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Introduction: While the prevalence of neurodegenerative diseases associated with

dementia such as Alzheimer’s disease (AD) increases, our knowledge on the underlying

mechanisms, outcome predictors, or therapeutic targets is limited. In this work, we

demonstrate how computational multi-scale brain modeling links phenomena of different

scales and therefore identifies potential diseasemechanisms leading the way to improved

diagnostics and treatment.

Methods: The Virtual Brain (TVB; thevirtualbrain.org) neuroinformatics platform allows

standardized large-scale structural connectivity-based simulations of whole brain

dynamics. We provide proof of concept for a novel approach that quantitatively links

the effects of altered molecular pathways onto neuronal population dynamics. As a

novelty, we connect chemical compounds measured with positron emission tomography

(PET) with neural function in TVB addressing the phenomenon of hyperexcitability in AD

related to the protein amyloid beta (Abeta). We construct personalized virtual brains

based on an averaged healthy connectome and individual PET derived distributions

of Abeta in patients with mild cognitive impairment (MCI, N = 8) and Alzheimer’s

Disease (AD, N = 10) and in age-matched healthy controls (HC, N = 15) using data

from ADNI-3 data base (http://adni.loni.usc.edu). In the personalized virtual brains,

individual Abeta burden modulates regional Excitation-Inhibition balance, leading to local

hyperexcitation with high Abeta loads. We analyze simulated regional neural activity and

electroencephalograms (EEG).

Results: Known empirical alterations of EEG in patients with AD compared to HCs were

reproduced by simulations. The virtual AD group showed slower frequencies in simulated

local field potentials and EEG compared to MCI and HC groups. The heterogeneity
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of the Abeta load is crucial for the virtual EEG slowing which is absent for control

models with homogeneous Abeta distributions. Slowing phenomena primarily affect

the network hubs, independent of the spatial distribution of Abeta. Modeling the

N-methyl-D-aspartate (NMDA) receptor antagonism of memantine in local population

models, reveals potential functional reversibility of the observed large-scale alterations

(reflected by EEG slowing) in virtual AD brains.

Discussion: We demonstrate how TVB enables the simulation of systems effects

caused by pathogenetic molecular candidate mechanisms in human virtual brains.

Keywords: Alzheimer’s disease, The Virtual Brain, PET, beta amyloid, EEG, MRI, memantine, personalized

medicine

INTRODUCTION

Neurodegenerative diseases (NDD) gain increasing socio-
economic relevance due to an aging society (WHO, 2011;
Wimo et al., 2011, 2017; Xu et al., 2017). The Alzheimer’s
Association’s latest report estimates the yearly cost of Alzheimer’s
disease (AD) treatment in the U.S. at $277 billion (Alzheimer’s
Association, 2018). By 2050 this number is expected to rise as
high as $1.1 trillion. According to the report, early diagnosis
could save up to $7.9 trillion in cumulated medical and care
costs by the year 2050. While the prevalence of AD—the most
common cause of dementia and the most common NDD in
general—increases, its cause is still not understood, nor is there a
cure. Our understanding of their pathogenesis and classification
remain insufficient. Therefore, we aim to integrate clinical data
from molecular biology and neurology, using nonlinear systems
theory. Our aim is to build predictive models for health-outcome
and cognitive function by individual virtual brain simulations
using The Virtual Brain (TVB; thevirtualbrain.org) platform
(Ritter et al., 2013; Sanz Leon et al., 2013). TVB integrates
various empirical data in computational models of the brain
that allow for the identification of neurobiological processes
that are more directly linked to the causal disease mechanisms
than the measured empirical data. Biomedical sciences are
currently lacking a mapping between the degree and facets
of cognitive impairments, biomarkers from high-throughput
technologies, and the underlying causal origins of NDD like AD.
The imperative for the field is to identify the features of brain
network function in NDD that predict whether a person will
develop dementia. The heterogeneity of NDD makes it difficult
to develop robust predictions of cognitive decline. This can be
addressed by large prospective studies where there is potential for
participants to develop NDD. It is difficult in general to predict
individual disease progression and this is a particular challenge
in complex nonlinear systems, like the brain, where emergent
features at one level of organization (e.g., cognitive function)
can come about through the complex interaction of subordinate
features (e.g., network dynamics, molecular pathways, gene
expression). The Virtual Brain takes into account the principles
of complex adaptive systems and hence poses a promising tool
for identifying mechanistic predictive biomarkers for NDD. Due
to the high dimensionality of brain models and the even greater

complexity of the to-be-simulated brain states, selecting the used
modeling approach carefully for a specific question of interest
is essential.

The candidate biological mechanism under investigation in
the present study is related to amyloid beta (Abeta), a protein that
is an oligomeric cleavage product of the physiological amyloid
precursor protein (APP) (Bloom, 2014; Selkoe and Hardy, 2016).
The soluble oligomers have the tendency for polymerization
(Sadigh-Eteghad et al., 2015; Selkoe and Hardy, 2016). Due
to their non-physiological configuration they aggregate and
accumulates in brain tissue—a process that starts already in early
preclinical stages of AD, i.e., many years before the onset of
symptoms—typically in the fifth decade of life (Braak and Braak,
1997)—as shown in rodent models (Busche et al., 2012) and
human studies (Klunk et al., 2007; Jack et al., 2009). Aggregated
Abeta and its intermediates, soluble Abeta oligomers, can act
directly neurotoxic (Hardy and Selkoe, 2002; Prasansuklab and
Tencomnao, 2013; Selkoe and Hardy, 2016) and have been found
intra- or extra-cellularly (Hardy and Selkoe, 2002; Walsh and
Selkoe, 2007; Selkoe and Hardy, 2016). Those findings led to
the hypothesis that the deposition of Abeta poses an initial step
in the pathology of AD while Abeta has been suggested as a
key feature in the pathogenesis of AD leading to major changes
in the functionality and structure of the brain (Klunk et al.,
2007; Jack et al., 2009; Villemagne et al., 2009). The goal of the
present study is to incorporate the hypothesized qualitative and
quantitative effects of Abeta on neuronal population dynamics
into our brain network models, i.e., adding mathematical models
that describe how molecular changes alter population activity—
so called cause-and-effect models. We will focus here on the
disrupted inhibitory function of interneurons and consecutive
hyperexcitability caused by Abeta—while we are aware of various
other factors with potential roles for AD etiology, such as
vascular changes (Love and Miners, 2016; Storck and Pietrzik
Claus, 2018; Bannai et al., 2019), neuroinflammation (Heneka
et al., 2015a,b; Wang and Colonna, 2019; Zhou et al., 2019),
genetics (Mahley, 2016; Hudry et al., 2019; Takatori et al.,
2019), environmental factors (Alonso et al., 2018; McLachlan
et al., 2019) and concomitant proteinopathies others than Abeta
pathology (Robinson et al., 2018a,b). Beside Abeta there is a
second molecular hallmark associated with the pathogenesis of
AD: the phosphorylated Tau “tubulin-associated unit” protein
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(Bloom, 2014; Guo et al., 2017; Tapia-Rojas et al., 2019) which
contributes to microtubule stability in the neural cytoskeleton
(Guo et al., 2017). One major argument in favor of the more
prominent involvement of Abeta in the pathogenesis of AD,
in contrast to Tau, is its higher specificity to AD and its
appearance in the early familial variants of AD, where the
molecular pathway is better understood (Blennow et al., 2006;
Klunk et al., 2007; Villemagne et al., 2009). Therefore, most
therapeutic strategies in the past targeted Abeta. Yet recently
three clinical trials with antibodies against Abeta had to be
terminated in phase III: aducanumab (Biogen, 2019; Chiao
et al., 2019), crenezumab (Salloway et al., 2018; Roche, 2019),
and solanezumab (Doggrell, 2018; Honig et al., 2018) did not
meet the expectations to act in a disease-modifying manner
slowing down the cognitive decline (Selkoe and Hardy, 2016).
Nevertheless, there are still studies ongoing, e.g., with BAN-2401,
an antibody against soluble monomeric Abeta protofribrils (as
aducanumab) (Logovinsky et al., 2016; Osswald, 2018; Panza
et al., 2019). A relevant percentage of clinically diagnosed AD
patients show additional brain pathologies beside Abeta and
Tau in autopsy (Robinson et al., 2018a). Even in the cases of
neuropathological AD diagnosis (i.e., secured Abeta and Tau
pathology in histology), 55% of cases also exhibited a pathology
of alpha synuclein (which we would expect in synucleinopathies
like Parkinson’s disease) and 40% showed transactive response
DNA binding protein 43kDa (TDP-43), a protein which we
would expect in frontotemporal dementia or amyotrophic lateral
sclerosis (Robinson et al., 2018b). Brain tissue of people who did
not had relevant neurodegenerative brain changes in histological
exams after death were showing Abeta in 50% and Tau pathology
in 93% of the cases when using sensitive immunohistochemistry
methods (Robinson et al., 2018b). Although Abeta and Tau are
widely accepted as involved parts in the pathogenesis of AD and
also define the disease entity (Jack et al., 2018), it remains unclear
if theymight be only epiphenomena of other contributing factors.
This study hypothesizes a mechanistic role of Abeta in the
disease process and builds a link between the molecular pathway
alteration that leads to Abeta phenomenon of disinhibition and
neural slowing in EEG (Figure 1). Our mechanistic modeling
approach can help to understand the complex inter-dependencies
between the involved factors in AD and will improve through
iterative refinement.

Near Abeta plaques, a shift in neural activity has been
observed (Busche et al., 2008). In AD mouse models with
overexpression of APP and Presenilin-1, the number of
hyperactive neurons was increased near Abeta plaques. This
shift in the neuronal activity was associated with decreased
performances in memory tests. Neuronal hyperactivity could be
reduced byGABA agonists, suggesting pathology due to impaired
inhibition. In neocortical and dentate gyri, pyramidal cells have
been found to increase network excitability in vivo in an AD
mousemodel with overexpression of Abeta, that led tomembrane
depolarization and increased firing rates. A study by Hazra
et al. (2013) investigated an AD mouse model by stimulation
of the perforant pathway. AD mice showed increased amplitude
and larger spatial distribution of response after stimulation.
The reason for this increased network excitability was due to

impaired inhibitory neuron function, i.e., the inhibitory neurons
of the molecular layer of the dentate gyrus in hippocampus
were in part unable to produce action potentials, which resulted
in a slower postsynaptic firing rate. Ulrich (2015) added Abeta
to layer V pyramidal cells of rats. In their experiments they
could show a decline in inhibitory postsynaptic currents (IPSCs),
attributed to postsynaptic GABAA receptor endocytosis after
Abeta application. In a recent study by Ren et al. (2018) Abeta was
found to increase excitability of pyramidal cells in the anterior
cingulate cortex of mouse brain. The reason for hyperexcitability
was again due to disturbed inhibitory input. Abeta seems to
interact with the dopaminergic D1 receptor system. The D1
receptor regulates GABA release in fast-spiking (FS) inhibitory
interneurons. By adding a D1 receptor antagonist to the cells they
could reverse the effect of Abeta, increase IPSCs and decrease
pyramidal excitability whereas D1 agonists had similar effects
as Abeta. The underlying working model is that Abeta leads
to dopamine release in dopaminergic neurons that activates D1
receptors at FS inhibitory interneurons and thus inhibits GABA
release. As a consequence, the amplitude, frequency and total
number of IPSPs is decreased. The instantaneous decrement
of postsynaptic amplitude and frequency is also known as a
toxic effect of Abeta in the glutamatergic system (Ripoli et al.,
2014). Hence for the present modeling approach we decided to
implement this Abeta dependent impaired inhibitory function.
From the literature above, potential models for this disinhibiton
could be either a lower IPSP amplitude or a lower firing rate or a
combination thereof.

One already established drug that assesses the pathology
of hyperexcitation is memantine, an N-methyl-D-aspartate
(NMDA) antagonist. Memantine is recommended for the
symptomatic treatment of severe AD as a mono- and
combination therapy with cholinesterase inhibitors and should
be also considered as possible treatment in moderate AD in
the current version of the UK National Institute for Health and
Care Excellence (NICE) guidelines of dementia management
(Pink et al., 2018). However, normally it is considered as an
alternative or addition to cholinesterase inhibitors (Pink et al.,
2018). In contrast, memantine has shown in a current meta-
analysis its efficacy to improve cognitive function and reduce
behavioral disturbances in AD patients compared to placebo
(Kishi et al., 2017). The effect was particularly caused by the
moderate-to-severe AD patients (Chen et al., 2017; Kishi et al.,
2017) and was also observable in combination therapies with
acetyl cholinesterase inhibitors, with a significant superiority for
the combination of memantine and donepezil compared to any
cholinesterase monotherapies (Kishi et al., 2017). It therefore is
also recommended as possible first-line therapy in AD (Kishi
et al., 2017). In our study, we will evaluate “virtual memantine”
interacting with the Abeta-derived hyperexcitation.

Changes in electroencephalography (EEG) are described in
AD as a general and progressive slowing of brain oscillations.
In AD, cognitive decline and 18F-fluorodeoxyglucose (FDG)
PET signal decreases are linked with increased left temporal
power in the delta and the theta frequency bands, whereas
temporo-parieto-occipital alpha band coherence decreases and
delta coherence increases (Loewenstein et al., 1989; Rice et al.,
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FIGURE 1 | Biology-infered cause-and-effect model: alteration of the molecular Abeta pathway in AD cause hyperexcitation in the neural mass model. An altered

pathway from soluble Abeta monomers to oligomers to insoluble plaques leads to potentially neurotoxic Abeta accumulation (Hardy and Selkoe, 2002; Prasansuklab

and Tencomnao, 2013; Selkoe and Hardy, 2016) that can be quantified by PET. Region specific Abeta burden leads to disinhibition in the neural mass model (Busche

et al., 2008; Hazra et al., 2013; Ripoli et al., 2014; Ulrich, 2015; Ren et al., 2018)—thus building a bridge between molecular pathways and brain network modeling.

For the evaluation of the used mathematical model, see the discussion section and Figures 12, 13. Parts of the figure are modified from Deco et al. (2017).

1990; Malek et al., 2017). Moreover, the spatial appearance of
slow rhythms and hypometabolism in FDG PET have been
linked (Dierks et al., 2000; Babiloni et al., 2016). A recent study
produced similar findings in magnetoencephalography (MEG):
A global increase of theta and a frontal increase of delta were
correlated with entorhinal atrophy and glucose hypometabolism
(Nakamura et al., 2018). In summary, a global slowing has
been reported for AD, in particular a shift from alpha to theta
and delta activity (Loewenstein et al., 1989; Rice et al., 1990;
Dierks et al., 2000; Babiloni et al., 2016; Malek et al., 2017;
Nakamura et al., 2018).

As a consequence of these findings, we will focus in our
modeling approach on three main aspects of AD:

1. Spatial heterogeneous Abeta distribution in the brain
2. Hyperexcitation caused by impaired inhibitory function
3. Slowing of neural frequencies.

For Abeta, we propose a change in local neuronal excitability.
Therefore, we construct a model of a healthy “standard brain”
with an averaged structural connectivity (SC) with inferred
micro-scale characteristics of excitation in those areas where a
deposition of Abeta is found. We will infer this information
about the local distribution of Abeta from individual AV-45
(florbetapir) positron emission tomography (PET) images. AV-
45 is a PET tracer which binds to Abeta (Clark et al., 2011;
Ossenkoppele et al., 2015; Morris et al., 2016; Martinez et al.,
2017). Ante-mortem Abeta PET imaging can be related to post
mortem Abeta pathology in brain tissue (Murray et al., 2015),
corresponding to the THAL phases of Amyloid deposition (Thal

et al., 2002)—as well as Tau PET (Schöll et al., 2016) can be
related to the BRAAK stages of neurofibrillary tangles (Braak
and Braak, 1991, 1997; Braak et al., 2006). This has led to
updated diagnostic criteria for AD, wherein Abeta and Tau PET
can be used equivalently to neuropathology for AD diagnosis
(Jack et al., 2018).

We investigate three clinical diagnostic groups of age- and
gender-matched healthy controls (HC), individuals with mild
cognitive impairment (MCI) and AD patients [see method
section Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Database and Table 1]. For the simulated EEG and the
underlying local neural activity frequency we expect a slowing in
rhythms and particular a shift from alpha to theta activity with
disease progression. Finally, we will simulate the effect of an anti-
excitotoxic drug, the NMDA antagonist memantine for which we
expect a reversal of the observed EEG slowing.

We will in the following provide an overview of the
fundamentals of the here employed brain simulation technique.
The particular strength of computational connectomics (Ritter
et al., 2013; Kringelbach et al., 2015; Deco et al., 2017) or
brain network modeling (BNM) is to unite various kinds
of information in a single biophysically plausible framework
(Breakspear, 2017). BNM are typically structurally informed
(or constrained) by (a) geometric information of the brain,
e.g., via T1 magnetic resonance imaging (MRI), and (b) the
structural connectivity (SC) derived from the tractography of
diffusion MRI that is supposed to represent the white matter
fiber tracts (Jirsa et al., 2002; Schirner et al., 2015). The static
three-dimensional scaffold of the brain is brought to life through
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TABLE 1 | Basic epidemiological information of the study population.

Diagnosis n (female) Mean age σ Min. age Max. age Mean MMSE σ Min. MMSE Max. MMSE

AD 10 (5) 72.0 9.6 55.9 86.1 21.3 6.8 9 30

HC 15 (9) 70.6 4.7 63.1 78.0 29.3 0.8 28 30

MCI 8 (3) 68.2 6.4 57.8 76.6 27.1 1.6 25 30

It is a subset of the suitable ADNI-3 participants, that had 3T imaging and all necessary image modalities. Only data from Siemens scanners was used (because this was the biggest

subset of scanners).

the implementation of mathematical models, which generate
activity at each brain region or node of the network, the so-called
neural masses or population models (Spiegler and Jirsa, 2013;
Sanz-Leon et al., 2015; Cabral et al., 2017). Population models
are reduced descriptions of microscopically detailed neuronal
networks (Wilson and Cowan, 1972; Zetterberg et al., 1978;
Hindmarsh and Rose, 1984; Jansen and Rit, 1995; Wong and
Wang, 2006; Stefanescu and Jirsa, 2008; Sanz-Leon et al., 2015)—
inferred for example with methods of mean field theory (Deco
et al., 2008; Jirsa, 2009; Bojak et al., 2010). They describe the
so called meso-scale of the brain (Deco et al., 2008; Wright
and Liley, 2010), i.e., population activity as captured with
imaging methods like EEG, MEG and fMRI. Some neural mass
models (NMM) are linked to (and still reflect to a certain
degree) neurophysiological processes at the microscopic scale
while others mathematically describe the observed lumped
biological behavior not differentiating between underlying
neurophysiological processes (phenomenological models). Time
delays in the interaction between nodes (Jirsa and Kelso, 2000;
Jirsa et al., 2002; Spiegler and Jirsa, 2013; Sanz-Leon et al.,
2015) are critical for the spatiotemporal organization of the
evolving activity patterns in the brain (Petkoski et al., 2016, 2018).
Measured functional brain data such as EEG, MEG or functional
MRI (fMRI) are used to tune the mathematical models—i.e., to
fit selected free parameters of the model—to faithfully reproduce
selected empirical features (Honey et al., 2007; Ghosh et al., 2008;
Sotero and Trujillo-Barreto, 2008; Bojak et al., 2010; Jirsa et al.,
2010; Ritter et al., 2013; Sanz-Leon et al., 2015; Kunze et al., 2016).
By performing a systematic model parameter exploration, using
e.g., brute force exhaustive parameter space searches, Monte-
Carlo methods or weighted optimization algorithms, we can
identify the optimal parameter configuration to portray the
empirical functional phenomena. Thereby, we obtain indices
of the brains individual function in relation to the explored
parameters. This approach opens various possibilities to not only
describe dependencies (i.e., correlations), but to make statements
about potential underlying causal processes, i.e., mechanisms.

In this study we used TVB, an open source neuroinformatics
platform (Ritter et al., 2013; Sanz Leon et al., 2013; Sanz-Leon
et al., 2015; Stefanovski et al., 2016) (www.thevirtualbrain.org)
for large-scale BNM simulations. We have already established
the software TVB, and applied it to normative datasets, stroke,
epilepsy, brain tumors, and neurodegenerative disease. For
example, in stroke recovery, TVB models of patients were
built using the patient’s structural neuroimaging data, and the
dynamics of local populations were tuned to fit the patient’s

functional neuroimaging data (Falcon et al., 2015, 2016). The
obtained parameters for excitatory/inhibitory (EI) balance of
local neuronal populations predicted the patient’s response to
rehabilitation up to 1 year after therapy. Our work on epilepsy
was able to infer seizure propagation with a model based on
the patient’s own diffusion weighted MRI and stereotaxic EEG
(Jirsa et al., 2017; Proix et al., 2017). Moreover, positive surgical
outcome was strongly associated with the epileptogenic zone
that was excised as predicted by the patient’s TVB model.
Previous work with AD patients (n = 16), controls (n =

73), and persons with amnestic MCI (n = 35), all from the
Sydney Memory and Aging Study, confirms the benefit of
using the model parameters to characterize cognitive status
(Zimmermann et al., 2018).

TVB provides several types of NMMs. In the present study,
we selected a NMM that can simulate EEG and enables us to
implement disinhibition. The wiring pattern of cortical circuitry

is characterized by recurrent excitatory and inhibitory loops,
and by bidirectional sparse excitatory connections at the large-

scale (Schüz and Braitenberg, 2002). Several NMMs therefore

feature projection neurons aka pyramidal cells with long axons
projecting to distant cortical regions and local excitatory and

inhibitory feedbacks (Lopes da Silva et al., 1974; Freeman, 1975;

Jansen and Rit, 1995). The NMM by Jansen-Rit comprises an

elementary circuit of three interconnected NMMs (Figure 2)
describing a cortical area (or column). It has been used to

explain both epilepsy-like brain activity (Wendling et al., 2000,
2002) and various narrow band oscillations ranging from the
delta to the gamma frequency bands (David and Friston, 2003)
including intracranial EEG (Spiegler and Jirsa, 2013). The Jansen-
Rit model has been explored extensively on a single population
level (Wendling et al., 2002; David and Friston, 2003; Spiegler
et al., 2011) and in BNMs (Sotero et al., 2007; Merlet et al.,
2013; Kunze et al., 2016). The Jansen-Rit model has a rich
dynamic repertoire, which was extensively described before
(Spiegler et al., 2010).

Specifically we chose the Jansen-Rit model for the present
study due to the following considerations:

(1) The Jansen-Rit model comprises three interacting neural
masses (representing different cellular populations) in each
local circuitry: pyramidal cells, inhibitory, and excitatory
interneurons (Figure 2B). This is unique and opens the
possibility to simultaneously model disinhibition, i.e., an
impairment of the inhibitory neuronal subpopulation in one
neural mass, and an anti-NMDAergic effect, i.e., a downscaled
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FIGURE 2 | Postulated Abeta effect and its implementation to the Jansen-Rit model. (A) The virtual brains are based on averaged healthy connectomes and

constrained by the individual regional burden of Abeta [figure modified from Deco et al. (2017)]. (B) In our simulation, increased excitability is caused by a shift in E/I

balance, i.e., a slowed filter action in the transmission from inhibitory interneurons to pyramidal cells. In the background a histological representation of the cortical

layers: excitatory pyramidal cells (υ3) and excitatory interneurons (υ1) are (exemplarily) located in layer V (internal pyramidal layer), while the inhibitory stellate

(inter-neurons (υ2) are located in layer IV (internal granular layer). In layer I (molecular layer) we see the dendrites of the pyramidal cells, where the input from the

interneurons happens. The effect to the other neuron populations is represented by m1−3 [background is a modified version of figure 13 from Schmolesky (2005)],

license: https://creativecommons.org/licenses/by-nc/4.0/). (C) Schematic illustration of the three interacting neural masses in the Jansen-Rit population model. The

reduced inhibition is mediated by negative influence of the local Abeta burden on the inhibitory time constant τ i (see main text for more detailed explanation). This is

intended to lead to an increased activity and higher output of the pyramidal cell population. The excitatory impulse response function (IRF) is specified as he (t) = tHe

exp(–t/τe)/τe, the inhibitory IRF is specified as hi(t, β) = tHi exp(–t/τ i(β))/τ i(β) (Equations 1, 2). These IRFs can be translated into second-order ordinary differential

equations, see Equations 3–5. For explanation of the used variables, see Table 2 [figure modified from Spiegler et al. (2010)]. (D) Virtual EEG as the simulation output

(projection of oscillating membrane potentials to the scalp surface) reveals a shift from alpha to theta activity in AD participants. Shown is a 5 second period of

exemplary EEG channel at location T7 in participant 21 (HC, above) and 4 (AD, below). The ordinate is showing the dimensionless correlate for electric potential Φ.

The exemplary timeseries shows a typical simulation result in the study: in the alpha mode, which was the starting point of the Jansen-Rit model without the effect of

Abeta, it produces monomorphic alpha activity with amplitude modulations (above). Mainly exclusively in the AD virtual brains a much more irregular theta rhythm

appears (below).
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TABLE 2 | Used parameters for each Jansen-Rit element in the large-scale brain network (Jansen and Rit, 1995).

Parameter Description Value Unit

He Coefficient of the maximum amplitude of EPSP. Also called average synaptic gain (Equations 1, 3). 3.25 1 mV

Hi Coefficient of the maximum amplitude of IPSP. Also called average synaptic gain (Equations 2, 4). 22.0 1 mV

he(t) Amplitude of EPSP as a function of time (Equation 1). Variable 1 mV

hi (t, βa) Amplitude of IPSP as a function of time and local Abeta burden (Equation 2). Variable 1 mV

τe Excitatory dendritic time constant (Equations 1, 3, 5). 10.0 1 ms

τ i(βa) Inhibitory dendritic time constant as a function of Abeta load (Equations 2, 4, 13, 14). 14.29 ≤ τ i < 50 1 ms

υ0 Is the mean PSP threshold for 50% of maximum firing rate (Equation 11). 6.0 1 mV

υ1 PSP of excitatory population (Equations 3, 10). Variable 1 mV

υ2 PSP of inhibitory population (Equations 4, 10). Variable 1 mV

υ3 PSP of pyramidal population (Equation 5). Variable 1 mV

υ30 Outgoing projection of pyramidal population (Equation 10). Variable 1 mV

e0 The firing rate at the inflection point e0 = S(v = v0). The maximum firing rate is 2e0 (Equation 11). 2.5 1 s−1

rv Steepness of the sigmoid PSP-to-firing-rate transfer function (Equation 11). 0.56 (mV)−1

c31 Average number of synaptic contacts from excitatory to pyramidal cells (Equation 3). 108.0 1

c13 Average number of synaptic contacts from pyramidal to excitatory cells (Equation 3). 135.0 1

c32 Average number of synaptic contacts from inhibitory to pyramidal cells (Equation 4). 33.75 1

c23 Average number of synaptic contacts from pyramidal to inhibitory cells (Equation 4). 33.75 1

m3T,0 Input firing rate at the pyramidal cells (Equation 12). 0.1085 (ms)−1

G Global structural connectivity scaling factor. 0 ≤ G ≤ 600 1

Smax,τ Maximum value of the inhibitory rate/reciprocal of inhibitory time constant (Equation 14). 0.07 (ms)−1

S0,τ Minimum value of the inhibitory rate/reciprocal of inhibitory time constant (Equation 14). 0.02 (ms)−1

βmax 95th percentile value for the Abeta burden Aβ as the PET SUVR for all regions and all participants

(Equations 13, 14).

2.65 1

βoff Cut-off-value for the Abeta burden Aβ as the PET SUVR, from which one a pathological meaning is

suspected (Equations 13, 14).

1.4 1

transmission from excitatory interneurons to pyramidal cells,
at the same time.

(2) The ratio of excitatory and inhibitory time constants τ e/τ i
in the Jansen-Rit model is suitable to model the effect
of Abeta on the inhibitory interneurons (by affecting the
transmission from inhibitory interneurons to pyramidal
cells, Figures 2B,C) and is also known to have an effect
on the simulated neural frequency (Wendling et al., 2002;
Spiegler et al., 2010). Because oscillations emerge in the
Jansen-Rit model of a brain region due to the interplay
of positive and negative feedback loops (excitatory and
inhibitory interneurons), a change in one of the time
constants does not necessarily slow down or speed up
rhythms. However, if both excitatory and inhibitory time
constants, τ e and τ i are scaled simultaneously and uniformly,
the local equilibrium of interaction between the neural
masses remains the same but the time signature such as
frequency changes [see Figure 9 in Spiegler et al. (2010),
and see Chapter 3.1.3 “Model Equivalence” and Chapter
3.1.4 “Normalization” in Spiegler (2011)]. To conclude,
higher τ i does not necessarily lead to slower rhythms

and vice versa.
(3) Jansen-Rit can simulate physiological rhythms observable

in local field potentials (intracranially), stereo-EEG (sEEG),

scalp EEG, and MEG (Jansen and Rit, 1995; Spiegler et al.,
2010; Sanz-Leon et al., 2015).

Our hypothesized effect of local Abeta deposition as inferred
from subject-specific AV-45 PET is a decrease of local inhibition
(Busche et al., 2008; Grienberger et al., 2012; Limon et al.,
2012; Verret et al., 2012; Hazra et al., 2013; Ripoli et al.,
2014; Ren et al., 2018), which leads to a relatively stronger
local excitation. This theory allows us translation of the Abeta
distribution into the altered dynamics of a population model
(Equation 14 and Figure 3). We use an averaged healthy
SC to control the effect of individual differences in the
connectome. I.e., in our simulations the distribution of Abeta
is the only individual factor and can therefore be seen as
the cause of any differences between the participants. The
hypothesized microscale (synaptic), spatially distributed effect
is assumed to develop an effect at the population (mesoscale)
level and to eventually propagate to the large-scale of the
whole brain. A schematic illustration of this concept is provided
in Figures 1, 2.

METHODS

Alzheimer’s Disease Neuroimaging
Initiative (ADNI) Database
Empirical data were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W.
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FIGURE 3 | Graphs of the sigmoid transfer function of Abeta. The abscissa represents the Abeta burden βa, the ordinate represents the reciprocal Sτ (βa) of the

inhibitory time constant τ i. See Equation 14.

Weiner. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of MCI and early AD. For up-to-date information,
see http://www.adni-info.org.

In the presently ongoing trial, ADNI-3, the measurements
contain T1, T2, DTI, fMRI, Tau PET, Abeta PET, and FDG
PET for the participants. The total population of ADNI-
3 will contain data of about 2,000 participants (comprising
AD, MCI, and HC, see http://adni.loni.usc.edu/adni-3/). As
inclusion criterion for AD patients the diagnosis criteria
of NINCDS-ADRDA from 1984 were used, which contains
only clinical features (McKhann et al., 1984). Inclusion
criteria for both HC and MCI were a Mini Mental State
Examination (MMSE) score between 24 and 30 as well as
age between 55 and 90 years. For MCI in addition, the
participant must have a subjective memory complaint and
abnormal results in another neuropsychological memory test.
To fulfill the criteria for AD, the MMSE score had to be
below 24 and the NINCDS-ADRDA criteria for probable AD
had to be fulfilled (McKhann et al., 1984). Imaging and
biomarkers were not used for the diagnosis. For the full
inclusion criteria of ADNI-3 see the study protocol (page
11f in http://adni.loni.usc.edu/wp-content/themes/freshnews-
dev-v2/documents/clinical/ADNI3_Protocol.pdf). An overview
of the epidemiological characteristics of the participants included
in this study can be found in Table 1.

Data Acquisition and Processing
All images used in this study were taken from ADNI-
3. To reach comparable datasets, we used only data from
Siemens scanners with a magnetic field strength of 3T (models:
TrioTim, Prisma, Skyra, Verio). However, some acquisition
parameters differed slightly. See Supplementary Material with
Supplementary Tables 1–6 for the metadata. The following
imaging modalities were included: T1 MPRAGE. TE = 2.95–
2.98ms, TR = 2.3 s, matrix and voxel size differ slightly. FLAIR.
TE differs slightly, TR= 4.8 s, matrix size= 160 · 256 · 256, voxel
size differs slightly. DWI (only for 15 HC participants to create
an average healthy SC). TE = 56–71ms, TR = 3.4–7.2 s, matrix
size = 116 · 116 · 80, voxel size = 2 · 2 · 2, bvals = [0, 1000] or
[0, 500, 1000, 2000], bvecs = 49 or 115. Siemens Fieldmaps and

PET Data (AV-45 for Abeta). The preprocessing of imaging data
can be subdivided in that of structural images, DWI, and PET.

Structural MRI
We calculated an individual brain parcellation for each
included participant of ADNI-3. We followed the minimal
preprocessing pipeline (Glasser et al., 2013) of the Human
Connectome Project (HCP) for our structural data using
Freesurfer (Reuter et al., 2012) (https://surfer.nmr.mgh.harvard.
edu/fswiki/FreeSurferMethodsCitation), FSL (Smith et al., 2004;
Woolrich et al., 2009; Jenkinson et al., 2012) and connectome
workbench (https://www.humanconnectome.org/software/
connectome-workbench). Therefore, we used T1 MPRAGE,
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FLAIR and fieldmaps for the anatomical parcellation and DWI
for tractography. This consists of a Prefreesurfer, Freesurfer, and
Postfreesurfer part. We skipped the step of gradient non-linearity
correction, since images provided by ADNI already are corrected
for this artifact. Also, the MNI templates were used at 1mm
resolution instead of 0.7mm. In the Freesurfer pipeline we
skipped the step of downsampling our data from 0.7 to 1 mm3,
and all recon-all and intermediate steps were performed with the
original image resolution. We then registered the subject cortical
surfaces (32 000 vertices) to the cortical parcellation of Glasser
et al. (2016) using the multimodal surface matching (MSM, see
Robinson et al., 2014) tool. For the registration we used cortical
thickness, MyelinMaps, cortical curvature and sulc from the
subject and template surface. We mapped the parcellation on
the surface back into the gray matter volume with connectome
workbench. This volume parcellation surfed as the mask for the
connectome and PET intensity extraction.

PET Images
We used the preprocessed version of AV-45 PET. These images
had following preprocessing already performed by ADNI: Images
acquired 30–50min post tracer injections: four 5-min frames
(i.e., 30–35min, 35–40min...). These frames are co-registered to
the first and then averaged. The averaged image was linearly
aligned such that the anterior-posterior axis of the subject is
parallel to the AC-PC line. This standard image has a resolution
of 1.5mm cubic voxels and matrix size of 160 · 160 · 96. Voxel
intensities were normalized so that the average voxel intensity
was 1. Finally, the images were smoothed using a scanner-
specific filter function. The filter functions were determined in
the certification process of ADNI from a PET phantom. We
used the resulting image and applied the following steps: Rigid
aligning the PET image to participants T1 image (after being
processed in the HCP structural pipeline). The linear registration
was done with FLIRT (FSL). The PET image was than masked
with the subject specific brainmask derived from the structural
preprocessing pipeline (HCP). To obtain the local burden of
Abeta, we calculated the relative intensity to the cerebellum as
a common method in the interpretation of AV-45-PET, because
it is known that the cerebellum does not show relevant AV-45
PET signals and can therefore act as a reference region for inter-
individual comparability between patients (Clark et al., 2011;
Meyer et al., 2018). The intensity of gamma radiation, which
is caused by a neutralization reaction between local electrons
and the emitted positrons of the nuclear tracer is measured
for each voxel in the PET image and divided to the cerebellar
reference volume: the standardized uptake value ratio (SUVR).
We therefore receive in each voxel a relative Abeta burden
β which is aggregated according to the parcellation used for
our present modeling approach (see below). Thus, we obtain
a value βa for the Abeta burden in each brain region a. The
cerebellar white matter mask was taken from the Freesurfer
segmentation (HCP structural preprocessing). The image was
then partial volume corrected using the Müller-Gärtner method
from the PETPVC toolbox (Thomas et al., 2016). For this step
the gray (GM) and white matter segmentation from Freesurfer
(HCP structural preprocessing) was used. Subcortical region PET

loads were defined as the average SUVR in subcortical GM.
Cortical GM PET intensities were mapped onto the individual
cortical surfaces using connectome workbench tool with the
pial and white matter surfaces as ribbon constraints. Using the
multimodal parcellation from Glasser et al. (2016) we derived
average regional PET loads.

DWI
We calculated individual tractography only for included HC
participants of ADNI-3 to average them to a standard brain
template (see section Virtual Human Standard Brain Template
Out of Averaged Healthy Brains below). Preprocessing of the
diffusion weighted images was mainly done with the programs
and scripts provided by the MRtrix3 software package (http://
www.mrtrix.org).

The following steps were performed:

Dwidenoise. Denoising the DWI data using the method
described in Veraart et al. (2016).
Dwipreproc. Motion and eddy current correction using the
dwipreprocwrapper script for FSL (https://mrtrix.readthedocs.
io/en/latest/dwi_preprocessing/dwipreproc.html).
Dwibiascorrect. B1 field inhomogeneity correction using
ANTS N4 algorithm.
Diw2mask. brainmask estimation from the DWI images.
Dwiintensitynorm. DWI intensity normalization for the group
of participants.
Dwi2response. The normalized DWI image was used to
generate a WM response function. We used the algorithm
described by Tournier et al. (2013) in this step.
Average_response. An average response function was created
from all participants.
Dwi2fod. Using the spherical deconvolution method described
by Tournier et al. (2007) we estimated the fiber orientation
distribution using the subject normalized DWI image and the
average response function. From the DWI data a mean-b0
image was extracted and linear registered to the T1 image. The
inverse of the transformwas used to bring the T1 brainmasked
and aparc+aseg image (from HCP structural preprocessing)
into DWI space. The transformed aparc+aseg image was used
to generate a five tissue type image.
Tckgen. Anatomical constrained tractography (Smith et al.,
2012) was performed using the iFOD2 algorithm (Tournier
et al., 2010). Tracks in the resulting image were weighted
using SIFT2 algorithm (Smith et al., 2015). We mapped the
registered parcellation from Glasser back into the volume. The
cortical and subcortical regions than were used to merge the
tracks into a connectome.

EEG Forward Solution in TVB
After structural preprocessing with the HCP pipeline we used
the individual cortical surfaces and T1 images to compute the
person specific Boundary Element Models in Brainstorm (Tadel
et al., 2011). Scalp, outer, and inner skull were modeled with 1922
vertices per layer. Using the default “BrainProducts EasyCap 65”
EEG cap as locations for the signal space and the cortical surface
vertices as source space. The leadfield matrix was estimated using
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the adjointmethod inOpenMEEGwith the default conductivities
1, 0.0125 and 1 for scalp, skull and brain, respectively. Because
we are performing region-based simulations only (i.e., no vertex-
wise modeling), the leadfield matrix was simplified by summing
the coefficients of vertices that belong to the same region. EEG
signal was generated by matrix multiplication of the neural time
series with the lead field matrix.

Virtual Human Standard Brain Template
Out of Averaged Healthy Brains
We use the SCs of all ADNI-3 participants of the group
HC, derived from the diffusion-weighted and structural MRI,
to average them to one connectome matrix. Two of the HC
participants included in the average template were excluded for
simulations because it was impossible to compute their leadfield
matrices for EEG calculation. Therefore, we use an arithmetic
mean Cµ = (

∑

n
i =1 Ci)/n = (C1 + C2 + . . . + Cn)/n,

wherein Cµ is the averaged SC matrix, n is the number of HC
participants and Ci is the individual SC matrix. The SC matrix
and the organization of the corresponding graph can be found in
Figure 4. As it can be seen in Figure 4B, general characteristics
of physiological SCs as symmetry, laterality, homology, and
subcortical hubs are maintained in the averaged connectome. By
choosing an averaged SC instead of individual SCs, it was possible
to control all factors except of the individual Abeta distribution
supporting our intention to compare the simulated activity that
resulted from a “pathogenic” modification by Abeta.

Cause-and-Effect Model of Abeta in the
Jansen-Rit Model
The dynamics of the Jansen-Rit model show a rich parameter
dependent behavior (Spiegler et al., 2010). A bifurcation analysis
of the single population Jansen-Rit model (in contrast to network
embedded interacting populations) catalogs and summarizes the
repertoire of the model. Bifurcation here refers to a qualitative
change in the system behavior with respect to parameter changes.
Qualitative changes can be for instance the shift from waxing
and waning alpha rhythm as observed in resting human brains
to spike wave discharges as observed during epileptic seizures.
Bifurcation diagrams explore the qualitatively different states
[divided by bifurcations, see Supplementary Figure 1, from
Spiegler et al. (2010)]. The bifurcation analysis revealed an
important feature of the Jansen-Rit model, which is bistability,
that is, the coexistence of two stable states for a certain parameter
range (i.e., regime). The bistable regime allows the coexistence
of two self-sustained oscillatory states for the standard parameter
configuration (Jansen and Rit, 1995) and Table 2 of which one
state generates rhythmic activity in the alpha band and the
other one produces slower big spike-wave complexes in theta
rhythm. Changes in the kinetics of excitatory and inhibitory
PSPs (i.e., changes of time constants) change the model behavior
in a way which makes it suitable to scale, that is, to speed up
or to slow down local dynamics (Spiegler et al., 2010)—and
therefore to scale the global frequency, too. The results of the
systematic parameter exploration of the excitatory and inhibitory
time constants are summarized in Supplementary Figure 2. For

our study, we constructed the model to portrait a wide range
of physiological neural rhythms by using a fast limit cycle with
alpha and beta frequencies and a slow limit cycle with theta and
delta frequencies. To achieve this dynamic behavior of two limit
cycles, we used first a very low input on the pyramidal cells (firing
rate 0.1085/ms) and no input on the inhibitory interneurons to
not overlay the Abeta effects we introduce here. Therefore in
the “healthy” condition without the effect of Abeta, the system
operates near the subcritical Andronov-Hopf and the saddle-
saddle bifurcations (leftmost region in Supplementary Figure 1).
For the time constants, we used the area of alpha rhythm (blue
area in Supplementary Figure 2) as control condition without
any effect of Abeta. The detailed parameter settings can be found
in Table 2.

The information about the local Abeta burden is derived
from the individual AV-45 PET. As there exists no established
clinical standard for SUVR cut-off thresholds differentiating
normal form pathological Abeta loads. To scale the possible
neurotoxic effect in a realistic way, we need to approximate
at what point Abeta toxicity occurs. Following the literature, a
96% correlation to autopsy after Abeta PET was achieved via
visual assessment of PET images. The corresponding SUVR cut-
off was 1.2 (Clark et al., 2011). Another study showed a higher
cut-off point at SUVR ≥ 1.4 for a 90% sensitivity of clinically
diagnosed AD patients with an abnormal Abeta PET scan (Jack
et al., 2014). We use here the higher cut-off threshold of SUVR
≥1.4. Consequently, we propose a cause-and-effect model for
Abeta that is mapping molecular changes to computational brain
network models:

The inhibitory time constant τ i in each point is a function
of βa. The higher Abeta SUVR, the higher τ i and therefore the
filter action for the synaptic transmission is slower. We decided
for this implementation via a synaptic filter slowing because of
several reasons:

1. We are focusing on disease linked alterations of EEG
frequencies. Hence, we intended to assess a model feature
that is already known to be frequency-effective, i.e., it can
vary resulting simulated EEG frequencies. From former
explorations of the Jansen-Rit-model we know that the neural
frequencies are influenced by the ratio of excitatory and
inhibitory time constants (Spiegler et al., 2010).

2. Cellular studies are supporting the hypothesis of altered
inhibition as a cause for hyperexcitation (Hazra et al., 2013;
Ripoli et al., 2014; Ren et al., 2018)—hence we decide for
mapping Abeta on the inhibitory time constant leading to a
disturbed Excitatory-Inhibitory (E/I) balance.

3. By using a time-effective feature, we intended to differentiate
the micro-scale neurotoxic effect of Abeta on synaptic level
(Ripoli et al., 2014; Ulrich, 2015; Ren et al., 2018) from
connectivity-effective phenomena on a larger scale, which
could e.g., be modeled by an alteration of connection strength.

A detailed exploration of the effects that we introduce by this
model can be found in the discussion section.

We develop a transform function to implement the PET
SUVR in parameters of the brain network model. Specifically,
we postulate a sigmoidal decrease function that modifies the
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FIGURE 4 | Underlying average HC structural connectome. (A) SC Matrix of the underlying averaged SC, showing the DWI-derived connections weights. Three

hundred and seventy nine regions are in following order: 180 left cortical regions, 180 right cortical regions of Glasser parcellation (Glasser et al., 2016), 9 left

subcortical regions, 9 right subcortical regions, 1 brainstem region. It gets obvious the difference between interhemispherical commissural fibers (lower weights, with a

slightly pronounced diagonal between homologous regions) and intrahemispherical association fibers (higher weights). Moreover, we can observe the strong

connection pattern of the subcortical areas (above region 360). (B) Graph of the underlying SC. As a threshold, only the strongest 5% of connections were kept for

binary transformation to the adjacency matrix for the graph. Node positions are derived from the inner structure of the graph by a “force” method (Fruchterman and

Reingold, 1991), assuming stronger forces and therefore smaller distances between tightly connected nodes. It can be seen that the laterality is kept in the graph

structure (also for subcortical regions) and the whole graph is highly symmetric. Node size linearly represents the graph theoretical measure of structural degree for

each node. Most important hubs are subcortical regions. The shown features of symmetry, laterality, homology, and subcortical hubs indicate that the averaged SC

still kept its physiological characteristics.

default value for inhibitory time constant τ i (Equation 14 and
Figure 3). We assume the healthy brain without super-threshold
Abeta burden operates in a region of the parameter space, which
is close to a network criticality. A criticality describes an area
in the parameter space, where subtle changes of one variable
can have a critical impact on others (Strogatz, 2015) (in this
case bifurcations, see Supplementary Figure 1. The thresholding
“cut-off” value βoff–differentiating normal form pathological
Abeta burden—was chosen according to the literature, stating
that only after a certain level of tracer uptake a region is
considered pathological (βoff = 1.4, see above). The maximum
possible Abeta burden value βmax was chosen to be the 95%
percentile of the Abeta regional SUVR distribution across all
participants. The midpoint of the sigmoid was chosen such that
it was half the way between βoff and βmax. The steepness was
chosen such that the function converges to a linear function
between βoff and βmax.

Brain Network Model Construction and
Simulation
For the reasons stated in the above introduction, for our
simulation approach we selected the Jansen-Rit model

(Zetterberg et al., 1978; Jansen and Rit, 1995; Wendling
et al., 2000; David and Friston, 2003; David et al., 2006; Spiegler
et al., 2010, 2011; Sanz-Leon et al., 2015; Kunze et al., 2016).
The differential equations are presented in Equations 3–5
(Jansen and Rit, 1995). The employed parameter values can be
found in Table 2.

As a general approach, the impulse response function (IRF) of
a neural mass allows to transform an incoming action potential
into a PSP by using a linear time-invariant system. The IRF is
the transfer function of the system, which is convoluted with
the incoming input (action potentials) to calculate the output
(PSPs). The general form of the IRF is the systems output to a
(infinitesimal short and high) Dirac impulse and can be estimated
experimentally by using short impulses or step functions (Lopes
da Silva et al., 1974; Freeman, 1975).

The excitatory IRF he(t) is therefore specified as

he(t) = tHeexp(−t/τe)/τe, (1)

where τ e is the excitatory time constant (the time until the PSP
reaches its maximum), He is a coefficient of the PSP amplitude
and t is time.
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Similarly, the inhibitory IRF hi(t, β) is specified as

hi(t,β) = tHiexp(−t/τi(β))/τi(β), (2)

with the same variables as above. As we will describe below in
detail, the inhibitory IR is a function of the spatially distributed
Abeta burden β , which affects the time characteristics τ i(β) and
therefore hi(t, β) is a function of time and space.

These IRFs can be translated into second-order ordinary
differential equations by interpreting them as Green’s functions.
See Spiegler et al. (2010) for a detailed explanation of the
dimensional reduction used here.

The differential equations that describe the network of three
neural masses are now presented in Equations 3–5. The variables
used for the simulations are listed in Table 2:

Excitatory projections υ1 onto pyramidal cells at location a in
discretized space (a= 1, 2, . . . , N: N = 379 regions):











dυ1,a(t)/dt = υ4,a(t)

dυ4,a(t)/dt = He(m3T,a(t)+ c31S(c13υ3,a(t)))/τe

−2υ4,a(t)/τe − υ1,a(t)/τ
2
e

(3)

Inhibitory projections υ2 onto pyramidal cells at location a
in space:











dυ2,a(t)/dt = υ5,a(t)

dυ5,a(t)/dt = c32HiS(c23υ3,a(t))/τi(βa)

−2υ5,a(t)/τi(βa)− υ2,a(t)/τ
2
i (βa)

(4)

Projections υ3 of pyramidal cells a in space:











dυ3,a(t)/dt = υ6,a(t)

dυ6,a(t)/dt = S(υ30,a)(t)/τe

−2υ6,a(t)/τe − υ3,a(t)/τ
2
e ,

(5)

wherein c31, c13, c23 are the local connectivity weights between the
three neural masses. Equation (4) shows the spatial dependency
of the activity of inhibitory interneurons projected onto the
pyramidal cells by τ i(βa).

Taking into account the biologically plausible configuration
of the Jansen-Rit model shown in Figure 2, we use
several mathematical simplifications to reduce the model’s
dimensionality without loss of generality. Taking into account
that Equation (1) is valid for all excitatory input at dendrites
irrespective of the source allows for using one single IRF at the
pyramidal cells

h31 ≡ h3T ≡ he, (6)

and, thanks to linearity, translates the summation of excitatory
postsynaptic potentials

υ31 + υ3T ≡ υ1 (7)

into a sum of incoming firing rate, that is, m3T,a(t) +

c31 S(c13 υ3,a(t)) in Equation (3), describing the excitatory

projections onto pyramidal cells υ1. This simplification is
without restrictions, simply exploits the linearity of the operators
and reduces the dimensionality by 2. Furthermore, to adjust
notation, the postsynaptic potentials caused by the inhibitory
neural mass at pyramidal cells are denoted as

υ32 ≡ υ2, (8)

and its kernel is as

h32 ≡ hi. (9)

The projecting variable of one brain region at location a to other
regions in the network is the sum of excitatory and inhibitory
postsynaptic potentials at the local neural mass of pyramidal cells

υ30,a(t) = υ1,a(t)− υ2,a(t) (10)

transferred into a firing rate using a sigmoid. The general form of
this transfer function is

S(λ) = (Smax − Smin)/(1+ exp(rλ(λ0 − λ)))

+Smin : 0 < Smin < Smax, (11)

with, λ = υ , Sυ, max = 2e0 and Sυ , min = 0 for the potential-to-
firing-rate transfer.

Incoming mean firing rates m3T,a(t) at the pyramidal cells at
location a from other brain regions b = 1, 2, . . . , N, where N is
the number of 379 regions are given by

m3T,a(t) = m3T,0 + G
∑

bwa ,bS(υ30,b)(t), (12)

where m3T,0 is baseline input m3T,0 = const. for ∀t and all
locations ∀a. The global coupling factor G is a coefficient of
the incoming activity and therefore scales the connections wa,b

incoming at location a from all b provided by the SC. Because
of this, G is the crucial factor that moderates the influence of
the network to each neural mass and therefore mediates the
difference between an uncoupled systems (G = 0) and a strong
connected system.

In all populations, the state variable [υ1, υ2, υ3]a(t) are
the mean membrane potentials and the derivatives thereof
with respect to time t, namely [υ4, υ5, υ6]a(t) represent the
mean currents.

To model how the local Abeta load βa, measured by the Abeta
PET SUVR is affecting the inhibitory time constant we introduce
a transfer function (Figure 3). The primary assumption of this
transfer function is a dependency of the E/I balance on the
local Abeta concentration as described above. With higher
concentration of Abeta, we assume dynamic changes in the
inhibitory population of the neural mass that lead to local
hyperexcitation. To model this inside the existing Jansen-Rit
equations, potential candidate parameters would be Hi and τ i as
well as c32. The coefficient Hi is not a suitable candidate because
it has no direct physiological correlate. The coupling coefficient
c32 corresponds best to synaptic transmission from inhibitory to
pyramidal cells and therefore can be mainly seen as a receptor
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surrogate. The time constant τ i acts as a filter for IPSPs and
correlates best with the evidence of decreased IPSP firing rate
(Busche et al., 2008; Grienberger et al., 2012; Limon et al., 2012;
Verret et al., 2012; Hazra et al., 2013; Ripoli et al., 2014; Ren et al.,
2018) and is moreover well explored for the Jansen-Rit model
(Wendling et al., 2002; Spiegler et al., 2010). As described above,
we expect this transfer function to behave in an asymptotic way
for Abeta concentrations below and above a specific range. We
determined the lower border at βa ,off = 1.4 and the upper border
at the 95th percentile in our data at βa ,max = 2.65. By exploring
the effects of τ i in a single region model, we determined the
effective range 14.29ms ≤ τ i < 50ms. Based on this range we
defined the following three-conditional linear function











τi = τi,min forβa≤βa ,off

τi(βa) = m·βa − c forβa ,off< βa < βa ,max

τi = τi,max forβa≥ βa ,max

(13)

wherein τ i,min and τ i,max are the maximum and minimum values
for τ i,

m= (τ i,max-τ i,min)/(βa ,max-βa ,off)= 28.6 and
c=m · βa ,off-τ i,min = 25.7.

Since this function is not differentiable in βa ,off and βa ,max,
we used the sigmoid function Equation (12) instead, which
is continuous and differentiable. Moreover, a sigmoid can be
interpreted as the cumulative (of a logistic distributed) activity
acquired by the PET of a small brain volume (voxel) with a low
spatial resolution of about 2.5mm and above (Moses, 2011).

Therefore, the Abeta transfer function is defined as











τi(βa) = S-1(βa)

rβa = 2ln(Smax· 1s− 1)/(βa ,off − βa ,max)

β0 = (βa ,off +βa ,max)/2,

(14)

wherein rβa is the slope of the sigmoid, β0 is the midpoint of
the sigmoid and the coefficients are chosen to fit the conditions
explained before. In this function, τ i appears as its reciprocal
value τ i

−1 as it is implemented in the code of TVB. Because τ i
is a time in ms, the inverse of τ i is a rate of potential change,
and does not directly correspond to a firing rate. The Abeta
load affects the inhibitory rate following a sigmoid curve. The
rate ranges between Smin and Smax and the time constant ranges
consequently between 1/Smax and 1/Smin.

To simulate the model using TVB, physical space and time
are discretized. The system of difference equations is then solved
using deterministic Heun’s method with a time step of 5ms. We
used a deterministic method to avoid stochastic influences since
the simulation was performed in the absence of noise.

The system was integrated for 2min and the last minute
was analyzed in order to diminish transient components in the
time series due to the initialization and settle the system into a
steady state.

We explore a range of 0 ≤ G ≤ 600 which provides
an overview about the possible population level behaviors at
different states of network coupling. Because the coupling factor
G has a crucial influence on the external input on the neuronal

populations, this allows different regions to operate in different
dynamical regimes, as it can be seen in the bifurcation diagrams
of Supplementary Figure 1. Global coupling factor G that was
sampled between G = 0 (i.e., isolated regions) and G = 600 with
a step size of 1G = 3. The initial values were taken from 4,000
random time points for each state variable in each region. The
length of 2min for the simulations was chosen with the aim to
diminish possible transient components due to the initialization
of state variables at t = 0. For analysis we used only the second
minute of the simulated signals. No time delays are implemented
in the large-scale network interactions since they are not required
for the emergence of the here evaluated features and setting them
to zero increases reduces required computation resources.

Spectral Properties of the Simulated EEG
In TVB, we simulate EEG as a projection of the oscillating
membrane potentials inside the brain via its electromagnetic
fields to the skin surface of the head (Sanz-Leon et al., 2015)
using the individual lead field matrices which take into account
the different impedances of white matter, gray matter, external
liquor space, pia and dura mater, the skull and the skin. Our lead-
field matrices considered the impedances of three compartment
borders: brain-skull, skull-scalp and scalp-air (Jirsa et al., 2002;
Bojak et al., 2010; Litvak et al., 2011; Ritter et al., 2013).
The postsynaptic membrane potential (PSP) considered for the
projection is the one of the pyramidal cells, as they contribute the
mayor part to potential changes in EEG (Kirschstein andKöhling,
2009). The PSP is calculated by summing the synaptic input from
excitatory and inhibitory subpopulations to the pyramidal cells.
The baseline PSP was derived as the mean PSP across time for
every region. For the LFP or EEG peak frequency, we computed
the power spectrum using the “periodogram” function of the
Scipy python toolbox (Jones et al., 2001). From the spectrogram
the “dominant rhythm” was identified as the frequency with the
highest power.

RESULTS

Abeta-Inferred Dynamics Lead to
Individual Spectral Patterns
We analyzed the dominant frequency in the simulated EEG
and regional neural signal (referred to as local field potential
(LFP) (Figures 5G–J).

We observed a physiologically looking irregular behavior with
two frequency clusters in the alpha and in the theta spectrum
(Figure 5G). This behavior is expressed in the area of lower global
coupling G for all 10 AD participants and in 3 out of 8 MCI and 4
out of 15 HC participants. The irregular time series and the broad
continuous frequency spectra (Figure 5B) of network regime in
0 < G < 150 are indicative for deterministic chaos. Such chaotic
network regimes in a BNM have already been reported using
the same local dynamic model [Figure 2 in Kunze et al. (2016)].
Beside this emerging chaotic behavior in our simulations other
phenomena occurred in the parameter space exploration: a state
of hypersynchronization between regions (Figures 5H,J) and a
state of a “zero-line” with no oscillations that clearly does not
reflect a physiological brain state (Figures 5I,J).
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FIGURE 5 | Spectral behavior in individuals of the different groups. (A–F) Selected timeseries and spectrograms. On the left: power spectral density of neural activity

for an exemplary region with different values for G. Abscissa is frequency, ordinate is an estimate of the spectral power (dimensionless equivalent of amplitude per

1Hz). Colors are representing the EEG frequency bands from delta to beta, indicated with Greek letters (note that this is regional neural activity, not EEG).

Corresponding time series on the right: neural activity at single regions, each showing 5 s. Abscissa is time, ordinate is a dimension-less equivalent of the electric

potential. (A) Shows an irregular, amplitude modulated alpha to beta rhythm, (B) an irregular theta with some delta and alpha inside. In (C) we can observe a

monomorphic spike signal with a theta/delta frequency of 3Hz and higher order harmonies. (D) Shows a monomorphic (high) alpha rhythm, (E) shows the zero-line

with a continuous power spectrum. (F) Time series of 10 regions in a G area of hypersynchrony. We can see here the synchronized signals in theta rhythm and

multiple harmonies of higher order in the spectrogram. (G–J) Four exemplary participants with different types of frequency behaviors along the range of coupling.

Shown are the regional simulated dominant frequencies (y) along global coupling G (x) for individual exemplary participants 4, 8, 12, and 23. See

Supplementary Table 7 for participant IDs. Color indicates the density of regions with the same coordinates. The sources of the timeseries on the left (A–F) are

marked in the plots. (G) Irregular or chaotic rhythm with two clusters in alpha and theta. AD participant 8. (H) Chaotic behavior for lower G, then harmonic and

hypersynchronization. AD participant 4. (I) Early zero-line, with monomorphic alpha activity at very low G. HC participant 23. (J) Harmonic to zero-line rhythm, with a G

area of hypersynchrony in alpha and theta, depending on G.

In order to locate the individual simulations in the
spectrum of possible dynamics, meaning in the range of
possible Abeta load, we examined extreme values of Abeta
distribution. The virtual brains with a mean Abeta load of zero
(Supplementary Figure 3A) and with the maximum Abeta load
at all regions (Supplementary Figure 3B), we see as expected
for the Abeta-free system a behavior similar to the low-Abeta-
containing HC participants. This is not surprising, because when
the HC subjects do not have a high Abeta signal, the dynamics
will converge to those with zero Abeta, which is in fact then
only determined by the underlying standard SC and therefore
remains the same for all participants. However, the homogeneous
application of maximum Abeta burden does not lead to an
AD-like pattern but shows a zero-line at the whole spectrum.

To give a mathematical explanation of those phenomena,
we related each participants Abeta-burden to the corresponding
inhibitory time constant τi and used former analyses of the
uncoupled local Jansen-Rit model (Spiegler et al., 2010) to
estimate the bifurcation diagrams for the coupled system in
this study (Figure 6). Shown diagrams allow to predict and
explain the occurrence of alpha and theta rhythms or zero-lines
depending on the underlying Abeta burdens. The variation of
τi by local Abeta burden fundamentally influences the systems
bifurcations by shifting the bifurcation point along the range

of external input to the pyramidal cells. As a consequence,
different values of Abeta lead to a variable occurrence of two
limit cycles and a stable focus. Therefore, for a single region with
constant external input on pyramidal cells, depending on Abeta
the region might be in an alpha limit cycle, in a theta limit cycle,
in a bistable condition where both cycles are possible or in a
stable focus.

Simulated EEG Slowing in AD Is Caused by
Heterogeneous Abeta Distribution
Figure 7 displays how the mean dominant rhythms differ
between the groups. In the range below G = 100 we find
a slowing in the AD group. Since in the range of lower G
all three groups exhibit realistic frequency spectra and no
zero-lines we consider this range of G as “physiological.”
Significant differences appear between AD and non-AD for
ranges of high and low G and also for high alpha and low
theta rhythms (Figure 7). The heterogeneous distribution of
Abeta (in contrast to an averaged homogeneous distribution)
plays a crucial role in the development of this AD-specific
slowing. This is indicated by simulations with the mean
averaged Abeta of each participant mapped on all regions.
The simulations revealed a regionally more homogenous
behavior in all groups (Supplementary Figure 4). Moreover,
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FIGURE 6 | Exemplary bifurcation diagrams of the Jansen-Rit model for three different inhibitory time constants linked to three different local Abeta burdens. The

modulation of the inhibitory time constant τi by Abeta induces shifts in the corresponding bifurcation diagrams. All bifurcation diagrams (A,E,I) show the postsynaptic

potential υ30 of pyramidal cells (y) depending on the pyramidal input (x) for uncoupled simulations modified from Spiegler et al. (2010). Contrary to the implementation

we used for our present TVB modeling approach, here the bifurcation diagrams explore the behavior in an uncoupled system, and in accordance with (Spiegler et al.,

2010) the IPSP amplitude coefficient Hi changes inversely to τi to keep the product of synaptic gains and dendritic time constants constant. The default input m3T,0

on pyramidal cells starts at a firing rate of 108.5/s. Because of the potential-to-firing-rate transfer function (Equation 11), global scaling factor G is affecting both the

input currents and the firing rates. For higher values of G, the input on pyramidal cells is expected to increase. First Columns, panels (A–D): Bifurcation diagram with

the default time constant of 14ms. This appears in the simulation if the Abeta SUVR is below the clinical cut-off 1.4, because then the time constant is unaffected

according the transfer function in Equation 14. An Abeta burden below 1.4 SUVR corresponds to THAL phase 0 (Murray et al., 2015), i.e., that we expect no Abeta

pathology in such a brain region. In this situation, there is only one limit cycle existing, which produces a frequency in alpha range (A). After increasing the input on the

pyramidal cells, the alpha cycle collapses and transforms to a stable focus, where no oscillations appear in the absence of noise. This is the “zero-line” in our results.

(B,D): HC participant 22 shows monomorphic alpha for lower G (green and blue line) and zero-line for higher G (red line). The distribution of regions with this

dynamical regime is shown in panel (C): almost all regions of participant 22 are in this “alpha regime” with an inhibitory time constant between 14 and 20ms [red

columns in panel (C)]. This homogeneity explains the low variance of rhythms shown in the lower G ranges of (B), because all regions are in the same limit cycle and in

the absence of artificial noise there is no possibility for an amplitude modulating factor. The “alpha regime” appears for all regions with an Abeta PET SUVR below

1.95. This corresponds to neuropathologic THAL phases 0, 1, 2, and 3, i.e., the regions will have no severe Abeta pathology (Murray et al., 2015). Second column,

panels (E–H): Bifurcation diagram with a time constant of 22ms, which corresponds to an intermediate Abeta load and a bistable dynamical regime which occurs for

time constants between 20 and 28ms. This corresponds to Abeta PET SUVRs between 1.95 and 2.15 (THAL phase 4 or 5), i.e., moderate-to-severe Abeta pathology

(Murray et al., 2015). (E) Starting at the blue line (initial condition in alpha cycle), with an increased input on the pyramidal cells (e.g., by the network) it gets possible to

reach the second limit cycle, which produces a theta rhythm and coexists with the alpha cycle while the pyramidal input is in a specific range (120/s−170/s). When

the input is increased too much (e.g., by many connections of the network or by increased coupling factor G), the theta cycle disappears and the system jumps back

to the alpha cycle and later on to the stable focus, which shows no oscillations in the absence of noise. This can explain some of the spectral behaviors we observed

typically in the AD group (F,H): It starts with chaotic rhythms in alpha (blue line) and theta (red line) and in the shown AD participant 1 then gets synchronized to either

alpha or theta. With higher couplings, the frequency gets more probably synchronized to alpha (green line), because higher G indicates a higher pyramidal input and

therefore a higher attraction of the alpha cycle. (G) Remarkably for the shown participant is the fact that the bistable behavior is caused by a very small amount of

regions in bistable regime, which propagate the theta rhythm to most other regions in the area 200 < G < 300. Third column, panels (I–L): Bifurcation diagram with a

time constant of 50ms, which correlates to a 95th percentile Abeta load and above. Those high Abeta burdens lead to a theta dynamical regime, which occurs for

time constants between 28 and 50ms. In clinicopathology, this corresponds to Abeta PET SUVRs above 2.15—about 90% of those patients are can be classified as

THAL phase 5, i.e., they have severe Abeta pathology (Murray et al., 2015). In comparison to panel (E), the alpha limit cycle disappeared in panel (I). Therefore, we

expect only theta rhythms or an activity at the stable focus. The theta cycle now begins shortly above the initial condition of pyramidal input without the alpha cycle in

between. For an initial input of 108.5/s the system is in a stable focus. This may explain why in the simulation with maximum Abeta load at all regions (so each with a

time constant of 50ms) we see a zero-line without alpha at lower G values (Supplementary Figure 1). (J,L) A state of theta-only rhythm appeared in few AD

participants at higher Gs (blue line). In the spectral behavior of AD participant 7, we can moreover observe a strong bistable pattern with chaotic frequency

distributions for G < 300. This is likely caused by the high amount of bistable regions (K), while the synchronization to theta in higher G is an effect of the high

proportion of regions in theta regime.

with homogeneous distribution of Abeta the slowing in AD
participants does not appear: we don’t see a significant change
in the theta band (Figure 7B). This is a strong indicator for
the importance of the individual Abeta distribution and a proof
for the necessity of heterogeneous excitotoxic effects for the

creation of neural slowing. However, the absence of slowing in the
simulations with homogeneous Abeta distribution does not proof
the importance of a specific spatial Abeta pattern. In contrast, it
only shows that there must be few regions with very high Abeta
pathology to slow down the system (see Figures 6F–G).

Frontiers in Computational Neuroscience | www.frontiersin.org 15 August 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Stefanovski et al. The Virtual Neurodegenerative Brain

FIGURE 7 | AD-specific slowing in EEG and LFP and influence of the heterogeneous pattern of Abeta distribution to the spectral behavior. (A,B) The panels show the

“spectrograms,” more precise the amount of regions with a dominating frequency averaged for all G values and the subjects of each group. Below, black bars are

indicating significant differences for all 90 examined frequencies by a Kruskal-Wallis test (compared were the means of the amount of regions in each group having this

particular frequency). In (A), for the empirical Abeta distribution pattern, the red dotted line (AD) diverges from the non-AD participants with a strong presence of

dominating theta (peak at 4Hz) and the absence of zero-line rhythm (except of very few regions, see arrow). Significant differences only appear between AD and each

HC and MCI, namely for high alpha/low beta and for theta/delta (black bars). At f = 1.2Hz (red bar), the significance level is also achieved when using a strict

Bonferroni correction (p < 0.05/90). In contrast, (B) shows the same plot if the spatial distribution was “blurred”: There is no visual difference between the behavior of

the three groups, and also no theta rhythm is existing in the simulations. All groups have a dominating zero-line behavior averaged across the full G range (see arrow).

However, there are some frequencies that significantly differ between AD and each HC and MCI in alpha / beta range, which could be also visually related to small

peaks at the plots beside. In theta and delta, where we would expect to see the slowing, there is no significant difference at all. Due to readability, for (A,B) the y-axis

was limited to the amount of 100 regions. In (A), the zero-line peak of HC and MCI ends at 211, in panel (B) all zero-line peaks end at 323. The different spectra lead

to different G-dependent mean frequencies for the groups, which significantly differ in areas of high and low G: (C,D)—comparison of EEG and LFP between groups.

Mean dominant rhythms across all simulated EEG channels (C) and region-wise simulated LFPs (D) for all analyzed global coupling values. The frequencies of AD

patients are significantly different in EEG as well as in the regional neuronal population signal. Filled shapes and thin lines represent the quantiles at 0.95 and 0.05 for

each group. (C) For EEG one can see that the 95%-quantile of AD and HC as well as MCI is not overlapping in the physiological area of lower G, where AD tends to

slower frequencies. In a Kruskal-Wallis test, the difference between the means of all channel frequencies per subject in the three groups is significant for AD and

non-AD at 0 < G < 60 (each AD to HC and AD to MCI: p < 0.0001). They are also significantly different in the area of higher G, where AD is faster—at 450 < G < 470

(each AD to HC and AD to MCI: p < 0.0001). (D) For simulated regional neural signal the slowing effect is less prominent. The broader range of frequencies for AD is

represented by the high and low limit of the 95%-quantile. This can be related to the two frequency clusters in AD at alpha and theta, which are not frequently apparent

in non-AD (as in Figure 5). In a Kruskal-Wallis test, the difference between the means of all regional frequencies per subject in the three groups is only continuously

significant for AD against HC at 400 < G < 450 (AD compared to HC p < 0.0001). For the other comparisons, only isolated G values deliver significant differences in

the area of low G (HC and MCI) and intermediate G (AD and MCI). Because of the big amount of tests necessary to test all global coupling values, none of the tested

G values achieved Bonferroni corrected significance. However, because we assume that neither the frequencies at (A,B) nor the G values at (C,D) are independent

variables (which is also the reason for the “grouped” clusters of significance at alpha and theta and G = 50 and G = 450), a Bonferroni correction is not necessary.
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Intra-individual Ratio of High vs. Low
Abeta Burden Across All Regions
Determines Simulated EEG Frequency
Spectrum—Distinct Spatial Configurations
of Abeta Do Not Matter for Slowing
We next examined how LFP/EEG slowing is related to the
underlying Abeta burden (Figure 8). We revealed significant
linear dependencies for all groups between Abeta burden and
frequency. We found a strong inverse dependency for AD (R2

= 0.625), i.e., an Abeta-dependent EEG slowing. In contrast, for
non-AD participants the relation was revers, i.e., higher values of
Abeta caused EEG acceleration.

To test if specific regions are more important for the observed
phenomena, we had to overcome the bias that only specific
regions were strongly affected by Abeta. I.e., for the empirical
Abeta distributionwe cannot say e.g., for a regionwith highAbeta
if it shows EEG/LFP slowing only because of its high Abeta value
or because of its specific spatial and graph theoretical position in
the network. Therefore, we next performed simulation with 10
random spatial distributions of the individual Abeta PET SUVRs
for the 10 AD participants. In these simulations, the neural
slowing appeared similarly to the empirical spatial distributions
of Abeta (Supplementary Figure 5), which indicates aminor role
of the distinct spatial patterns of Abeta. Instead, the ratio of
regions corresponding to the three different dynamical regimes
(alpha, theta, and bistable) determined the simulated frequency
spectrum (Supplementary Figure 6). For an optimal value of
G with 100 < G < 150, the ratio of regions with an Abeta
value in theta regime best corresponded to the ratio of regions
with theta frequency in LFP. Moreover, the number of regions
in different regimes enables to predict the individual spectral
behavior across G. This analysis shows the crucial role of G for the

simulation dynamics. There might exist different optima of G—
dependent on what phenomenon in the simulation is of interest.
But for a specific phenomenon, in this case the correspondence
of underlying Abeta PET to frequencies, we can find a narrow
optimum of G wherein a specific behavior occurs.

The results of random spatial distribution of Abeta PET
SUVRs were also used for a parameter space exploration
(Figure 9). The analysis reveals that (1) alpha rhythms are only
apparent for low time constants with τi < 30ms, but for the full
spectrum of G, more probable for lower G values; (2) relevant
amounts of bistable rhythms are only apparent for 17ms < τi
< 39ms and G > 120; (3) theta rhythms are present across
almost the full spectra of G and τi, with an equal appearance
across G, but with a local minimum at τi ≈ 18ms, where
the system is dominated by alpha and bistable rhythms. This
exploration demonstrates two major insights. First, it confirms
the crucial role of τi for the appearance of alpha or theta rhythms
as we expect it out of the (non-coupled) bifurcation diagrams
of Figure 6. Network effects are present (e.g., there are theta
rhythms for low values of τi), but play a minor role here. Second,
the value of G does not significantly affect the probability of theta
rhythm, except of an alpha-theta shift for low τi < 20ms and
higher G > 160. This is caused by the coexistence of stable focus
in alpha regime and theta limit cycle in theta regime for high
pyramidal input (Figures 6A,I).

Neural Slowing Propagates to Central
Parts of the Network Independently of the
Spatial Abeta Distribution
In the analysis of spatial distribution in relation to the
organization of the underlying SC network (Figure 10), it can
be seen that unless Abeta is distributed more peripherally, the

FIGURE 8 | Abeta-dependent slowing of LFPs is specific for AD participants. Meanwhile there is a significant linear dependency between Abeta and LFP frequency

for all groups, only for AD a higher burden of Abeta leads to a decrease of frequency. HC and MCI show inverse correlations. Plotted are density plots showing the

dependency between the local Abeta loads and LFPs. (A) HC group, (B) MCI group, and (C) AD group. The matrices are containing the resulting regional peak

frequencies for all examined coupling values G for all participants. Linear regressions (black lines) revealed highly significant regression coefficients (p < 0.0001). A

strong linear dependency between mean Abeta and LFP, that explains the greater part of the variance, is only apparent in the AD group (C). 37.5% of the variance yet

cannot be explained by this linear dependency. Moreover, only for AD the dependency leads to slower frequencies for higher Abeta SUVRs, meanwhile HC and MCI

have slightly faster frequencies for higher Abeta SUVRs. Visually one can see at least four contributing patterns in the AD group (C): (1) the linear decrement of

frequency for higher Abeta, shown by the regression line, (2) the two frequency clusters (orange spots) at alpha and theta, (3) some regions with the zero-line behavior,

particular those with low Abeta (thin line at the left, with SUVR of about 1.5), and (4) a broad variability of frequencies for regions of the same Abeta SUVR (horizontal

distribution). These phenomena cannot be explained completely by a linear dependency and moreover not by a linear system at all. The criticality that divides the

dynamics into three different frequency modes (zero, alpha and theta) is a phenomenon of the Jansen-Rit model as a non-linear system (Figure 6 and

Supplementary Figure 6) and the broad frequency distribution is (probably) a network effect.
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FIGURE 9 | Alpha and bistable rhythms only appear in a specific part of the parameter space between G and τi. This parameter space exploration was done by

coupled simulations and therefore includes network effects. Frequency (by color) is presented dependent on global coupling G (x) and inhibitory time constant τi (y).

Projections to G and τi are shown beside the matrix plot, here the frequencies are classified into alpha rhythm (f > 8Hz), theta rhythm (f < 5Hz) and bistable rhythms

(5 < f < 8). No relevant proportion of zero-lines appeared in the simulations. The difference to empirical EEG classes (with slightly lower borders for theta, meaning

more exactly a theta/delta rhythm) are reasonable here because of the knowledge of only two different limit cycles in the examined configuration of the Jansen-Rit

model (Figure 6). This is also the reason for the classification of frequencies between 5 and 8Hz as bistable. The exploration was non-systematically performed by

using all regions of random distributed Abeta SUVR values of the 10 AD participants, with 10 iterations of randomization per participant. However, except single values

of τi, the full spectrum of τi could be explored. Single empty columns are filled with neighbor columns for better readability. In principle wee the an “isle” of alpha for

low coupling and low time constant, while the rest of the dynamics is dominated by theta and delta. A full frequency spectrum (also green and yellow colors) is only

apparent near the borders of the alpha isle in higher coupling.

Abeta-dependent effect of neural slowing is focused to central
parts of the network. Even a random distribution of Abeta SUVRs
leads to this effect (Figures 10E,F), indicating that this is a
network effect. Probably this phenomenon is caused because the
slowing effects are not only affecting the region itself, but also its
local circuitry and neighbored regions. Hubs with a high degree
and many close neighbors are therefore more probable of being
affected by slow rhythms propagated by other regions. To relate
this to empirical facts: We know from our data (Figure 10A) that
Abeta is not deposited in hubs, but more in peripheral regions
of the networks. This shows, however, how the consecutive
pathologic slowing effect is afterwards focused to central and
important parts of the networks. A weak peripheral affection of
the inhibitory system therefore disturbs the full system seriously.

Virtual Therapy With the NMDA Antagonist
Memantine
The former analyses have shown that Abeta-mediated simulated
hyperexcitation can lead to realistic changes of simulated brain

imaging signals in AD such as EEG slowing (Figures 5, 6). We
therefore wanted to know if an established way to protect the
brain of the hyperexcitation, which is the NMDA antagonist
memantine, can lead to functional reversibility.

The idea in our model is now that in theory memantine
acts anti-excitotoxic via its NMDA antagonism and should
therefore be able to weaken the hyperexcitation we introduced
to the system by Abeta (Figure 11). As mentioned above,
the local coupling parameter c31 represents the main part of
the glutamatergic transmission and can therefore also be seen
as a surrogate of NMDAergic transmission (Figure 11A). We
homogeneously increased the default value of c31 stepwise to
observe the effects on the system. The analysis of the Jansen-Rit
equilibria supports the concept of lower excitation introduced
by lower c31 (Figures 11B,C). The equilibrium manifold is the
manifold of fixed points (the equilibrium) that is projected onto
the PSP at the pyramidal cells as a function of two parameters,
that is, the local excitatory-to-pyramidal coupling coefficient c31
and the input on pyramidal cells m3T,0. The manifold is the

Frontiers in Computational Neuroscience | www.frontiersin.org 18 August 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Stefanovski et al. The Virtual Neurodegenerative Brain

FIGURE 10 | Theta rhythms affect central parts of the network independently of the spatial distribution of Abeta. (A) Abeta PET SUVR for AD participants: the

distribution is diffuse along the cortex with no strong affection of subcortical hubs. This well corresponds to the neocortical stage C of Abeta distribution (Braak and

Braak, 1991, 1997; Braak et al., 2006). (B) There is no linear dependency between the Abeta SUVR and the structural degree, as the graph above already indicates.

In contrast to that, (C) shows the distribution of theta rhythm, computed as the proportion of each regions simulations (201 for different values of G for 10 subjects)

with dominant theta rhythm (here simplified as a frequency that is below 8Hz and not zero, so more precise the theta-delta-band). The patterns are not consistent

with those of panel (A). This indicates that not the distinct region affected by Abeta is crucial, but more its local circuitry. Moreover, one can observe that regions with a

higher degree often have a high appearance of theta rhythm (D) and show a linear dependency with R2 = 0.183, in contrast to the distribution of Abeta (B), which

hasn’t shown such a dependency. This phenomenon is stable also for the random spatial distribution of Abeta SUVRs (E): Here we see even a stronger dependency

(R2 = 0.29) between structural degree and theta rhythm (F). This is remarkable because (unless the spatial distribution is random) the “pathologic” theta is focused on

the hubs. This indicates that there must be network effects which concentrate the appearing theta to those regions with higher degree.

object onto which the system is moving or collapsing dependent
on the parameters—in a way the equilibrium that underlies the
dynamics of the system. The virtual memantine leads to a partial
reversibility of the altered dominant frequencies in AD compared
to HC/MCI (Figure 11D). Virtual memantine increases the
mean dominant EEG frequency. These simulated functional
effects do not imply reversibility of neurodegeneration, but they
illustrate how pharmacological intervention can theoretically
counteract those processes. This observation provides first a
potential mechanistic explanation of the pharmacodynamics of
memantine. Second, it shows that TVB in general and the
Abeta-hyperexcitation model of this study in particular are able
to test the efficacy of treatment strategies such as drugs and
have therefore the potential to be used for the discovery of
new treatment options. Finally, it supports the concept of this
study, where the impaired inhibitory function is modeled by an
increased synaptic delay and it indirectly indicates that higher
Abeta (by increasing τi) has led to a local hyperexcitation. It is
to mention, that in an uncoupled network both the decrease of
c31 (memantine) and the increase of τi (by Abeta) would have the
same effect (Figures 11B,C, 13C,D). In a coupled simulation, the
effects are in contrast antagonistic. One reason for this seems to

be, that the effect of virtual memantine is focused to central parts
of the network (Figures 11E,F)—the same parts, where slowing
(Figure 10) and Abeta-derived hyperexcitation (Figure 12) are
occurring. The homogeneously applied memantine evolves its
action, guided by the topology of the SC network, along the
same path as the hyperexcitation is distributed. The effects
of altered delay of GABA transmission can be reversed by
adjusting NMDA transmission at another subset of the local
population model. This illustrates that theoretically an alteration
of the inhibitory transmission dynamicsmay lead to disinhibition
causing hyperexcitation in downstream populations, which is
reversible by reduction of excitatory input.

DISCUSSION

Local Abeta-mediated disinhibition and hyperexcitation are
considered candidate mechanisms of AD pathogenesis. In TVB
simulations, the molecular candidate mechanism has led to
macro-scale slowing in EEG and neural signal with a particular
shift form alpha to theta previously observed in AD patients
(Loewenstein et al., 1989; Rice et al., 1990; Dierks et al.,
2000; Babiloni et al., 2016; Malek et al., 2017; Nakamura

Frontiers in Computational Neuroscience | www.frontiersin.org 19 August 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Stefanovski et al. The Virtual Neurodegenerative Brain

FIGURE 11 | Modeling NMDA antagonism by virtual memantine. We modified the local dynamics for the AD group by homogeneously decreasing the coefficient c31,

which represents the coupling from excitatory population to the pyramidal cell and therefore is a potential surrogate for NMDA receptor activity (A). The coefficient c31
was decreased by 25% to model the effect of memantine and was applied homogenously to all regions for the 10 AD participants. (B) Equilibrium manifold of the

Jansen-Rit model, wherein υ30 is a function of the model input m3T,0 and c31 for the median Abeta load of AD participants β = 2.1447. Note the decrease of PSP at

pyramidal cells υ30 with increasing c31 for a constant input level—this can also be seen in the top view of the same three-dimensional plot in panel (C), where our

view is parallel to the z axis. The slope of the manifold with the input decreases with increasing c31. Blue areas indicate the lower branch of the equilibrium manifold

and red areas the upper branch (white areas are unstable). This demonstrates, as we suggested, that when maintaining the same input level, a lower c31 leads to a

lower PSP at the pyramidal cells. (D) Mean EEG frequency for the three groups HC (blue), MCI (green), AD (red, with shadowed area for the range between 5th and

95th percentile) and AD with memantine (red dotted line). The virtual application of memantine shifts the AD group to the level of HC and MCI (arrow) and out of the

variance of AD without memantine. (E) Change in the relative PSP (local PSP relative to mean of all regions) due to virtual memantine in AD patients. The decrement of

activity seems to be focused to the hubs and to central parts of the network. Interestingly, this is the same topological area wherein relative Abeta-derived hyperactivity

takes place (Figure 12). (F) Shows a significant and strong linear dependency (R2 = 0.783) between the effect of memantine and the relative hyperactivity of regions.

The homogenously applied virtual memantine therefore acts selectively in those regions, where hyperexcitation is already there. These regions in central network parts

are also those, where slowing effects appears (Figure 10). The implementation of virtual memantine provides therefore a link between its supposed anti-excitotoxic

effect (because it acts selectively in relatively hyperactive regions) and the reversed functional phenomenon of slowing (because slowing, hyperactivity and the

memantine effect are all focused to the same parts of the network).

et al., 2018). These observations cannot be directly inferred
by the hyperexcitation implemented in our model. Because we
standardized all other factors and used a common SC for all
simulations, this approach enables to examine the effects of
locally altered E/I balance on an individual whole-brain level but
without any other confounding factors.

We showed that the slowing in simulated EEG and LFP
is specific for the AD group (Figures 7, 8). This offers
an explanation, how the shift from alpha to theta, that
is observable in EEG of AD patients (Loewenstein et al.,
1989; Rice et al., 1990; Dierks et al., 2000; Babiloni et al.,
2016; Malek et al., 2017; Nakamura et al., 2018), could
be explained on a synaptic level—namely by an impaired
inhibition. This computational modeling result supports the

findings of specific toxicity of Abeta to inhibitory neurons
(Ripoli et al., 2014; Ulrich, 2015; Ren et al., 2018).

We demonstrate the computational principles underlying
this Abeta dependent slowing of EEG/LFP (Figure 6,
Supplementary Figure 6). Dependent on the Abeta burden
alpha, theta or bistable regime develop caused by an alteration of
the inhibitory time constant that leads to changes of the systems
bifurcation behavior (Figure 6, Supplementary Figures 1, 2, 6).

The simulated LFP/EEG slowing in AD patients crucially
depends on the spatially heterogenous Abeta distribution as
measured by PET—the slowing disappears when using a
homogenously distributed mean Abeta burden instead for
simulation (Figure 7). To exhibit the slowing effect few
regions with high Abeta burden are required—while the

Frontiers in Computational Neuroscience | www.frontiersin.org 20 August 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Stefanovski et al. The Virtual Neurodegenerative Brain

FIGURE 12 | Local hyperexcitation is introduced by Abeta and spatially linked to LFP slowing. (A–D) Shows the relative firing rate of pyramidal cells, i.e., the difference

between the local firing rate and the global firing rate (averaged across all regions for one simulation / one value of G). Because the maximum firing rate is 5/s, the

relative firing rate ranges from −5/s to 5/s. The firing rate can be calculated by using the potential-to-firing-rate transfer function from Equation 11. Color indicates the

natural logarithm of the number of regions at each point of the histogram. (A) In the absence of Abeta, where all regions have an inhibitory time constant τ i = 14ms,

the firing rate shows low heterogeneity. There are neither hypoactive, nor hyperactive regions—the whole systems activity is near the “baseline of the brain” (mean

firing rate of all regions). (B) For HC participants, the Abeta burden of some regions already introduces heterogeneity. Although, most regions are still near the baseline,

as also in (C) for the MCI participants. In panel (D), we can see that the AD participants have enough Abeta to introduce a strong local heterogeneity of firing rate.

There are now about 4 clusters, which are stable across G: one near the baseline [but in contrast to (A–C) not directly at the baseline, but below], another hypoactive

and two hyperactive clusters of regions. The spatial distribution of the relative activity is demonstrated in (E): Here we can observe that the hyperexcitation of

pyramidal cells is focused to the hubs and to central parts of the network, which is also shown in (G). This pattern is similar to what we could observe for the theta

rhythm, which is also focused to central network parts (Figure 10) and to the effect of memantine (Figure 11). There is moreover a significant linear dependency

between the relative PSP and the probability of theta rhythms (F) as well as a significant and strong linear dependency (R2 = 0.594) between the relative PSP and the

natural logarithm of the structural degree (G).

specific location of these regions seems not to be relevant
(Supplementary Figure 5). The crucial factor for AD-specific
slowing behavior in our simulations is the presence of very few
regions that are strongly affected by Abeta (Figure 6F andmiddle
column of Supplementary Figure 6).

Independently of the location of high Abeta burdens in the
simulated brain, slowing emerges at the core, i.e., hubs of the
structural connectome (Figure 10). This indicates that the central
parts of the system are impacted functionally by the Abeta
burden. Moreover, it shows that while Abeta is often distributed
in peripheral parts of the structural connectome, its functional
consequences affect the important hubs. This could provide a
possible explanation why a peripheral distribution of Abeta leads
to severe disturbances of cognitive function.

Abeta leads by the disturbance of E/I balance to more local
hyperexcitation (Figure 12). Because the range of activity is
broader, we have more hypoactive and also more hyperactive

regions (Figure 13). The local hyperexcitation is strongly
corrleated with local LFP slowing (Figure 10) and also focused
to the hubs of the network (Figure 12).

We also showed that the drug memantine that is known for
improving brain function in severe AD can be modeled by a
decreased transmission between the excitatory interneurons and
the pyramidal cells and is able to achieve a “normalized” brain
function in silico, too (Figure 11). Its effect is evolves selectively
in hyperactive regions and in those parts of the network, where
slow rhythms appear. This moreover demonstrates the potential
of TVB to test and develop new treatment strategies.

One major limitation of this study is the lack of direct
validation of the simulated electrophysiological phenomena.
Neither EEG nor LFP data was available in the ADNI-3
cohort. Although EEG slowing in AD is an established concept
(Loewenstein et al., 1989; Rice et al., 1990; Dierks et al., 2000;
Babiloni et al., 2016; Malek et al., 2017; Nakamura et al., 2018),
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FIGURE 13 | Evaluation of the used cause-and-effect model. (A) Inhibitory convolution kernel hi(t) as a function of Abeta. The kernel is flattened with increasing Abeta

and the area under the curve increases as follows: AUC = Hi • τi(β). Therefore, longer τi by higher Abeta leads to a slowed down filter action (because of the delayed

maximum of the IPSP). As a side effect, because of the higher AUC in the inhibitory transmission, the overall inhibition in the system increases—this can also be seen

in (C) and (D): Equilibrium manifold (the manifold of fixed points onto which the system is collapsing) of the Jansen-Rit model in three-dimensional perspective (C) and

in top view in parallel to the z axis (D), wherein υ30 is a function of the model input m3T,0 and β. The reaction of the system to input is changed by Abeta. Note the

decrease of PSP at pyramidal cells υ30 with increasing β for a constant input level—this can also be seen in (C). The slope of the manifold with the input decreases

with increasing β. Blue areas indicate the lower branch of the equilibrium manifold and red areas the upper branch (white areas are unstable). This demonstrates, as

we suggested because of (A), that when maintaining the same input level, a higher Abeta burden leads to a globally lower PSP baseline at the pyramidal cells.

Because of the larger AUC at inhibitory transmission, we need more input to achieve the same global activity. As we would not expect the brain to increase or

decrease its global activity level and are more interested in the local activity, this can be seen as a mathematical artifact as well as a limitation of the model. To evaluate

local hyperexcitation, we therefore used the relative PSP to the baseline in Figure 12 instead of the absolute PSP. (B) The bifurcation diagram of local bifurcations

shows the PSP of pyramidal cells as an explicit function of Abeta. We can see that the richest dynamic repertoire appears in the range around β = 2. Here appears

multistability, which can be seen because of the folded Hopf curve. The local bifurcations support our hypothesis of diversified regional activity introduced by Abeta:

above β = 2, two stable foci coexist, while one of them is positioned at a low PSP and the other one at a high PSP. This enables us to expect a diversified activity to

nodes with lower and nodes with higher activity—as well, because the diagram shows only the local bifucrations, it does not proof it. (E) This leads together with our

other results (in particular Figures 10–12) to the following mechanistic theory: longer inhibitory time constants, introduced by Abeta, lead to relatively more hypoactive

and more hyperactive regions because of a disturbance of the local E/I balance in the vicinity of Abeta (Figures 12A–D). The hyperactivity is focused to the hubs and

central network parts (Figures 12E–G). Because we know that this pattern does not evolve from the spatial Abeta distribution (Figures 10A,B), we can say that the

hyperactivity is centralized (to central network parts) and the hypoactivity is vice versa peripherialized (to the periphery of the graph). This phenomenon goes along

with the distribution of slow rhythms in our results (Figure 10). Therefore, our model linked local disturbed E/I balance with a slowed filter action of the inhibitory signal

to hyperactivity along with slowing in central parts of the brain network. Parts of the figure are modified from Deco et al. (2017).

future studies will have to validate the simulated data directly
with individual EEG.

The second important limitation is the implementation
of disturbed E/I balance by the inhibitory time constant.
Although the longer time constants lead to slowed filter action
(Figure 13A) and local hyperexcitation at important network
structures (Figure 12), the global activity is decreased for the
same input level. To overcome this model limitation, it would
be necessary to correct the input level, e.g., by increasing
the default input m3T,0 with higher mean Abeta burdens
or by increasing a coefficient inside the IRF (Equation 2)
to keep the AUC and therefore the transmitted energy at
inhibitory transmission constant. This should be examined
in future studies to evaluate the effect of such a correction.

However, this would only be necessary if the global activity
level would be a target of interest for another research
question. Because of the feedback loops in a coupled brain
network, each introduction of over- or dis-inhibition will
lead both to hypo- and hyper-active regions. An analysis
of hyperactivity needs therefore always a control activity—
because hyperactivity can be meant spatially, temporally,
or dependent on other factors. In our model, we could
introduce spatially distributed hyperactivity (Figure 12) that
was linked to local slowing (Figure 10), network topology
(Figures 12E–G) and could be antagonized selectively by virtual
memantine (Figure 11).

The differential equations that describeThe differential
equations that describeOf course the pathophysiological model
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presented in this study can only cover a small subspace
of possible AD mechanisms. Even Abeta itself is probably
only one player in the multifactorial pathogenesis (Selkoe and
Hardy, 2016; Gauthier et al., 2018), and synaptic disinhibition
is only one of its effects (Furukawa et al., 1996; Good
et al., 1996; Hardy and Selkoe, 2002; Chen, 2005; Busche
et al., 2012; Prasansuklab and Tencomnao, 2013; Bloom,
2014; Sadigh-Eteghad et al., 2015; Song et al., 2015; Ulrich,
2015; Celebi et al., 2016; Gauthier et al., 2018; Ren et al.,
2018). We are fully aware that other major hallmarks as Tau
(Bloom, 2014; Guo et al., 2017; Tapia-Rojas et al., 2019) and
cardiovascular risk factors (Love and Miners, 2016; Storck
and Pietrzik Claus, 2018; Bannai et al., 2019) cannot be
excluded in the discussion of AD etiology, as well as alternative
concepts such as microglia and neuroinflammation (Heneka
et al., 2015a,b; Wang and Colonna, 2019; Zhou et al., 2019),
polygenetic risk factors (Mahley, 2016; Hudry et al., 2019;
Jansen et al., 2019; Takatori et al., 2019), environmental
factors as neurotoxic or infectious agents (Alonso et al., 2018;
McLachlan et al., 2019), and concomitant proteinopathies
(Robinson et al., 2018a,b).

Another limitation is the small sample size of 33 participants.
Future studies will have to consider much more participants,
which will then help to formulate even more general conclusions.
However, because of emergent effects in the brain simulation,
differences between the groups were often very relevant and
significant. An overview of all used statistical test in this study
can be found in Supplementary Table 8.

However, we present a first proof of concept for linking
molecular changes as detected by PET to large-scale brain
modeling using the simulation framework TVB. This study
therefore can work as a blueprint for future approaches in
computational brain modeling bridging scales of neural function.
For the research on AD pathogenesis, this study provides
a possible mechanistic explanation that links Abeta-related
synaptic disinhibition at the micro-scale to AD-specific EEG
slowing. In general, our study can be seen as proof of concept
that TVB enables research on diseasemechanisms at amulti-scale
level and has potential to lead to improved diagnostics and to the
discovery of new treatments.
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