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Neural network simulation is an important tool for generating and evaluating hypotheses

on the structure, dynamics, and function of neural circuits. For scientific questions

addressing organisms operating autonomously in their environments, in particular where

learning is involved, it is crucial to be able to operate such simulations in a closed-loop

fashion. In such a set-up, the neural agent continuously receives sensory stimuli from

the environment and provides motor signals that manipulate the environment or move

the agent within it. So far, most studies requiring such functionality have been conducted

with custom simulation scripts and manually implemented tasks. This makes it difficult for

other researchers to reproduce and build upon previous work and nearly impossible to

compare the performance of different learning architectures. In this work, we present

a novel approach to solve this problem, connecting benchmark tools from the field

of machine learning and state-of-the-art neural network simulators from computational

neuroscience. The resulting toolchain enables researchers in both fields to make use

of well-tested high-performance simulation software supporting biologically plausible

neuron, synapse and network models and allows them to evaluate and compare their

approach on the basis of standardized environments with various levels of complexity.

We demonstrate the functionality of the toolchain by implementing a neuronal actor-critic

architecture for reinforcement learning in the NEST simulator and successfully training it

on two different environments from the OpenAI Gym. We compare its performance to a

previously suggested neural network model of reinforcement learning in the basal ganglia

and a generic Q-learning algorithm.

Keywords: closed-loop simulation, reinforcement learning, spiking neuronal networks, virtual environments,

computational neuroscience

1. INTRODUCTION

Simulation is a key component of modern neuroscience, constituting a third methodological pillar
along with experiment and theory. Its uses include, but are not limited to, validation of theory,
generation of hypotheses, production of surrogate data for data analysis tools, and discovery of
structural and dynamical constraints for functional models. Thanks to a variety of initiatives,
researchers now have access to well maintained, high performance simulators for all scales of
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neural systems from molecular simulations (e.g., STEPS; Wils
and De Schutter, 2009) over complex neuron (e.g., NEURON,
Carnevale and Hines, 2006; GENESIS, Bower and Beeman, 2007)
and network models (e.g., NEST, Gewaltig and Diesmann, 2007;
BRIAN, Goodman and Brette, 2009; NENGO, Bekolay et al.,
2013, SINABS, Sheik and Liu, 2019) to whole brain simulations
using neural fields (e.g., TVB, Sanz Leon et al., 2013).

In the realm of spiking neural networks, development of
simulators has been largely driven by two viewpoints: the
physical, concerned with the dynamics of individual neurons
and networks of neurons (e.g. relationship of correlation
structure to connectivity, bifurcation landscapes), and the
electrophysiological, concerned with the response of neurons
and networks to stimuli (e.g. PSTHs, response variability). Thus,
spiking neural network simulators provide good support for
constructing structured networks of neurons with a variety of
dynamics, applying arbitrarily complex stimuli and recording the
evolution of dynamic variables for later analysis.

However, restricting our inquiries to the dynamical and
transformational properties of neuronal networks neglects large
classes of fundamental and exciting neuroscientific questions. In
particular, investigations of embodied cognition, of organisms
operating autonomously in an environment and learning how to
optimize their behavior within it, require a different approach.
Firstly, it is crucial to simulate agents that interact with their
environments, thereby actively shaping their future sensations
rather than merely passively consuming experimentally provided
stimuli (see e.g., Wilson, 2002). This necessitates a closed-loop
set-up, in which the neuronal network can be conceived of as
an autonomous agent within an environment. The neuronal
network receives sensory stimuli from the environment, which
alter its network dynamics. The resulting activity of the network,
or of specific subnetworks of it can be interpreted as motor
commands which alter the agent’s configuration with respect
to its environment (e.g., rotation, lateral movement) or the
configuration of the environment itself (e.g., operation of levers
or buttons). The change in configuration brings about a change
in the sensory stimuli, and thus the neuronal network interacts
with the environment in a continuous cycle. Depending on
the scientific question, the network activity can also drive
plasticity processes in the network, causing alterations in its own
configuration, and thus in its response to sensory stimuli. In this
way, new behavior can be learned through interaction with the
environment, rather than through extensive exposure to labeled
training data.

Secondly, it is important to establish a set of standardized
benchmarks which allow alternative models to be compared with
each other and good models to be improved and extended.
With regard to this latter point, a comparison of the progress
of the fields of machine learning, and learning in neuronal
networks, provides a useful illustration. The last decade has
witnessed major progress in the field of machine learning,
moving from small-scale toy problems to large-scale real-world
applications including image (Krizhevsky et al., 2012) and speech
recognition (Hinton G. et al., 2012), complexmotor-control tasks
(Mnih et al., 2016), and playing (video) games at super-human
performance (Mnih et al., 2015; Silver et al., 2016). This progress

has been driven mainly by an increase in computing power,
especially by training deep networks on graphics processing units
(Raina et al., 2009), and conceptual breakthroughs like layer-
wise pretraining (Hinton and Salakhutdinov, 2006; Bengio et al.,
2007) or dropout (Hinton G.E. et al., 2012). Even so, this rate
of progress would not have been possible without the wide
availability of high-performance ready-to-use tools, e.g., Torch
(Collobert et al., 2002), Theano (James et al., 2010), Caffe (Jia
et al., 2014), TensorFlow (Abadi et al., 2016), and standardized
datasets and environments for benchmarking, such as theMNIST
(LeCun et al., 1998), CIFAR (Krizhevsky and Hinton, 2009),
and ImageNET (Deng et al., 2009) datasets, and the MuJoCo
(Todorov et al., 2012), ALE (Bellemare et al., 2015), and OpenAI
Gym (Brockman et al., 2016) toolkits. While ready-to-use tools
allow researchers to focus on important aspects rather than basic
implementation details, standardized benchmarks have guided
the community as a whole toward promising approaches, as
for example in the case of convolutional networks through the
ImageNET competition (Russakovsky et al., 2015).

Similarly, researchers in the field of computational
neuroscience have benefited from the increase of computational
power and achieved many conceptual breakthroughs over the
last decade, with a plethora of new neuron, synapse and network
models being developed. As mentioned above, a variety of
simulators are available to the computational neuroscientist, yet
so far no generally accepted set of benchmarks exist (but see
Gerstner and Naud, 2009).

One particular area in which the lack of standardized
benchmarks is apparent is research into reinforcement learning
(RL) in neurobiological substrates. Inspired by behavioral
experiments, RL is concerned with the ability of organisms to
learn from previous experiences to optimize their behavior in
order to maximize reward and avoid punishment (see e.g., Sutton
and Barto, 1998). RL has a long tradition in the field of machine
learning which has led to several powerful algorithms, such
as SARSA and Q-learning (Watkins, 1989). Similarly, a large
variety of neurobiological models have been proposed in recent
years (Izhikevich, 2007; Potjans et al., 2009, 2011; Urbanczik and
Senn, 2009; Vasilaki et al., 2009; Frémaux et al., 2010; Frémaux
et al., 2013; Jitsev et al., 2012; Friedrich et al., 2014; Rasmussen
and Eliasmith, 2014; Aswolinskiy and Pipa, 2015; Baladron and
Hamker, 2015; Rombouts et al., 2015; Friedrich and Lengyel,
2016; Rueckert et al., 2016). However, only a small proportion of
these rely on publicly available simulators and all of them employ
custom built environments. Even for fairly simple environments,
this has led to a situation where different network models are
difficult to compare and reproduce, thus creating a fragmentation
of research efforts. Instead of building upon and extending
existing models, researchers are forced to spend too much time
on recreating basic functionality for custom implementations.

The need for closed-loop simulation has led to the Human
Brain Project (2014) (HBP) dedicating significant resources
of a subproject (Neurorobotics) to the development of the
necessary infrastructure that allows users to conduct robotic
experiments in virtual environments and connect these to their
neural network implementations with a web interface (Falotico
et al., 2017). This approach specifically addresses the need of
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researchers developing neuronal or neuro-inspired controllers
for robotic applications. A more pared-down approach, suitable
for researchers who are primarily concerned with understanding
the neural circuits, rather than controlling sophisticated robotic
actuators, is provided by Weidel et al. (2016). This approach
allows any neuronal network simulator that implements the
MUSIC (Djurfeldt et al., 2010) interface (including NEST
and NEURON) to be coupled with any robotic simulator
implementing the ROS (Quigley et al., 2009) interface [including
Gazebo (Koenig and Howard, 2004), Morse (Echeverria et al.,
2011), or Webots (Michel, 2004)].

However, neither approach directly addresses the issue of
the lack of standardized benchmarks for neuronal agents
operating autonomously and learning to optimize their behavior
in an environment. Such benchmarks exist: the OpenAI Gym
(Brockman et al., 2016) provides a rich and generic collection
of standardized RL environments developed to support the
machine learning community in evaluating and comparing
algorithms. All environments are accessible via a simple,
unified interface, that requires an agent to supply an action
and returns an observation and reward for its current state.
The toolkit includes a range of different environments with
varying levels of complexity ranging from low-dimensional
fully discrete (e.g., FrozenLake1) to high-dimensional fully
continuous tasks (e.g., Humanoid1). The consistency of the
OpenAI Gym environments across different releases supports
researchers in reproducing and extending previous work and
allows systematic benchmarking and comparison of learning
algorithms and their implementations. The easy accessibility of
different tasks fosters progress by allowing researchers to focus
on learning algorithms instead of basic implementation details of
particular environments, and prompts researchers to evaluate the
performance of their algorithms on many different tasks.

One possibility to access this set of benchmarks is to
implement spiking networks in tools that are natively compatible
with the OpenAI Gym, such as Tensorflow (Abadi et al., 2016)
or PyTorch (Paszke et al., 2017). However, as the components of
spiking neural network models (e.g., neuron and plastic synapse
models, stimulation, and recording devices) are typically not
shipped with these tools, this once again places the burden of
implementation on the user (but see Hazan et al., 2018 for a
spiking-neural network orientated approach). In particular,
since these tools focus on machine learning applications rather
than exploring biological intelligence, several critical features
for computational modeling of learning in biological neuronal
networks, such as few-compartment neurons, conductance-
based synaptic interactions or neuromodulated plasticity,
lie outside the scope of these libraries. Therefore, to make
a comprehensive resource of benchmarks available to the
computational neuroscience community, we developed a
toolchain to interface neural network simulators with the
OpenAI Gym. Using this toolchain, researchers can rely on well-
tested, high-performance simulation engines for spiking neural
networks to power their models, and evaluate them against
a curated set of standardized environments, allowing more

1https://gym.openai.com/envs

time to focus on neurobiological questions, such as the
configuration and plasticity of neural circuits underlying
exploration of the environment and exploitation of prior
experience.

In the next section we introduce additional pre-existing
components on which our toolchain relies, and afterwards
discuss how it links the different tools. We demonstrate its
functionality by implementing a neural actor-critic in NEST and
successfully training it on two different environments from the
OpenAI Gym.

2. PRE-EXISTING COMPONENTS

All network simulations in this manuscript are carried out
with NEST2 (Gewaltig and Diesmann, 2007), a neural simulator
designed for the efficient simulation of large-scale networks
of simple spiking neuron models with biophysically realistic
connectivity. The simulation kernel scales from small simulations
on a laptop to super computers, with the largest simulation
to date containing about 109 neurons and 1013 synapses,
corresponding to about 10% of the human cortex at the
resolution of individual cells and connections (Kunkel et al.,
2014; Jordan et al., 2018). NEST is actively developed and
maintained by the NEST initiative3 in collaboration with the
community, is freely available under the GPLv2 and is supported
by the HBP with the explicit aim of widespread long-term
availability and maintainability. The simulation set-up, e.g.,
definition of neurons and connections, can conveniently be
performed via an interpreted language (e.g., PyNEST; Eppler
et al., 2009) while the propagation of network dynamics
is implemented in C++. OpenMP is used for node-local
parallelization while MPI provides inter-node communication.
While using a compiled language for the compute-intensive
part provides significant performance gains compared to an
interpreted language, it makes it less straightforward to interface
the simulator with other tools not specifically designed for this.

The OpenAI Gym (Brockman et al., 2016) is a toolkit for
reinforcement learning research focused on ease of use for
machine learning researchers. An explicit goal of the OpenAI
Gym is to compare different RL algorithms with each other in
a consistent fashion. It provides a unified Python interface to a
rich collection of curated RL environments, e.g., Atari games4 or
continuous control tasks for robotic applications5.

An environment in the OpenAI Gym is updated in steps.
In each step, the agent receives an observation representing the
state of the environment, e.g., the agent’s location within it,
or other configurational information. This is typically a vector
of real values. In addition, it receives a real-valued reward for
entering the current environmental state. Depending on the
environmental set-up, the reward may be zero for the majority
of state transitions, and only non-zero (positive for rewards or
negative for punishments) when the agent achieves a well-defined

2http://nest-simulator.org/
3https://nest-initiative.org/
4https://gym.openai.com/envs/#atari
5https://gym.openai.com/envs/#mujoco
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goal. On the basis of the current state and its internal policy,
the agent provides an action to the environment to trigger the
next state transition. The reward can be used as information to
adjust the agent’s policy, such that its behavior in the environment
evolves, typically such that it receives more reward in future trials
in the same environment.

While the network implementation that we present in the
results section relies on the NEST simulator, the toolchain can
also be used with other simulators that support the MUSIC
library, for example NEURON (Carnevale and Hines, 2006). The
MUlti-SImulation Coordinator is a multi-purpose middleware
for neural network simulators built on top of MPI (Message
Passing Interface) that enables online interaction of different
simulation engines (Djurfeldt et al., 2010). MUSIC takes care
of starting all MUSIC-controlled executables (e.g., adapters and
simulators) defined in a configuration file provided by the user
in separate processes. During execution it makes sure that
all processes evolve synchronously with a predefined real-time
factor independent of the computational load of the individual
processes (Moren et al., 2015). MUSIC provides named MPI
channels, referred to as MUSIC ports, which allow the user to
set up communication streams between several processes. While
originally intented to distribute a single neural network model
across different simulators, the MUSIC library can also be used
to connect neural simulators to other applications.

For example, to connect neural simulators to robotic
simulators, we recently developed the ROS-MUSIC Toolchain
(RMT; Weidel et al., 2016) which provides an interface from
MUSIC to the Robotic Operating System (ROS; Quigley et al.,
2009). ROS is the most popular middleware in the robotic
community and is able to interact with many robotic simulators
and hardware platforms. The RMT allows exchange of well-
defined messages between ROS and MUSIC via stand-alone
executables, so called adapters, that were designed with a focus
on modularity. The toolchain contains several different adapters
each performing a rather simple operation on streams of inputs
(e.g., filtering). By concatenating several adapters, the overall
transformation of the original data can become more complex,
for example converting high-dimensional continuous data (e.g.,
sensory data) to low-dimensional discrete data (e.g., action
potentials) or vice-versa. More information and introductory
examples can be found on GitHub6.

3. RESULTS

To enable the online interaction of neural network simulators
and the OpenAI Gym, we rely on two different libraries: MUSIC,
to interface with the neural simulator, and ZeroMQ (Hintjens,
2013) to exchange messages with the environment simulated
in the OpenAI Gym. In the following, we describe these two
parts of the toolchain and demonstrate their functionality by
interfacing a neural network simulation in NEST with two
different environments.

6https://github.com/incf-music/ros-music-adapters

3.1. Extending the ROS—MUSIC Toolchain
We extended the RMT by adding adapters that support
communication via ZeroMQ following a publish-subscribe
pattern. ZeroMQ is a messaging library that allows applications
to exchange messages at runtime via sockets. Continuously
developed by a large community, it offers bindings for a variety
of languages including C++ and Python, and supports most
operating systems. A single communication adapter of the RMT
sends (receives) data via a ZeroMQ socket and receives (sends)
data via a MUSIC port. While the adapters can handle arbitrary
data, we defined a set of specializedmessages in JSON format (see
Supplementary Material) specifically designed to communicate
observations, rewards, and actions as discrete or continuous real-
valued variables of arbitrary dimensions, as used in the OpenAI
Gym. We chose the JSON format due to its simplicity, easy
serialization and broad platform support.

In addition to the ZeroMQ adapters dedicated for
communication with MUSIC, we developed several further
adapters that can perform specific transformations of the data.
OpenAI Gym places few restrictions on the nature of the
environment: it can be continuous or discrete with arbitrary
dimensionality. Thus, in order to generate the required closed-
loop functionality, the observations provided by the environment
must be consistently transformed to a format that can be fed
into neural network simulations. Conversely, the activity of the
neural network must be interpreted and transformed into valid
actions which can be executed in the environment.

A standard way to address the first issue with some degree
of biological plausibility is to introduce a layer of place cells
(Moser et al., 2008). Each of these cells is tuned to a preferred
(multidimensional) observation, i.e., is highly active for a specific
input and less active for other inputs (see e.g., Frémaux et al.,
2013). The dependence of the activity of a single place cell on
observations is described by its tuning curve, often chosen as a
multidimensional Gaussian. To perform the transformation of
observations to activity of place cells, we implemented a discretize
adapter that allows users to specify the position and width of
the tuning curves of an arbitrary number of place cells. One
disadvantage of this approach is that the number of place cells
required to cover the whole observation space evenly scales
exponentially in the number of dimensions of the observation.
For observations with a small number of dimensions, however,
this approach is very suitable.

To perform action selection, we added several adapters
that can, respectively, select the most active neuron (argmax
adapter), threshold the activity across neurons to create a
binary vector (threshold adapter), or linearly combine the
activity of neurons across many input channels (linear decoder).
Depending on the type of action required by the environment
(discrete/continuous), the user can select a single one or a
combination of these. Specifications of the adapters can be found
in the documentation of the RMT7.

In general, we followed the design principle behind the RMT
and developed modular adapters. This makes each individual

7https://github.com/incf-music/music-adapters
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FIGURE 1 | Interfacing RL toolkits with neural network simulators. The RL toolkit (left) is responsible for emulating an environment that provides observations and

rewards which are communicated via ZeroMQ sockets and MUSIC adapters (middle) to a neural network simulator (right). Concurrently, the activity of the simulated

neural network is transformed to an action and fed back to the RL toolkit.

adapter easy to understand and enables users to quickly extend
the toolchain with their own adapters. By combining several
adapters, the RMT allows arbitrarily complex transformations of
the data and can hence be applied to many use-cases.

3.2. ZeroMQ Wrapper for the OpenAI Gym
The second part of the toolchain is a Python wrapper around the
OpenAI Gym that exposes ZeroMQ sockets (Hintjens, 2013) for
communicating actions, observations and rewards (see section 2
and Figure 1). The wrapper consists of four different threads that
coordinate: (i) performing steps in an environment, (ii) receiving
actions via a ZeroMQ SUB socket, (iii) publishing observations
via a ZeroMQ PUB socket, and (iv) publishing rewards via a
ZeroMQ PUB socket.

Before spawning the threads, the wrapper starts a user-
specified environment and creates the necessary communication
buffers. The thread coordinating the environment reads actions
from the corresponding buffer, performs single steps in the
environment and updates the observation and reward buffers
based on the return values of the environment. Upon detecting
that a single episode has ended, e.g., by an agent reaching a certain
goal position, it resets the environment and allows a break of
user-specified duration before starting the next episode.

The communication threads continuously send (receive)
messages via ZeroMQ and read from/write to the corresponding
buffers. All threads can be run with different update intervals,
for example, to slow down movement of the agent by
performing steps on a coarse time grid whilst continuously
receiving action choices from the neural network simulation
running on a fine time grid. The user can specify a variety
of parameters via a configuration file in JSON format (see
Supplementary Material). Detailed specifications of the wrapper
can be found in the documentation.

In contrast to MUSIC-controlled executables, the ZeroQM
wrapper is not started by the MUSIC library. As a result,
the environment and the simulation evolve simultaneously
but asynchronously. The simulator hence continuously receives
input from the environment and vice versa. Due to the possibility
of choosing a real-time factor for MUSIC-controlled processes,
the user can easily achieve reliable interaction between the

environments and the network simulation. The loosely coupled,
asynchronous nature of the toolchain has the benefit that one
could, for example, train the same network on a wide variety of
different environments without stopping the simulation, in order
to investigate transfer learning in spiking neural networks.

3.3. Applications
To demonstrate the functionality of the toolchain, we
implemented a neural network in NEST and trained it on
two different environments simulated in the OpenAI Gym. In
the first task the agent needs to learn to perform a sequence
of actions in order to reach the top of a hill in a continuous
environment. The second task is a classical grid-world in which
an agent needs to learn to navigate to a goal position in a
two-dimensional discrete environment with obstacles. We first
describe the neural network architecture and learning rule and
afterwards discuss the network’s performance on the two tasks.

3.3.1. Neural Network Implementation

We consider a temporal-difference learning algorithm (Sutton
and Barto, 1998) implemented as an actor-critic architecture
based on the spiking neuronal network proposed by Frémaux
et al. (2013). For the purpose of demonstrating the toolchain,
we simplified the model by replacing the spiking neuron models
with rate neurons, thereby avoiding issues arising from noise
introduced by spiking neuron models (Potjans et al., 2011;
Frémaux et al., 2013). Note, however, that the toolchain is not
restricted to rate-based models; any neuron model available in
the neural simulators with MUSIC interfaces can be used.

The neuron dynamics we considered here are given by the
following stochastic differential equation:

τ
dzi(t)

dt
= −zi(t)+ µi + f

(

hi(t)− θi
)

+ ξi(t), (1)

where τ is some positive time constant,µi a baseline activity level,
f (·) some (arbitrary) activation function, hi(t) a time dependent
input field, θi an input threshold and ξi(t) Gaussian white noise
with a certain standard deviation σξ . The input field hi(t) is
determined by the activity of other neurons according to hi(t) : =
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FIGURE 2 | Actor-critic architecture for reinforcement learning with rate neurons. Observations are communicated via a MUSIC input port to a population of place

cells. These project both to a critic unit and to actor units arranged in a winner-take-all circuit. The critic and an additional MUSIC input port project to a unit

representing the reward prediction error that modulates the plasticity between the place cells and their downstream targets, the critic and actors. The actor units

project to a MUSIC output port encoding the selected action.

∑

j wijzj(t), with wij denoting the strength of the connection

(weight) from neuron j to neuron i. Here we will exclusively
consider activation functions of the form f (x) : = x (linear case),
and f (x) : = 2(x)x (threshold-linear case, “relu”). Here 2(·)
denotes the Heaviside function, defined as

2(x) : =

{

1 x > 0

0 else
(2)

Neuron dynamics are integrated in NEST on a fixed time-
grid by a stochastic-exponential-Euler method with a step size
determined by the resolution of the simulation. For more details
on the neuron model implementation (see Hahne et al., 2017).

The input layer is a population of threshold-linear rate
neurons which receive inputs through MUSIC and encode
observations from the environment (see Figure 2). These
place cells project via plastic connections to a single neuron
representing the value that the network assigns to the current
state (the critic). An additional neuron calculates the reward-
prediction error by combining the reward received from the
environment with input from the critic. Plasticity of the
projections from inputs to the critic is modulated by this reward
prediction error, as described below.

In addition, neurons in the input layer project to a population
of neurons representing the available actions (the actor). To
enforce selection of a specific action, the actor units are arranged
in a winner-take-all (WTA) circuit. This is implemented by
recurrent connections between actor units that correspond to
short-range excitation and long-range inhibition, the distance
reflecting the similarity of the action that actor units encode.
The activity of actor units is transformed to an action supported
by the environment and communicated to the environment via
the RMT.

To derive a learning rule for the critic, we follow similar
steps as described by Frémaux et al. (2013), but applied to rate

models (Equation 1). The critic activity should approximate a
continuous-time value function defined by Doya (2000):

Vπ (t) : =

∫

∞

t
r(sπ (t′))e−

t′−t
τr dt′. (3)

Here, s(t) denotes the state of the agent at time t, r(sπ (t)) denotes
the reward obtained in state s(t), τr a discounting factor for future
rewards and π the agent’s policy. To achieve this, we define
the following objective function which should be minimized by
gradient descent on the weights from inputs to the critic:

E(t) : =
1

2
(Vπ (t)− z(t))2, (4)

where z(t) represents the activity of the critic unit. By
performing gradient descent on Equation (4), using a
self-consistency equation for Vπ (t) from the derivative of
Equation (3) and bootstrapping on the current prediction
for the value (see Supplementary Material and Doya, 2000;
Frémaux et al., 2013), we obtain the following local Hebbian
three-factor learning rule that approximately minimizes the
objective function (Equation 4):

1wj = ηδ(t)xj(t)2
(

z(t)− θpost
)

, (5)

where η is a learning rate, xj(t) represents the activity of
the jth place cell, 2(·) the Heaviside function and θpost a
parameter that accounts for noise on the postsynaptic unit (see
Supplementary Material for details). The term δ(t) = v̇(t) +
r(t)− 1

τr
v(t) corresponds to the activity of the reward prediction

error unit, acting as a neuromodulatory signal for the Hebbian
plasticity between the presynaptic (xj) and postsynaptic (z) units.
To avoid explicit calculation of the derivative, we approximate
δ(t) by:

δ(t) ≈

(

1

d
−

1

τr

)

v(t)−
1

d
v(t − d)+ r(t). (6)
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FIGURE 3 | A neuronal network simulated in NEST successfully learns to navigate in an environment with continuous states and discrete actions. (A) Reward

obtained by the agent per episode averaged over 10 simulations with different seeds (solid orange curve). Orange band indicates ± one standard deviation. Dark gray

represents the reward obtained from Q-learning. The light gray line marks average reward per episode for which the environment is considered solved. Inset:

screenshot of the environment with agent (stylized vehicle), environment with valley and two hills and goal position (yellow flag). The agent is close to a typical starting

position at the trough. (B) Activity traces of place cells (bottom), actor units (second from bottom), critic unit (second from top) and reward prediction error unit (top).

Shown are neural activities during 6.5 s early (left) and late (right) during learning. The neural network simulation was run with a real-time factor of one.

To compute the derivative we hence implement two connections
from the critic to the reward-prediction error unit: one
instantaneous, and one with delay d > 0.

As proposed by Frémaux et al. (2013), to learn an optimal
policy, we exploit that the actor units follow the same dynamics
as the critic. We hence apply the same learning rule to the
connections between the inputs and the actor units. In order to
assure that at least one actor unit is active, thus preventing a
deadlock, we introduce a minimal weight for each connection
between input and output units and add input noise to the
actor units.

3.3.2. Mountain Car

As an example of an environment with continuous states, we
consider the MountainCar8 environment. The task is to steer
a toy vehicle that starts at a valley between two hills to the
top of the right one (Figure 3A, inset). To make the task more
challenging, the car’s engine is not strong enough to reach the
top in one go, so the agent needs to learn to gain momentum
by swinging back and forth between the two hills. A single
episode in this environment starts when the agent is placed in
the valley and ends when it reaches the final position on the
top of the right hill. The state of the agent is described by two
continuous variables: the x-position x(t) and the x-velocity ẋ(t).
The agent can choose from three different discrete actions that
affect the velocity of the vehicle (accelerate left, no acceleration,
accelerate right). It receives punishment (i.e., negative reward)
from the environment in every step; the goal is to minimize the
total punishment collected over the whole episode. Since it is
challenging for a neuronal network implementation of the actor-
critic architecture with exclusively excitatory synapses to learn
the value function corresponding to a task with solely negative
reinforcement (Potjans et al., 2011), we provide additional reward
when the agent reaches the final position.

To translate the agent’s current state into neuronal activity, we
distribute 25 place cells evenly across the two-dimensional plane

8https://gym.openai.com/envs/MountainCar-v0/

of possible positions and velocities using the discretize adapter
of the RMT. The actor is implemented by a WTA circuit of
three units as shown in (3.3.1). The activity of these units is
transformed into an action via the argmax adapter (3.1).

We compare the performance of our neuronal network
to Q-learning (Watkins and Dayan, 1992) with function
approximation via a multi-layer perceptron (see e.g., Tesauro,
1995; Mnih et al., 2013). The position and velocity of the car are
projected to a population of hidden units with rectifying-linear
activation function, which in turn project to three output units,
encoding the estimated Q-value of each possible action. These Q-
values are used by an epsilon-greedy strategy to select the next
move. We use the ADAM optimizer (Kingma and Ba, 2014) and
memory replay (Lin, 1993) to train the Q-function network (see
Supplementary Material for details).

Initially, the agent explores the environment by selecting
random actions. Due to the WTA circuit dynamics, a single actor
neuron stays active over an extended period of time. The constant
punishment gradually decreases the weights from the place cells
to the corresponding actor unit, eventually leading to another
actor unit becoming active (Figure 3B, left). After a while, the
agent reaches the goal by performing actions that have not been
significantly punished. For this task the stable nature of the WTA
is advantageous, causing the agent to perform the same action
repeatedly allowing efficient exploration of the state space. After
the agent has found the goal once, the number of steps spent on
exploring actions in the following episodes is much smaller. From
the sixth episode on, the performance of the agent is already close
to optimal (Figure 3A). After learning for about ten episodes, the
agent’s performance has converged. The value of the final state
has been successfully propagated backwards over different states,
leading to a ramping of activity of the critic unit from the start of
an episode to the end (Figure 3B, right).

In comparison to Q-learning, the agent avoids high losses at
the start of a training episode. This can most likely be traced
back to two factors, which endow our agent with an advantage
over Q-learning with function approximation. First, our agent
starts with predefined place cells that reliably encode the position
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FIGURE 4 | A neuronal network simulated in NEST successfully learns to navigate in a grid world with discrete states and discrete actions. (A) Orange curve: average

reward collected by the agent over the next 500 steps averaged over 5 simulations. Dark blue curve: performance of Potjans et al. (2011) model averaged over 5

simulations. Shaded bands indicates ± one standard deviation. Gray line: theoretical optimum. Inset: screenshot of the environment with start state (S), frozen states

(F), holes (H), and goal state (G). The position of the agent is indicated in pink. (B) The learned policy and value map of the environment. Red colors indicate positive,

blue colors negative values. Arrows indicate the preferred direction of movement. The neural network simulation was run with a real-time factor of two.

in state space and it only has to learn to appropriately combine
the activities of these place cells. In contrast, Q-learning starts
from a completely blank slate, with no prior knowledge about
the input space. It would be incorrect to conclude from this
that place cells are generally the superior strategy: manually-
defined place cells become infeasible in high-dimensional state
spaces as their number increases exponentially in the number
of input-space dimensions, whereas Q-learning with function
approximation can be scaled to very high-dimensional input
spaces (see e.g., Mnih et al., 2013). The second advantage of
our agent are long transients in action selection. Before learning
the correct sequence of actions, the agent tends to explore a
single action for an extended period of time (see trajectories of
actor units, Figure 3B, left), whereas Q-learning changes action
often. For this particular environment sticking to one action for
an extended period of time, especially during the early phases
of learning, is advantageous as the final strategy involves few
action changes (Figure 3B, right). This disadvantage can most
likely be attenuated by using frame skipping or similar methods
(cf. Mnih et al., 2013).

3.3.3. Frozen Lake

As a second application illustrating the use of the toolchain for
discrete environments, we train the same network model on the
FrozenLake9 environment. This consists of a discrete set of 16
states arranged in a four-by-four grid (Figure 4A, inset). Each
state is either a start state (S), a goal state (G), a hole (H), or a
frozen state (F). From the start position, the agent has to reach
the rewarded state by navigating over the frozen states without
falling into holes which reset the agent to the starting position.
In each step the agent can choose from four different actions:
move west, move north, move east and move south. Usually, the
tiles are “slippery,” i.e., there is a chance that a random action is
executed irrespective of the action chosen by the agent. However,
to simplify learning for demonstration purposes we turn this
feature off. Upon reaching the goal the agent receives a reward
of magnitude one. Since the optimal path involves six steps from
start to goal, the theoretical optimal reward per step is ∼ 0.16.

9https://gym.openai.com/envs/FrozenLake-v0/

To encourage exploration the agent receives a small punishment
in each state and, additionally, to speed up learning the agent is
punished for falling into holes.

Unlike in the continuous MountainCar environment, the
tuning curves of place cells do not overlap in the discrete
case, leading to sharp transitions in the network activity. This
leads to severe issues for associating values and actions with
the respective states. To address this problem we introduced a
simple eligibility trace by evaluating the activity of the pre- and
post synaptic units in the learning rule with a small delay δt
(see Supplementary Material). With this addition, the network
model is able to find the optimal solution for this task within
roughly 2,000 steps (Figure 4A). It also learns to associate holes
with punishment and frozen states with reward if they are on
the path to the goal (Figure 4B). Although there are two possible
paths to the goal, the agent prefers the path with fewer corners,
likely as a consequence of the WTA circuit which tends to select
the same action repeatedly.

We compare the performance of our algorithm to an adapted
spiking neural network model of the basal ganglia implementing
reinforcement learning (Potjans et al., 2011; Jitsev et al., 2012).
Learning in this algorithm is faster than our implementation and
reaches the optimal solution after only 1,000 steps (Figure 4A).
However, the performance of the spiking model drops after 2,000
steps to a sub-optimal value. As this model relies on a very high
discount factor (γ = 0.99), which is close to ’infinite horizon’,
the values of the states saturate in the vicinity to the goal. This
can lead to a low contrast of preferred actions in those states and
therefore to a sub-optimal policy. To resolve this issue is beyond
the scope of this manuscript (see Kato and Morita, 2016 for an
investigation of such matters), but underlines the importance of
comparing alternative models on the same task. Only through
such activities can we identify the strengths and weaknesses
of different functional hypotheses and thus make more rapid
progress in the field.

4. CONCLUSION

In this manuscript, we have argued that standardized
benchmarks are of critical importance to compare and improve
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functional neural network models. Moreover, to investigate the
characteristics of the neural circuits that allow agents to operate
autonomously in their environments and learn appropriate
behaviors, simulation infrastructure must enable closed-loop
interaction between agent and environment.

To make such a set of closed-loop benchmarks available to
the computational neuroscience community, we have developed
a toolchain that closes the loop between the OpenAI Gym
and neural network simulators implementing the MUSIC
interface, notably NEST and NEURON. We demonstrated
the functionality of the toolchain by implementing an actor-
critic architecture in NEST and evaluating its performance
on two different environments. The performance of the
network quickly reached near-optimal performance on these
two tasks.

Compared to creating customized environments within the
framework of a neuronal simulator, using readily available,
well-tested tools is considerably easier (and thus faster) for
the researcher, often computationally more efficient, and most
importantly, supports reproducible science. In addition, having
the OpenAI Gym environments as common benchmarks
in both fields encourages comparison between traditional
machine learning and biologically plausible implementations.
In contrast to models presented in previous studies, our
toolchain makes it easy for other researchers to extend
our implementation of an actor-critic architecture to other
environments, replace neuron models or explore alternative
learning rules. The simulation and visualization scripts to
reproduce the results presented for the network model described
here are publicly available10, and so can serve as a starting
point for more complex models. In addition a dedicated
tutorial introduces the toolchain step-by-step using NEST as an
example simulator11.

While the toolchain currently only supports the OpenAI
Gym, the extension to other toolkits is simple due to a modular
design of the wrapper. The RMT can be found on GitHub
and is available under the GPLv3. The OpenAI Gym ZeroMQ
wrapper is also available via GitHub under the MIT license.
A complementary development to the work presented here is
provided by SPORE, a framework for reward-based learning with
spiking neurons in the NEST simulator12. It provides support
for synapse models with time-driven updates, additional support

10https://github.com/INM-6/closed-loop-learning-in-autonomous-agents
11https://github.com/INM-6/nestrl-tutorial/
12https://github.com/IGITUGraz/spore-nest-module

for recording and evaluating traces of neuronal state variables
and introduces MUSIC ports for communicating rewards to a
running simulation.

With the work presented here we enable researchers to build
more easily upon previous studies and evaluate novel models.We
hope this boosts the progress in computational neuroscience in
uncovering the biophysical mechanisms involved in autonomous
behavior and learning.
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