator model has
proven to be effective in providing a framework for many
psychophysical data related to time processing (Church, 1984;
Meck, 2005). The downside of this model, however, is that it lacks
biological feasibility. Mounting evidence indicates that clock
models are not entirely consistent with the experimental data (for
reviews see Mauk and Buonomano, 2004; Buhusi et al., 2005).

The state-dependent network model recently proposed by
Buonomano et al. differs from these above models. This model
is able to tell and encode time as a result of dynamic change
in the state of spiking neural networks. It is based on the
assumption that there is an interaction between each sensory
event and the current state of the network, forming a network
state pattern that naturally encodes each event in the context
of recent stimuli—similar to the interaction between different
ripples generated by each raindrop falling in a pond instantly
or previously. State-dependent models have the powerful ability
to characterize time since they are inherently high dimensional.
However, the deficiency of this model is that it encodes time via
the firing rate of each neuron in the model, which is contrary
to the result of Buonomano’s motor-control experiment, in which
the spiking time conveyed more information than the spiking
rate [millisecond-scale motor encoding in a cortical vocal area].

In addition, LSTM and temporary difference learning (TD)
algorithms have been used to propose a small neural network
based on artificial neurons that can encode a specific time into a
ramp-like activity (Rivest et al., 2010). Although they introduced
many biological concepts into their model, the basis of the model
is the artificial neuron which is far from the bioneuron compared
to the spiking neuron.

TDDM was independently proposed by Rivest and Bengio
(2011) and Simen et al. (2011) which utilizes a simple and
more abstract neural model based on a drift-diffusion process of
climbing neural activity. The drift-diffusion model is often used
in decision-making under noisy stimuli. This work extends it by
developing a learning rule so that their model can be used to learn
time intervals rapidly. Additionally, Weber’s law for time can be
explained in this study.

There is another excellent model. Recently, a kind of model
called a recurrent synaptic network has been proposed (Mendoza
et al., 2018). It simulates a cortical ensemble and makes use of
paired-pulse facilitation and slow inhibitory synaptic currents to
not only produce interval selective responses but also to follow
the biases and scalar properties (Pérez and Merchant, 2018).

In addition to the millisecond-range time-processing model
mentioned above, there are several time-processing models
in seconds to minutes range such as striatal beat frequency
model (SBF), which is proposed by Matell and Meck (2004).
SBF suggests that in the thalamo-cortico-striatal loops, the
coincidence detection of neuronal oscillations in the cortex is
the neural basis for the characterization of time information.
Cortical neurons will act as oscillators and the striatum located
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in the basal ganglia can detect the oscillation pattern of cortical
neurons. At the beginning of time interval processing, the release
of dopamine in the brain prompts timing and synchronizes
cortical oscillations, and resets the state level of striatum spinous
neurons. The cortical oscillators oscillate a fixed frequency
throughout the criterion interval. At the end of time interval
processing, dopamine is released again, which changes the
synaptic connections of spinous neurons, and forms the neural
representation of time interval.

A SPIKING-NEURON CIRCUIT FOR
TEMPORAL SIGNAL-PROCESSING

Neuron Model
In this paper, a simple spiking neuron model known as the
Izhikevich neuron model was used to simplify the Hodgkin–
Huxley (HH) model into a 2-D system with sufficient biological
plausibility and high computational efficiency (Izhikevich, 2003).
The form of the ordinary differential equation is shown in
Equation 1 where V represents the membrane potential of the
neuron, u represents a membrane recovery variable, and a, b, c,
and d are dimensionless parameters. We have the following:

dV

dt
= 0.04V2

+ 5V + 140− u+ I (1)

du

dt
= a(bV− u)

If V ≥ 30, then

{

V ← c
u ← u+ d

In this study, typical values of the parameters for an excitatory
neuron were: a = 0.02, b = 0.2, c = −65, and d = 8. Typical
values of the parameters for an inhibitory neuron were: a = 0.1,
b = 0.2, c = −65, and d = 2. The firing mode of the excitatory
and inhibitory neurons we utilized in our model are shown
in Figure 2.

In order to adequately describe the relationship between the
firing rate of neurons and the time interval, we also introduce
another kind of neuron model, as shown in the following
equation (the equation from Gavornik et al., 2009).

γm
dVi

dt
= −Vi + Iext,i +

N
∑

j=1

LijVj (2)

In the equation, the firing rate of the single neuron j is
approximated by an activity variable V, γm is an intrinsic
neuronal time constant, Iext,iis the external feed-forward input to
neuron i and Lij is the weight connecting the presynaptic cell j to
the postsynaptic cell i.

Time-Adaptive Drift-Diffusion Models
(TDDM)
In order to realize time adaptation, we referred to time-adaptive
drift-diffusionmodels (TDDM). This model is also used to reflect
the ability to learn the timing of events, but it is a simpler
and more abstract neural model. TDDM takes advantage of the

drift-diffusion model, commonly used in decision simulations,
to encode specific time intervals by accumulating evidence of
elapsed time with the drift rate (Rivest and Bengio, 2011). In
TDDM, the memory of the time interval to be learned is stored
in the drift rate, so that it can control the signal’s slope as time
elapses. This signal changes over time in a form very similar to the
ramp activity observed in the MPC of macaques. Therefore, we
believe that TDDM can be used to simulate the ramp activity of
some neurons in theMPC, which can be used as ourmodel’s main
learning interval mechanism for synaptic learning algorithms.

In the TDDM implementation process, the semaphore φ (t) is
0 at the beginning of the stimulus, and continuously accumulates
as time passes. The overall process is similar to an accumulator,
which integrates continuously over time with a drift rate w and
noise ε(t). The main function of the model is expressed in the
following form, which is similar to the drift-diffusion model:

φ (t) = φ(t− 1)+ w△ t+ ǫ(t) (3)

Where 1t is the time step and ε(t) is the Gaussian noise
with a mean value of 0 and variance σ 2 [N(0, σ 2]. It is also
stipulated that when the amount of information reaches its peak,
a certain reward will be given, leading to the renewal of the
drift rate. By constantly updating w through the experiments,
our information volume can reach one near the target interval.
Obviously, the learning process of this model involves two
situations (as shown below).

As mentioned previously, ramp activity is considered to
be prospective and can be used to express expectations of
upcoming events. Here we use reward to represent the upcoming
event, while the moment the semaphore φ(t) reaches one is
called expected.

In the first cases (shown in Figure 3A), reward occurs earlier
than expected, and the drift rate w toward the observed interval
can be corrected at once using Equations (4) and (6) to increase
the slope of the accumulator when reward occurs. We have
the following:

△ w (n) = w(n)
(1− ϕ (t))

ϕ(t)
(4)

In the second case (shown in Figure 3B) is that in which
expectation occurs earlier than the reward, and the drift rate w
toward the observed interval can be corrected using Equations
(5) and (6) to reduce the slope of the accumulator since φ reaches
one. The rate change for that trial1w(n) is accumulated until the
next reward occurs.

△w (n, t) = △w (n, t−1)−(w (n)+△w (n, t− 1))2 △ t (5)

w (n+ 1) = w (n)+ α △ w(n) (6)

where n denotes the number of training experiments, and α is the
learning rate.

In the original paper (Rivest and Bengio, 2011), the above
model was considered relatively simple and abstract. In order
to apply it to our spiking neural network, we assume that the
semaphore φ in the TDDM was the activity variable (Vi) of the
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FIGURE 2 | Two types of spiking patterns: (A) regular spiking for excitatory neurons; (B) fast spiking for inhibitory neurons.

FIGURE 3 | Schematic overview of one tapping interval in the synchronization-continuation tapping task (SCT), showing periodic stimuli (vertical dashed lines), and

preparation signal for push button responses (vertical solid lines).The inclined dash line represents the desired trajectory; The inclined solid line represents actual

trajectory (The figure is modified from Rivest and Bengio, 2011).

spiking neuron in Equation (2), thus establishing Equation (2)
and (3), which is as follows:

γm (w△ t + ε (t)) = −Vi + Iext,i +

N
∑

j=1

LijVj (7)

According to the above equation, the relationship between the
drift rate and the weight of neural connections can be established.
Therefore, the weights of the spiking neuron can be updated via
the drift-rate-updating method described above in Equation (4)
and (6).

In summary, the TDDM is a fast-learning model, and
due to its drift feature, we can apply it to simulate ramp
activity. The modified TDDM algorithm, like any other synaptic
plasticity algorithm, can be explained as being affected by
various neurotransmitters in the process of neuronal firing, thus
dynamically adjusting synaptic weights.

There exists some other models to simulate ramp activity.
Simen’s work (Simen et al., 2011) has proposed that a specific
form of diffusion model arises from simple assumptions about
neural integration to achieve ramp activity. In this study, the
model incorporates a rapid duration-learning procedure and
accounts for a variety of physiological and behavioral finding by
the diffusion model. The ideas of this research are similar to ours.

However, there are substantial differences in the details between
our work and their work. The form of the individual neuron
model for our work is the ordinary differential equation, but for
theirs is non-homogeneous Poisson spike generator. In addition,
their diffusion model of interval timing is established at a high
level, while ours is located in the connection between neurons.

Neural-Circuit Model
Our neural circuit model was designed based on previous
study (Merchant et al., 2011). In that study, electrophysiological
SCT experiments were performed, in which five types of time-
related cells were discovered in the MPCs of rhesus macaques,
including motor cells, swing cells, relative-timing cells, absolute-
timing cells, and time-accumulator cells. An obvious feature of
these cells is ramp activity. It can be seen from the discharge
rate diagram of the various neuronal types presented in the
right column of Figure 10 that all neurons—with exception of
motor cells—will change their type of activity when changing
the target interval. It can be observed that these cell types
are all involved in the task of temporary processing. The
conclusions from the Merchant et al. paper can be summarized
as follows:

Relative-timing cells display monotonically rising ramp
activity characteristics after time measurement begins. When
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FIGURE 4 | Structure of absolute-timing groups. The pyramidal neurons in different groups can last for different interval durations.

FIGURE 5 | The microcircuit for swing cells which represent time interval.

they reach the threshold value, they will cause motor control, and
then rapidly decline.

• Relative-timing cells interact with absolute-timing cells and
their activity becomes locked at some point, resulting in a
balanced loop mechanism for executing motor sequences with
tight time structures.
• Neuronal activity of an absolute-timing cell exhibits an

increase in its up-down profile of activation across different
intervals. And they found that the duration of the up-down
cycle of activity in absolute timing cells is associated with
subjective time.
• The discharge diagram of a time-accumulator cell is similar to

that of absolute-timing cells which represents the passage of
time since the previous movement. And in time-accumulator
cells, there is an additional increase in peak magnitude as a
function of elapsed time. Thus, their slopes are similar across
different target time intervals.

• As the target interval increases, the discharge period of swing
cells increases. In addition the firing rates of swing cells
always decrease and then increase within a target interval. We
consider that the effect of swing cells may be to represent the
interval length.

According to the above points, we assume that the entire neural
circuit in the brain has the following time-processing procedure.
First, absolute-timing cells are activated by the synchronization
signal, and then the pulse-signal is simultaneously issued by the
absolute-timing groups of various time scales. Next, due to the
impetus of the absolute-timing cells, ramp activity of the relative-
timing, and time-accumulator cells begins. In the meantime, in
order to learn and reproduce the time interval, some synaptic
plasticity (like the TDDM) is required in the connections between
the absolute-timing and relative-timing cells. Finally, swing cells
can represent the interval length through the learned interval
from the relative-timing cells.

As shown in Figure 4, each absolute-timing group receives
external stimuli simultaneously, with the differences among
groups consisting of the weights of the excitatory and inhibitory
connections between pyramidal neurons and interneurons. By
setting various weights for different absolute-timing groups the
firing rate of pyramidal neurons in each group can exhibit
discharge curves similar to those found in a previous study
(Merchant et al., 2011). In our design, the absolute-timing groups
spanned different interval durations, which were not affected by
the target interval.

Figure 5 shows the microcircuit we designed for swing cells
based on the summary above. In Merchant’s paper, there is little
information about swing cells, leaving us to infer that the effect of
swing cells may be to explicitly represent the interval duration
on the basis of the discharge curve measured from them in
the electrophysiological experiments. From the right column of
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FIGURE 6 | Architecture of the neural circuit in this study. In the figure, triangles represent pyramidal cells and circles are interneurons. These neurons, with the

exception of relative-timing cells, were all simulated using the Izhikevich neuron model.

Figure 10D, a period can be represented by the decrease and
increase of the firing rate. That is, the high firing rate represents
the start and the end of the duration. Similarly, the microcircuit
is composed of a pyramidal neuron and an interneuron which
is called swing cell. In the discharge diagram of swing cells, the
firing rates decrease after the tap with lower and lower slopes and
then increase when excitability becomes stronger than inhibition.
Thus, the microcircuit receives two inputs, one (the blue line)
from resetting cells and the other (the orange line) from time-
accumulator cells. After tapping, resetting cells are activated to
inhibit swing cells. At the same time, time-accumulator cells are
also activated to excite the pyramidal neurons. As time passes,
the inhibitory effect becomes weaker and the excitatory effect
becomes stronger.

The architecture of our model is presented in Figure 6. The
gray lines represent the input of external light or sound stimuli
as synchronous signals to the input cells which lasted for only
100ms. The red lines are the output connections from input
cells. The input cells simultaneously activate absolute-timing
cells that characterize different time intervals, and each absolute-
timing group forms a microcircuit with interneurons (Figure 4),
so that the slope of the ramp activity in each absolute-timing
group is different. Since the motor cells perform a tap each
time the input cells receive a synchronous stimulus during the
synchronization phase of the SCT, there are connections between
the input cells and the motor cells, as represented by the red
lines. The green lines show that each group of absolute-timing

cells simultaneously transmits spikes to the relative-timing cells,
such that their firing rate continues to rise. As summarized
above, there are also connections between absolute-timing cells
and time-accumulator cells due to the ramp activity of time-
accumulator cells which is similar to that of relative-timing
cells. In order to make their slopes the same and their peaks
rise as the target interval increases, the synaptic connections
between the absolute-timing and time-accumulator cells must be
different from those between the absolute-timing and relative-
timing cells. The orange line shows the accident preventing
operation cell we set up in order to prevent the motor cells
from being activated prematurely by the connection represented
by the purple line. Since the firing rate of swing cells has a
down-up form, we constructed a microcircuit with the pyramidal
neurons. When tapped, they receive the inhibitory stimulus of
the resetting cells, and the discharge rate decreases. As time
passes, the enhancement of the excitatory stimulation of the
pyramidal cells in the microcell circuit leads to an increase
in the firing rate of the swing cells, and the slope becomes
less steep as it approaches the target interval. The pyramidal
cells in the microcircuit receive the stimuli from the time-
accumulator cells. The pink line shows that there is a threshold
for the relative-timing cells. When the ramp activity reaches
this threshold, we hypothesize that it is the achievement of the
expectation time that causes the relative-timing cell to activate
the motor cell, causing a tapping action. The light blue lines
show that during the continuous phase of the SCT, since the
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FIGURE 7 | Discharge-rate curves of all neuronal types for the 500ms experiment in an SCT time interval with our model. In the absolute-timing cell diagram, there

are five firing rate curves of the pyramidal neurons in five absolute-timing groups. Due to the stimulus signal, the peak firing rate of the relative-timing cell in the

synchronous phase that is lower than that in the continuous phase. The discharge rate of the swing cell represents a cyclical change from down to up. The motor cell

was activated either after the external synchronization signals appeared or the firing rate of the relative cells reached the threshold.

FIGURE 8 | Firing rate diagram (after smoothing) of relative-timing cells during several training sessions. Here the interval length is 400ms. The green-dashed lines

represent the occurrence of external synchronization signals and the red-dashed lines indicate the desired tapping time points in the continuous phase.

external synchronous stimulus no longer exists, the motor cells
need to act as synchronous signals via their connections with
the absolute-timing cells. Meanwhile, in order to restart the

period, the resetting cell—which is connected with the relative-
timing, time-accumulator, and swing cells (represented by the
blue lines)—should be activated by the motor cell.
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The relationship between our model and the TDDM can be
easily observed from the connection between the relative-timing
and absolute-timing cells. As concluded above, for different
target time intervals, the discharge rates of relative-timing cells
will peak at different slopes. The process of increasing the
firing rate corresponds to the process of accumulating evidence
of time passing in the TDDM. Using the TDDM, we can
achieve a kind of synaptic plasticity learning to fit the duration
between the start and end of the ramp activity to the target
interval time. Here, we have made some improvements to the
TDDM. Compared with the original TDDM, the firing rate
of the relative-timing cells can be regarded as the semaphore
φ(t). Therefore, the peak of φ(t) is no longer one but is now
the threshold of the firing rate. The initial weights between
absolute-timing cells and relative-timing cells are set to the
appropriate values. When the firing rate of relative-timing
cells reaches the threshold earlier than the next synchronous
signals, the weights will be tuned using TDDM until the
next synchronous signals appear. Similarly, when the firing
rate comes to the threshold later than the next synchronous
signals, the weights will be immediately corrected using TDDM.
Thus, our model can transform the collection of evidence of
time passing into the accumulation of the firing rate by the
synaptic weight.

COMPUTATIONAL SIMULATION RESULTS

With the SCT experiments, we realized the learning of the time
interval via the neural circuit we designed and we reproduced
the discharge patterns of various neuronal groups described
previously (Merchant et al., 2011).

In our experiments, we examined three time intervals— 400,
500, and 600 ms—and set the threshold of the relative-timing

cells to 20Hz. We considered an SCT experiment to be a training
process in which there was a synchronous and a continuous
phase. There were four taps during the synchronization phase
and we made adjustments to the synaptic weights in the
circuit three times (applying the TDDM algorithm). The
continuous phase was based on all of the previous weight
adjustments, and the tapping of the time interval to be learned
was reproduced when there was no external synchronization-
signal stimulus.

One SCT experiment was one training process, and the
discharge rate curve of each neuronal type in one experiment
is shown in Figure 7. It can be seen that the relative-
timing cells did not reach the threshold at the target
time when a tap was performed in the synchronization
phase, and the synaptic-weight adjustment was carried out
three times in order to make the discharge rate closer
to the threshold of 20Hz. Obviously, the implementation
of our synaptic-learning algorithm was beneficial to our
time-learning model. After several training processes, the
synaptic weights will stabilize within a certain range. The
duration from a firing rate of 0 to the firing-rate peak
of the relative-timing cell was our target duration. It is
reasonable that there was a delay between the activation
time of the motor cell and the time at which either the
external stimulus appeared or the firing rate of relative cells
reached threshold.

In our circuit, the relative-timing cell is considered to be
the key to indicating the desired interval. The periodicity
exhibited by each of the other neuronal groups is driven
by the relative-timing cells. The discharge diagram of the
relative-timing cells during several training sessions is
shown in Figure 8. As the number of training sessions
increase, the peak of the relative timing cells gets closer

FIGURE 9 | Line graph of four taps times in the continuous phase of the 400ms experiment.
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FIGURE 10 | Comparison of the firing rates of all of the neurons in our model with results from electrophysiological measurements (Merchant et al., 2011). The left

column is the discharge curve (smoothed) of the neurons in our model. The right column shows the discharge curves for all types of neurons from electrophysiological

experiments. (A–D) respectively, illustrate the results for absolute-timing cells, time-accumulator cells, relative-timing cells, and swing cells (The right column of the

figure is modified from Merchant et al., 2011).

to the desired tap moment (red-dashed line). Figure 9

is a plot of the times the model learned. In the figure,
the points of the continuous phase of each training
session have been fitted with a straight line. It can be
observed that our model’s ability to learn the interval
duration improved.

As mentioned above, four types of cells related to time
processing have been described previously (Merchant et al.,
2011). These four types of neurons also exist in the neural circuits
we designed. We compared them with the electrophysiological
measurements of the firing patterns of neurons as shown in
Figure 10. It is obvious that the neurons in our neural circuits
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Algorithm 1: The flow of our models which interprets the architecture shown in

Figure 6.

1: Initialize: S← the parameters of all spiking neurons;

W← the weights of each other neuron in our neural circuit;

T← An array which contains the time when the external stimulus begins

to appear;

r← drift rate;

t← time(ms)

Iexternal ← the current of external stimulus;

Vthreshold ← the firing rate threshold of relative-timing cells for TDDM

Vrelative ← the firing rate of relative-timing cells

2: while t>0 do

3: if t in synchronous phase then

4: if t in T then

5: Iexternal stimulates the input cells for only 100 ms(gray line)

6: if t!=0 AND t in T then

7: if Vrelative < Vthreshold then

8: Implement the Equations 4 and 6 to modify r.

9: else

10: Implement the equation 6 to modify r.

11: end if

12: And then according to equation 7 update w in the connections

between absolute-timing cells and relative-timing cells.

13: end if

14: else

15: if Vrelative > Vthreshold then

16: Implement the equation 5 to obtain 1r:

17: end if

18: end if

19: end if

20: According to the architecture in Figure 6, compute all the neurons.

21: Compute the state of the input cells using equation 1.

22: Compute the state of absolute-timing cells using equation 1.

23: Compute the state of the time-accumulator cells using equation 1.

24: Compute the state of the relative-timing cells using equation 2.

25: Compute the state of the motor cells using equation 1.

26: Compute the state of the other cells using equation 1.

27: end while

exhibit periodicity and produce discharge curves similar to those
observed in physiological experiments. In the left column of
Figure 10A, the curves represent the firing rate of five absolute-
timing groups which increase with different climbing rates
for each color and span different time intervals. Similar to
the right column of Figure 10B, the time-accumulator cells
we designed increased with rising at the same climbing rates
as their electrophysiological counterparts, although the peaks
differed for different time intervals. In order to be consistent
with the discharge rate diagram of relative-timing cells in the
reference, the figure in the left column of Figure 10C was
plotted in the same form. It can be seen that our relative-timing
cells exhibited the same features as those in the discharge rate
diagram. Figure 10D shows the firing rates of the swing cells
in our model and those of the electrophysiological experiment.

FIGURE 11 | The relationship between temporal variability and the produced

duration in our model.

Although there are some differences in the curves of the two
graphs of Figure 10D, our swing cells retained the characteristics
of the bio-cell discharge rate. One period of the neurons we
designed in the left column of Figure 10D can represent the
target-time interval; the amplitude of the curve increases as the
target interval duration increases. We believe that the reason
for the difference between the curves of our experimental
results and those of electrophysiological experiments has to
do with the fact that our results were somewhat smoothed
and also that the time-window selection used to calculate the
discharge rate of neurons in our model differed from that used
in the electrophysiological experiments. Therefore, we consider
that the differences observed in the curves of Figure 10D

are acceptable.
Finally, we tested our model to check whether it satisfies

an additional biological property called the scalar property
(Gibbon et al., 1997), which tells us that the uncertainty is
proportional to the interval being estimated. This property has
been interpreted to indicate that the variability of an underlying
temporal distribution should exhibit a constant coefficient of
variation (σ/µ). Figure 11 shows that repeated the experiment
eight times and recorded the mean of the learned duration in the
400ms experiment, 500ms experiment, and 600ms experiment
receptively. According to the figure, the scalar property was
followed by our model, which further confirms the biological
interpretability of our work.

CONCLUSION AND DISCUSSION

In this study, in order to explore a possible time-processing
mechanism in the human brain, we examined the time
processing behind the electrophysiological phenomena
observed in the SCT experiment (Merchant et al., 2011),
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FIGURE 12 | The distribution hypothesis of our neuron-circuit model. We hypothesize that the input cells used as the cue cells should reside in the superficial layers

which receive the stimuli from the outside environment. Additionally, the motor cells used as the output cell are suitable for layer V, where the cells transmit out signals

for movement. Finally, layer III is always used to integrate the information, so the four kinds of ramp cells should reside in layer III.

and we presented a new neural circuit based on specific
neural-connection structures utilizing a TDDM algorithm
as the synaptic learning mechanism. This neural circuit was
successful in determining time intervals in SCT experiments
and in expressing the time intervals learned, indicating that
our proposed method is reasonable and effective. Although
computational simulation results— which are often more
idealized— tend to differ from those of electrophysiological
experiments, our simulation experiments and physiological
test results were completely consistent with those of
electrophysiological experiments. This suggests that the
circuit we designed is similar to the endogenous circuit of the
macaque brain in terms of achieving this particular timing and
periodicity operation.

In neurobiology, the cerebral cortex can be divided into
different regions according to different functions. The
hierarchical structure of each brain region is essentially
the same, and it is composed of six layers of neurons:
molecular layer, external granular layer, external pyramidal
layer, internal granular layer, internal pyramidal layer,
and multiform layer (Le Be’, 2007).These six layers of
neurons are arranged vertically in each brain region.
According to previous literature (Merchant et al., 2014),
it is known that MPC is more active in SCT experiments.
Additionally, there are many time-related cells in the
MPC. We believe that the neurons in the neural circuit we
designed may also be distributed in the six layers of the
MPC (Figure 12).

The most significant difference between our model and
previous simulations is that our model is more biologically

interpretable. Compared with the LSTM model (Rivest et al.,
2010), the drift diffusion model during the SCT (Merchant
and Averbeck, 2017), and time-adaptive drift–diffusion model
(Rivest and Bengio, 2011), spiking neuron which models
the real biological neurons are used in our model. And
Recreating the discharge rate curves observed and scalar
property in electrophysiology is another advantage of our model
compared with pacemaker accumulator models (Treisman,
1963) and state dependent network models (Buonomano and
Maass, 2009). The downside of our model is that it can
only learn very precise interval durations. In our model,
we make use of TDDM algorithm, which is considered
to be a fast and accurate time-learning mechanism for
determining interval durations. Although humans can learn
target time, there must exist some biases between the time
learned and target time. Hence, the high accuracy which
is the advantage of TDDM algorithm cannot be interpreted
biologically. A certain degree of biases are necessarily presented
in human experiments. We believe our model can become more
biologically plausible by adjusting the parameters of TDDM
algorithm such as ε(t).

Knudsen et al. (2014) found the same four types of
ramping cells in the primary motor cortex in a single
interval reproduction task in rats. Their work provided us
more information to improve our model in the future. In
addition, we will improve our learning-mechanism algorithm
to satisfy additional biological properties and be flexible in
more temporal-processing experiments. And now this work
is based on the property called ramp activity, but future
studies will explore other properties as well. We believe
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that as more and more time-related biological properties are
adopted, our model will become closer to endogenous biological
processing mechanisms.
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