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Purpose: Predicting patients’ survival outcomes is recognized of key importance to

clinicians in oncology toward determining an ideal course of treatment and patient

management. This study applies radiomics analysis on pre-operative multi-parametric

MRI of patients with glioblastoma from multiple institutions to identify a signature

and a practical machine learning model for stratifying patients into groups based on

overall survival.

Methods: This study included 163 patients’ data with glioblastoma, collected by

BRATS 2018 Challenge from multiple institutions. In this proposed method, a set of

147 radiomics image features were extracted locally from three tumor sub-regions

on standardized pre-operative multi-parametric MR images. LASSO regression was

applied for identifying an informative subset of chosen features whereas a Cox model

used to obtain the coefficients of those selected features. Then, a radiomics signature

model of 9 features was constructed on the discovery set and it performance was

evaluated for patients stratification into short- (<10 months), medium- (10–15 months),

and long-survivors (>15 months) groups. Eight ML classification models, trained and

then cross-validated, were tested to assess a range of survival prediction performance

as a function of the choice of features.

Results: The proposed mpMRI radiomics signature model had a statistically

significant association with survival (P < 0.001) in the training set, but was

not confirmed (P = 0.110) in the validation cohort. Its performance in the

validation set had a sensitivity of 0.476 (short-), 0.231 (medium-), and 0.600

(long-survivors), and specificity of 0.667 (short-), 0.732 (medium-), and 0.794

(long-survivors). Among the tested ML classifiers, the ensemble learning model’s

results showed superior performance in predicting the survival classes, with an overall

accuracy of 57.8% and AUC of 0.81 for short-, 0.47 for medium-, and 0.72 for

long-survivors using the LASSO selected features combined with clinical factors.
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Conclusion: A derived GLCM feature, representing intra-tumoral inhomogeneity, was

found to have a high association with survival. Clinical factors, when added to the

radiomics image features, boosted the performance of the ML classification model

in predicting individual glioblastoma patient’s survival prognosis, which can improve

prognostic quality a further step toward precision oncology.

Keywords: glioblastoma multiforme, MRI, radiomics analysis, patient’s survival prediction, machine learning,

precision oncology

INTRODUCTION AND RELATED WORKS

Introduction
Glioblastoma multiforme (GBM) is the most aggressive and
highly invasive high-grade glioma tumors with poor prognosis
(Holland, 2001). The median survival rate of GBM patients is
about 2 years or less, and it needs immediate treatment (Ohgaki
and Kleihues, 2005; Louis et al., 2007). Surgical resection followed
by chemo-radiotherapy is the current standard treatment of the
glioblastoma multiforme tumors (Van Meir et al., 2010; Aum
et al., 2014). Predicting a patient’s survival outcome is recognized
as key importance to clinicians in oncology toward determining
an ideal course of treatment and patient management. In which,
the treating physician (oncologist) may decide if more aggressive
or additional treatment has to be considered for treating patients
with poor survival prognosis (Zhang et al., 2017).

Multi-parametric magnetic resonance imaging (mpMRI)
sequences commonly provide more clinical information to
characterize glioblastoma multiforme tumors than other imaging
modalities. Here, “multi-parametric” is refereed to multiple
image standardization parameters. This imaging information
could be quantitatively extracted as features and linking these
tumor phenotype features to clinical variables of interest (e.g.,
survival time, recurrence, adverse events, or late complications).
The mentioned concept is referred to as radiomics. The
idea of radiomics has recently emerged from the field of
oncology. Radiomics has the potential for enabling improved
clinical decision-making (Gillies et al., 2016). This approach has
advantages of being non-invasive, fast and low in cost. Radiomics
has been used in oncology for tumors’ diagnosis, treatment
planning/execution, treatment response and prognosis, and
underlying genomic patterns in various forms of cancer (Liu
et al., 2018a). In which, individual patients could be stratified into
subtypes based on radiomics biomarkers that hold information
about cancer traits that reflect the patient’s prognosis. As a
result, radiomics could have an effective application in precision
oncology by predicting individual patients’ treatment outcome.

The definition of precision medicine, according to the
National Institute of Health (NIH), is “an emerging approach
for disease treatment and prevention that takes into account
individual variability in genes, environment, and lifestyle for each
person” (Subramaniam, 2017). This concept will let clinicians

and researchers provide predictions with higher accuracy for
which treatment and prevention plans for a particular disease

will suit in which groups of people (Subramaniam, 2017). The
newly introduced idea of precision medicine is in contrast to

the existing practical therapy paradigm of a “one-size-fits-all”
attitude, in which disease treatment and prevention plans are
developed for the “average” patient, with less consideration for
the differences between individuals (Subramaniam, 2017). There
are some limitations in fully implementing precision medicine
for radiomics e.g., reproducibility and quantitative information,
standardization in image acquisition, and structured reporting.

The Related Works
Many studies have been conducted identifying tumor
phenotypical radiomics signature or/and developing practical
machine learning (ML) models for glioblastoma patients
stratification based on survival on pre-operative multi-
parametric MRI sequences from single or multiple institutions.
Recognizing patients who would/wouldn’t benefit from standard
treatment as well as identifying patients who need more
aggressive treatment at the time of diagnosis is essential toward
management of glioblastoma through personalized medicine. In
this section, the author included some works of the most relevant
ones recently published in this field. Macyszyn et al. (2016) used
image analysis and ML models to establish imaging patterns that
are predictive of overall survival (OS) and molecular subtype
using preoperative mpMRIs sequences of patients with GBM.
The developed system achieved an overall accuracy of 80%
in stratifying patients into long-, medium-, and short-term
survivors in the prospective cohort from a single institution.
Prasanna et al. (2017) studied texture features analysis to
assess the efficacy of peritumoral brain zone features from
pre-operative MRI in predicting GBM patient survival into long-
(>18 months) vs. short-term (<7 months). The study findings
identified a subset of 10 features proven to be predictive of long-
vs. short-term survival as compared to known clinical factors.
Ingrisch et al. (2017) investigated whether radiomics analysis
with random survival forests can predict overall survival from
MRI scans of newly diagnosed glioblastoma patients. Their
results demonstrated that low predicted individual mortality
proven to be a favorable prognostic factor for OS, it also indicated
that the MRI contains prognostic information, which can be
accessed by radiomics analysis.

Most recently, Chaddad et al. (2018) proposed multiscale
texture features for predicting GBM patients’ progression-free
survival and overall survival on T1 and T2-FLAIR MRIs using
the random forest. The study results showed that the identified
seven-feature set, when combined with clinical factors, improved
the model performance yielding an AUC value of 85.54% for
OS predictions. Kickingereder et al. (2018) investigated the
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impact of mpMRI radiomics features for predicting patients’
survival in newly diagnosed GBM patients before treatment. The
study results revealed that a constructed eight-feature radiomics
signature increased the prediction accuracy for OS further than
the alternative approaches. Sanghani et al. (2018) studied survival
prediction of glioblastoma patients for two-class (short- vs. long-
term) and three-class (short-, medium-, and long-term) survival
groups using Support Vector Machines (SVMs). The results
showed a prediction accuracy of 98.7 and 88.95% for two-class
and three-class OS group, respectively. Chen et al. (2019) studied
developing a post-T1-weighted MRI-based prognostic radiomics
classification system in GBM patients to assess if it could allow
stratifying patients into a low- or high-risk group. Their results
showed that the developed system classified patients’ survival
with improved performance with AUC of 0.851 for 12-month
survival, compared to conventional risk models.

The majority of those studies have performed on single-
institution data, and also survival grouping was designed for two-
class rather than three-class approach. Besides, implementing
a particular feature selection method and testing various
machine learning classification models allow greater flexibility
for exploring distinct methods. The purpose of this work is to
quantitatively study the radiomics features from pre-operative
multi-parametric MRI of the de novo glioblastoma tumor on
multi-institutional datasets. Then, to apply radiomics analysis
on mpMRI to identify a signature and a practical machine
learningmodel to stratify patients into short-, medium, and long-
survivors groups. For machine learning, different models were
tested to assess a range of performance as a function of the choice
of features.

MATERIALS AND METHODS

Patients Data Sets
The study involved a cohort of 163 patients diagnosed with
primary de novo GBM and pathologically confirmed. The
patients’ imaging data sets and clinical information data were
collected from multiple (n = 5) institutions and provided as
“training data set” for Multimodal Brain Tumor Segmentation
(BRATS) 2018 Challenge (Menze et al., 2015; Bakas et al.,
2017a,b,c). For each patient, the imaging data set consisted
of four sequences of pre-operative multi-parametric MRIs
along with the patient’s clinical information. The imaging
data sets were acquired during regular clinical routine using
various scanners, and different scanning protocols. An individual
patient’s imaging data set included T1-weighted (T1), T1-
weighted with post-contrast/gadolinium (T1-Gd), T2-weighted
(T2), and T2-weighted fluid-attenuated inversion recovery (T2-
FLAIR) MRI sequences. Besides, “ground truth” segmentation
masks of three tumor sub-structures provided as follow: the
complete tumor extent also referred to as the “whole tumor”
(WT), tumor core (TC), and the active tumor (AT) and the non-
enhancing/necrotic tumor region (Figure 1). The clinical data
were composed of the patient’s age, patient’s overall survival,
and tumor’s resection status information. The demographic
and clinical characteristics data of the glioblastoma patients in

the discovery, validation, and in the combined cohorts, were
presented in Table 1.

The patient data sets were categorized into discovery/training
and validation cohorts. In which, the survival data were sorted in
order hence after every two consecutive values the third one was
chosen for validation and added to the validation data set while
the remained ones were considered as the discovery data set.
This distribution of overall survival data across the discovery and
validation data sets ensure a balanced appearance of the whole OS
values range (from short, through a medium, to long-survivors)
in both cohorts. The patients’ survival data were categorized into
long- (>15 months), medium- (between 10 and 15 months),
and short-term survivors (<10 months) groups. The reason
behind choosing these thresholds can be found with a detailed
explanation by referring to this BRATS paper (Bakas et al., 2019).

Annotation of Tumor Structures
The extracted radiomics features may suffer from the
robustness due to variations in the delineated tumor
structures. Consequently, a decision was made to use
the provided “ground truth” segmentation masks which
were manually generated by experts, rather than using the
author’s developed automated segmentation system (Osman,
2018) which was still under further improving. The tumor
sub-structures delineation was performed by experts (one
to four raters) using the multi-parametric MR images
following a specific given annotation protocol. The experts’
annotations were further revised by an experienced board-
certified neuroradiologist to minimize inter- and intra-raters
variations (Menze et al., 2015; Bakas et al., 2019). Three
tumor sub-structures were delineated on the imaging data
namely; the complete tumor extent also referred to as the
“whole tumor,” the tumor core, and the active tumor and the
non-enhancing/necrotic tumor region structures (illustrated
in Figure 1). The protocol used for annotating the tumor
structures was described in detail in those two BRATS papers
(Menze et al., 2015; Bakas et al., 2019).

Image Preprocessing
The multi-parametric MR images were provided with initial
preprocessing. The four mpMRI sequences of each patient
were co-registered using T1-Gd image sequence as a reference.
The images were also smoothed, interpolated to the same
resolution of 1 mm3, and skull-stripped. Each imaging
sequence was had 240 × 240 pixels and 155 slices acquisition
matrices and converted into grayscale. Further preprocessing
were performed to standardize the image intensity before
performing features extraction. The most commonly used MRI
normalization scheme of µ ± 3σ with 256 intensity bins
(Collewet et al., 2004) was applied. MRI intensity rescaling
(Figure 2) on the global brain image volume was employed
to convert MRI signal intensity values into a standardized
intensity range, thus avoiding bias due to heterogeneity. Image
intensities were standardized between µ ± 3σ where µ was
the mean value of the gray levels inside the region of interest
(brain) and σ the standard deviation. The gray level values
outside the [µ − 3σ , µ + 3σ ] range were truncated to
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FIGURE 1 | Glioblastoma multiforme sub-regions segmentation masks generated by experts annotated in the different MRI sequences. (A) the whole tumor (yellow)

visible in T2-FLAIR, (B) the tumor core (light blue) visible in T2, and (C) the active tumor structures (purple) visible in T1-Gd. Combination of three segmentation labels

overlaid on T2-FLAIR MRI producing (D) the final labels of the tumor sub-structures: peritumoral edema [ED] (yellow), non-enhancing solid core tumor [NET] (light

blue), necrosis [NCR], and enhancing tumor core (purple).

TABLE 1 | Demographic and clinical characteristics data of GBM patients in discovery, validation, and combined sets.

Characteristic Discovery Validation Combined

Patients demographic

No. of patients

Patient distribution 109 (67%) 54 (33%) 163

- CBICA UPenn – – 85 (52%)

- TCIA – – 76 (47%)

- MGH, HU, DU, and BU – – 2 (1%)

Imaging data

- Data set of T1, T1-Gd, T2, and T2-FLAIR MRI sequences with tumor sub-structures “ground truth” segmentation labels – – 163

Clinical information

Age (years) (P = 0.368)
†

- Range 18.97–84.84 33.88–85.76 18.97–85.76

- Mean 59.73 61.55 60.33

- Median 60.94 62.36 61.17

- 1 Standard deviation 12.23 11.81 12.03

Overall survival (days) (P = 0.934)
†

- Range 5–1767 22–1731 5–1767

- Mean 421.37 426.18 422.96

- Median 362.00 364.50 362.00

- 1 Standard deviation 350.00 352.31 349.67

- Short-term survivors [<10 months] 44 21 65 (40%)

- Medium-term survivors [10–15 months] 28 14 42 (26%)

- Long-term survivors [>15 months] 37 19 56 (34%)

Resection status (P = 0.474)
†

- Gross total resection 36 23 59 (36%)

- Subtotal resection 19 5 24 (15%)

- Missing information 54 26 80 (49%)

CBICA UPenn, Center for Biomedical Image Computing and Analytics at the University of Pennsylvania; TCIA, The Cancer Imaging Archive; BU, Bern University; DU, Debrecen University;

HU, Heidelberg University; MGH, Massachusetts General Hospital.
†
Data in parentheses are P-value.

the upper or lower limit value. The given range was then
quantized into 8 bits [0, 255]. This standardization method
eliminates the dependency on the shift of the mean value and

multiplicative change in the image intensity. In contrast, the
relative difference between two gray levels is not maintained
(Collewet et al., 2004).
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FIGURE 2 | Multi-parametric MRI sequences before and after intensity normalization with 256 scale (8-bit depth). All normalized images have the same scale.

Feature Extraction and Selection
Feature Extraction

For each patient, various features were extracted locally from
the “whole tumor”, tumor core, and active tumor areas on the
T1-Gd, T2, and T2-FLAIR MRI sequences to capture different
phenotypic characteristics of the tumor. The features were
divided into the following groups:

• Geometry/shape features: which describe the two-dimensional
(2D) and 3D shape characteristics of the tumor.

• Intensity features: which describe the first-order statistical
distribution of the voxel intensities obtained from a
histogram characterizing heterogeneity without giving
spatial information within a tumor.

• Gray-Level Co-occurrence Matrix (GLCM) Texture features:
which describe the high-order statistical spatial distributions
of the voxel intensities characterizing heterogeneity with
spatial information within a tumor or region of interest
(Haralick et al., 1973; Haralick and Shapiro, 1992).

• Histogram of Oriented Gradients (HOGs) features: which
capture local shape information from regions or point
locations within an image (Dalal and Triggs, 2005).

• Local Binary Pattern (LBP) features: which encode local
texture information that can be used for tasks such as detection
and recognition (Ojala et al., 2002).

The normalized volumetric MRI data were used for 2D and
3D features extraction. The 2D features were extracted from
a region of interest on a pre-selected image slice. This slice
was chosen to correspond to the largest tumor surface area
in axial, sagittal, and coronal planes. Then the transverse slice
was picked out for extracting the information. Based on the
segmentation results [WT on (T2-FLAIR), TC on (T2), or AT
on (T1-Gd)], the region enclosing each tumor sub-structure
was cropped down on the image. The obtained image was used
to extract feature information. A total of 147 multi-parametric
MRI radiomics features were extracted/derived for each patient
from the segmented tumor sub-structures on the three mpMRI

sequences for their capability to characterize the glioblastoma
tumor phenotypes. For every sub-region, a set of 48 radiomics
features was obtained, resulting in a total of 144 features for
the three regions plus 3 additional ones calculated as a joint
of the three regions. The features included 14 geometry/shape
(plus 3 mixed) features, 14 statistical intensity features, 14 texture
(GLCM) features, and 6 local features representing 3 HOG
features and 3 LBP features (listed in Table 2). All features were
derived using MATLAB 2016b Toolbox (Mathworks, Natick,
MA, USA) with Image Processing and Computer Vision Tools.

Feature Selection

Following the feature extraction, a feature selection method
is required to lessen the number of features to consider
only the significant ones. Feature selection refers to reduction
of the number of parameters to avoid overfitting dilemma
while improving the generalizability and interpretability of the
training-based model. Accordingly, a two-step method was
applied to choose the most important features and throughout
the less associated ones. Initially, the median absolute deviations
(MAD) was calculated for the 147 extracted features. None
of the features with MAD equal to zero, which considered
as non-informative, was observed in the total set to be
discarded. After this step, the number of features remained
the same. Then, least absolute shrinkage and selection operator
(LASSO) generalized linear regression (Tibshirani, 1996) was
employed for finding a subset of the most relevant features
from the initial set. Basically, LASSO executes a penalty on
the log partial likelihood (sum of squares) that is equal to
the absolute sum of regression coefficients. Cross-validation
the deviance is then used to determine the LASSO tuning
parameter λ (Hastie et al., 2009). LASSO minimizes the
regression coefficients down toward zero while it makes the
coefficients exactly zero for irrelevant features (Collewet et al.,
2004). The LASSO method has been used extensively in high-
dimensional feature selection when the number of variables
exceeds the sample size (Heinze et al., 2018) as a case in
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TABLE 2 | A summary of radiomics features extracted from the tumor sub-regions (WT, TC, and AT) in multi-parametric MR images (T1-Gd, T2, and T2-FLAIR).

Feature classes Feature names

Sub-regions (n = 3) Whole tumor (WT), tumor core (TC), and active tumor (AT).

Shape features (n = 14 + 3*) Volume [tumor, brain], volume ratio [tumor/brain, AT/WT*, TC/WT*, AT/TC*], surface area [tumor convex area, tumor filled area, tumor

area, brain area], surface area ratio [tumor to brain], eccentricity, orientation, equivalent diameter, solidity, extent, perimeter.

Intensity features (n = 14) Minimum value, maximum value, median value, mean value, range, variance, moment 2nd-order, moment 3rd-order, entropy,

kurtosis, root mean square (RMS), skewness, standard deviation, mean absolute deviation (MAD).

Texture features: GLCM (n = 14) Contrast, correlation, energy, homogeneity, (sum) variance, (sum) average, (mean) variance, (mean) autocorrelation, entropy, (sum)

entropy2, (difference) entropy2, (sum) variance2, (difference) variance2, range of all GLCM features.

HOG features (n = 3) Sum HOG, median HOG, standard deviation HOG.

LBP features (n = 3) Sum LBP, mean LBP, standard deviation LBP.

All features were extracted from a 2D image except those indicated as volumetric features (3D).

Unless noted with a strike (*), each feature was individually extracted from the “whole tumor” area on T2-FLAIR MRI, tumor core area on T2 MRI, and active tumor area on T1-Gd MRI.

*These features were calculated as combined features from joint of WT, TC, and AT sub-structures.

Features indicated with (2) were derived from GLCM calculated horizontally (0-degree) and 45-degree rotations.

this study where the number of extracted imaging features
(n = 147) is higher than the number of patients (n =

109) in the discovery set. When the LASSO regression model
was applied here, nine features with non-zero coefficients
retained from all features’ set. To search for an optimal λ,
cross-validation with 10-fold was applied, where the final λ

value yielded minimum error in cross-validation (Figure 4).
The selected subset was considered as the final one of the
chosen features which will be used to construct the multi-
parametric MRI radiomics signature model on the discovery data
set (n= 109).

Constructing and Validating a Radiomics
Signature
Using the LASSO regression selected imaging features, a
multivariate LASSO Cox regression (Cox and Oakes, 1984)
was then applied to obtain the coefficients of those chosen
features rather than using the LASSO’s coefficients. The reason
for using LASSO Cox regression, because it enables getting the
p-value, and interferes with the coefficients (Tibshirani, 1997).
Cox regression is a semiparametric method for fitting survival
rate estimates to eliminate the effect of confounding features, and
to quantify the effect of predictor features. It has been reported
that the LASSO Cox regression model is reliable for prediction of
patients’ survival in glioma (Chaddad et al., 2019a). The selected
image features with their corresponding coefficients were used
to construct a mpMRI radiomics signature model. At first, a
radiomics risk score for each patient was determined by linearly
combining these selected features weighed by their respective
fitting coefficients (β) (Liu et al., 2018a) as follows:

Risk score =
∑n

i=1
βi . featurei.

Then, the risk scores obtained for patients in the discovery set
were stratified into low-(long-), medium-(medium-), and high-
risk (short-survivors), with fixed cutoff points as thresholds.
The steps which the author implemented to find these cutoffs
were as following: first, the radiomics risk score was calculated
for all patients in the discovery set. Their values ranged

between (+)4.118 to (–)1.497 for the short-survivors group
(high risk), (+)0.945 to (–)2.619 for the medium-survivors
group (medium risk), and (+)1.603 to (–)3.211 for the long-
survivors group (low risk). Then, the corresponding median
(50 percentile) values for each survivor group were determined
to be (+)0.245, (–)0.810, and (–)1.009, respectively. Finally,
since there was an overlap between the three regions, the
author calculated the 25 percentile values (approximated as
the half median values) of the high-risk (+0.122) and low-
risk (−0.505). Accordingly, these values were used as fixed
thresholds for stratifying patient into low-risk (Rad-score <–
0.505) for long-survivors (> 15 months) group, medium-risk
(Rad-score between −0.505 and 0.122) for medium-survivors
(10–15 months) group, and high-risk (Rad-score > 0.122) for
short-survivors (<10 months) group.

The mpMRI radiomics signature model was constructed
on the discovery data set. Its statistical performance with
survival association was assessed in the discovery and validation
sets using the t-test. True positive rate (sensitivity) and
the false positive rate (1—specificity) metrics were used
to evaluate the signature model’s classification performance
in both data sets. The association between the LASSO
selected radiomics features and survival in the discovery
and validation data sets was illustrated via a heat map, in
which the selected radiomics features were rescaled by the
z-score transformation.

Training and Validating a ML Classifier
Several machine learning classification algorithms were assessed
in this study for patients’ stratification based on survival. The
classifiers were trained, and the top-ranked ones reported.
Eight various models were included here, and they are
listed below:

(A) Support Vector Machine classifiers (Vapnik, 1982):

1) Linear SVM: makes a basic linear separation of classes;
2) Medium Gaussian SVM: creates moderate distinctions

between classes, with a kernel scale set to the square root
of (P) where P is the number of features/predictors;
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FIGURE 3 | The workflow of radiomics analysis used in this study. The overall procedure of identifying a mpMRI radiomics signature model and a practical ML model

for stratifying the GBM patient’s prognoses based on overall survival.

3) Coarse Gaussian SVM: creates coarse distinctions between
classes, with kernel scale set to the square root of (P)× 4,

(B) K-Nearest Neighbors (KNN) classifiers (Patrick and Fischer,
1970):

4) Coarse KNN: creates rough distinctions between classes
with the number of neighbors set to 100;

5) Cosine KNN: creates moderate distinctions between classes
using a cosine distancemetric with the number of neighbors
set to 10;

6) Medium KNN: creates moderate distinctions between
classes with the number of neighbors set to 10,

(C) Discriminant Analysis (McLachlan, 2004):

7) Linear Discriminant: creates linear boundaries
between classes, and

(D) Ensemble Learning: (Ho, 1998; McLachlan, 2004):

8) Subspace Discriminant: Subspace, with Discriminant
Analysis, has medium flexibility and good for many
predictors with a few hundred learners. Learning rate set to
0.1 is a popular choice for shrinkage.

All classifiers were trained on the combined data set (n = 163).
They were trained using various feature combinations: (a) the
all radiomics (n = 147) features, (b) the LASSO selected (n
= 9) features, (c) and (d) both features combined with the
clinical factors (predictors), respectively. The target response
for each model was the patients’ OS grouped into three classes
representing short- (<10 months), medium- (10–15 months),
and long-survivors (>15 months).

A cross-validation scheme with 5-fold (to avoid overfitting)
was employed to examine the predictive accuracy of the trained
ML classification models and help in determining the best model.
The method is commonly recommended for a small data set,
as in the case of this study (163 observations). The receiving
operating characteristics (ROC) curve was used to check model

FIGURE 4 | The optimal λ selection by cross-validated deviance of LASSO fit.

The partial likelihood deviance plotted vs. λ. The green dotted vertical line was

plotted at the optimal λ (36.50) and the blue dotted at λ + 1 STD (84.33) as

shown in the plot.

performance after training each classifier. ROC plot, illustrating
the performance of the classifier, displays values of the true-
positive and false-positive rates for the model under study.
The area under the ROC curve (AUC) was used to measure
the performance of individual survival group predicted by a
classier, and the accuracy metric to evaluate the overall classifier
performance in predicting the three groups. Also, the individual
classifier’s performance as a function of feature choice was
assessed to examine its impact on accuracy.

The Proposed Method
The flowchart of the proposed model/method presented in this
study for survival prognosis for patients with glioblastoma is
demonstrated in Figure 3. It composed of four blocks. Block one
for image acquisition, segmentation, and preprocessing, block
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two for features extraction and selection, block three for signature
construction and ML models, and finally block four for patient
stratification and survival analysis.

The overall procedure could be summarized as follows: At
first, pre-operative multi-parametric MRI (T1, T1-Gd, T2, and
T2-FLAIR) sequences are acquired for patients with glioblastoma
multiforme (Figure 1). Tumor sub-structures (“whole tumor”,
tumor core, and active tumor) are delineated on the acquired
images after registering the images with its corresponding
reference one. Then the mpMRI intensities are rescaled with
a standardized normalization scheme of µ ± 3σ with 256
intensity bins (Figure 2). Secondly, features extraction and
selection take place here. Geometry/shape, intensity, HOG,
LPB, and GLCM features (Table 2) are derived from the
standardized intensity MRIs. Important features with the
most relevance to patient survival are selected with LASSO
(Table 3 and Figure 4). Thirdly, multivariate LASSO Cox is
applied to the selected features to extract the corresponding
coefficients. These coefficients are linearly combined to construct
a radiomics signature model via risk score. Then, fixed thresholds
determined during the signature construction, are used for
stratifying patients into a low-risk (Rad-score < −0.505) for
long-survivors (>15 months) group, a medium-risk (Rad-
score between −0.505 and 0.122) for medium-survivors (10–
15 months) group, and a high-risk (Rad-score > 0.122) for
short-survivors (<10 months) group. A multivariate ensemble
(subspace Discriminant) machine learning model, trained and
cross-validated, is used as a more practical model for survival
class prediction. And fourthly, using the signature and ML
models, glioblastoma individual patients are stratified into short-,
medium-, or long-survivors.

Statistical Analysis
All of the statistical data analysis and modeling in this study were
performed with MATLAB 2016b software with implemented
Statistics and Machine Learning Toolbox (MathWorks, Natick,
MA, USA). The differences in patient age, tumor resection status,
and OS between the discovery and the validation data sets were
evaluated using an independent sample t-test (two-sample t-test).

RESULTS

Clinical Characteristics
The median and mean of overall survival were 362 days and 421
days for the discovery/training data set. For the validation data
set, the values were 364 days and 426 days, respectively. The
median and mean of age were 60 years and 61 years, respectively,
for the discovery data set, and the values for both, median and
mean, were 62 years for the validation data set. There was no
indication of significant difference in clinical and follow-up data
between the discovery and validation data sets (P = 0.368 for age
test, P = 0.474 for tumor resection status test, and P = 0.934 for
OS test).

The Radiomics Signature Results
The nine features, selected by the LASSO with non-zero
coefficients, formed of 2 from T2-FLAIR, 1 from T1-Gd, and 6
from T2 MRI. These imaging features, plus the clinical factors,

are provided in Table 3, arranged in order from high to low
importance (P-value), with their median, P-values, and LASSO
Cox regression model coefficients. Each feature was named as
Modality_Region_FeatureName_FeatureNumber. For instance,
T2_TC_SumHOG_F139 indicated that this feature is the sum of
HOG extracted from the tumor core region on T2 MRI sequence
and was the feature number 139 in the full list. The optimal
λ obtained during the cross-validation of features selection in
LASSO regressionmodel was 36.50 withλ+ 1 standard deviation
(STD) of 84.33 (66.67% confidence level), as shown in Figure 4.
As a result, this optimized value, obtained through the cross-
validation, has selected nine features with non-zero coeffcients.
Usually, as the lambda value increases, the number of non-zero
components of predictor coefficients decreases.

Features indicated strong association with survival (P < 0.05)
frommost to least, according to their P-value as shown in Table 3
are: GLCM difference variance2 (difference variance calculated
at 0 degree and 45 degree rotations) in the WT [T2-FLAIR],
tumor to brain volume ratio in TC [T2], minimum intensity in
the tumor in TC [T2], intensity range within the tumor in TC
[T2], sum of HOG in TC [T2], sum of entropy2 (sum entropy
calculated at 0 degree and 45 degree rotations) in WT [T2-
FLAIR], GLCM energy in the AT [T1-GD], median HOG in the
WT [T2-FLAIR], and momentum 3rd order in the TC [T2].

The linear combination of those LASSO selected nine
features enables constructing the radiomics signature. Hence, the
signature score (risk score) can be calculated as follows:

Radiomics_

signature_score = T2− FLAIR_WT_DifferenceVariance2_F41

× 0.0000018

+ T2_TC_TumorToBrainVolumeRatio_F79

× 27.0110

+ T2_TC_MinimumIntensity_F111× (−0.0066)

+ T2_TC_Range_F115× 0.0063

+ T2_TC_SumHOG_F139× 0.0025

+ T2− FLAIR_WT_SumEntropy2_F38× (−1.4337)

+ T1− GD_AT_Energy_F79× (−3.1019)

+ T2− FLAIR_WT_MedianHOG_F44× 17.1896

+ T2_TC_Moment3rd_F121 × 0.0000058

When the radiomics score value has been determined through
the above-given signature model, the glioblastoma patient can
be stratified accordingly into one of the survival groups. The
thresholds, established with the ideal cutoff points on the
discovery set, were low-risk (Rad-score < −0.505) for long-
survivors (>15months) group, medium-risk (Rad-score between
−0.505 and 0.122) for medium-survivors (10–15 months) group,
and high-risk (Rad-score > 0.122) for short-survivors (<10
months) group.

The signature model performance in both, discovery and
validation, data sets stratified the patients according to the pre-
determined fixed criteria/cutoff points were shown in Figure 5.
A significant association (P < 0.001) of the radiomics signature
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TABLE 3 | The subset of nine imaging features selected by the LASSO model and the clinical factors with their median, non-zero coefficients determined with Cox

regression, and P-value for constructing the mpMRI radiomics signature in the discovery data set.

Characteristics Median Coefficients P-value

Imaging features (LASSO Futures)

T2-FLAIR_WT_DifferenceVariance2_F41 132670 1.8000e-06 9.7500e-04

T2_TC_TumorToBrainVolumeRation_F79 0.0057 27.0110 0.0028

T2_TC_MinimumTumorIntensity_F111 123.9908 −0.0066 0.0030

T2_TC_Range_F115 121.5823 0.0063 0.0030

T2_TC_SumHOG _F139 244.4848 0.0025 0.0040

T2-FLAIR_WT_ SumEntropy2_F38 1.9066 −1.4337 0.0152

T1-GD_AT_Energy_F_79 0.2027 −3.1019 0.0175

T2-FLAIR_WT_MedianHOG _F44 0.1107 17.1896 0.0185

T2_TC_Moment3rd_F121 −5324.8 5.8300e-06 0.0203

Clinical factors

Age (years) 61.17 – 3.3700e-04

Resection status (GTR, STR, NA) – – 0.9720

They were ordered by their association with survival (P-value).

FIGURE 5 | The survival stratification created using the constructed radiomics signature. The signature performance in stratifying the survival into short-, medium-,

and long-survivors on the (A) discovery and (B) validation sets.

with OS was shown in the discovery data set, but non-significant
correlation (P = 0.110) was observed in the validation data set.

On discovery cohort, the radiomics signature stratified
the GBM patients based on survival grouping with the
true positive rate or sensitivity metric as following: short-
(0.774), medium- (0.208), and long-survivors (0.500). The false
positive rate (1—specificity) measure was 0.256, 0.271, and
0.182 for short-, medium-, and long-survivors, respectively
(Figure 5A). In contrast, the reported values on the validation
set were 0.476 (short-), 0.231 (medium-), and 0.600 (long-
survivors) for true positive rate or sensitivity; and 0.333
(short-), 0.268 (medium-), and 0.206 (long-survivors) for false
positive rate (1—specificity) (Figure 5B). For example, a false
positive rate of 0.256 demonstrates that the signature model
on the discovery data set assigns 26.8% of the long-survivors
predictions falsely to the positive class. On the other hand,
a true positive rate of 0.600 points out that the signature
model classifies 60% of the predictions correctly to the
positive class.

The heat map of the 9 LASSO selected features used for
building the signature is shown in Figure 6. It shows the features
association with OS between the discovery and validation data
sets. From the heat map plot, it can be noticed that there
is a consistency of radiomics feature z-score between the
discovery/training and the validation data sets.

ML Model Results
Eight machine learning classification models were examined for
survival prediction, and their performances were presented in
Table 4. The AUC for predicting an individual survival class from
the other classes, and the overall accuracy results, are reported for
each model. The overall best model with feature combination for
classifying OS into three groups was identified.

The best overall performance classifier was achieved by an
ensemble learning model with AUC of 0.81, 0.47, and 0.72
for short-, medium-, and long-survivors (Table 4), respectively.
The corresponding overall accuracy was 57.8% in predicting
the patient’s survival into short-, medium-, and long-survivors
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FIGURE 6 | The heat map of the LASSO selected radiomics features that used to discover the signature. The rows demonstrate the subset of nine selected features,

while the columns indicate the patients (both discovery and validation data sets). The color map shows the z-score difference of each radiomics feature.

TABLE 4 | AUC and overall accuracy of several trained ML models’ performance in classifying GBM patients survival into three groups as a function of choice of features.

Classifiers and features AUC Overall accuracy (%)

Short-survivors Medium-survivors Long-survivors

SVM (Medium Gaussian)

• Imaging features 0.67 (0.69) 0.52 (0.60) 0.61 (0.59) 47.2 (50.3)*

• Imaging features + clinical factors 0.74 0.51 0.67 53.4

• Imaging features (LASSO) 0.72 (0.74) 0.31 (0.37) 0.68 (0.73) 50.9 (56.4)**

• Imaging features (LASSO) + clinical factors 0.80 (0.81) 0.51 (0.53) 0.68 (0.73) 54.0 (55.2)**

K-Nearest Neighbors (Coarse KNN)

• Imaging features 0.64 0.48 0.60 46.0

• Imaging features + clinical factors 0.68 0.46 0.67 50.1

• Imaging (LASSO) features 0.73 (0.72) 0.47 (0.45) 0.72 (0.67) 47.2 (50.3)
†

• Imaging (LASSO) features + clinical factors 0.79 (0.78) 0.44 (0.55) 0.70 (0.66) 47.9 (50.9)
††

Discriminant analysis (Linear)

• Imaging features 0.67 0.52 0.61 47.2

• imaging features + clinical factors 0.72 0.48 0.67 49.1

• Imaging (LASSO) features 0.74 0.45 0.72 56.4

• Imaging (LASSO) features + clinical factors 0.79 0.49 0.71 53.4

Ensemble (Random subspace discriminant)

• Imaging (LASSO) features 0.75 0.42 0.71 57.1

• Imaging (LASSO) features + clinical factors 0.81 0.47 0.72 57.8

*Values in brackets are the performance of SVM Linear classifier.

**Values in brackets are the performance of SVM Coarse Gaussian classifier.
†
Values in brackets are the performance of KNN Cosine classifier.

††
Values in brackets are the performance of KNN Medium classifier.

The overall best classification results are listed in bold.

group. Combining the LASSO selected imaging features with
the clinical predictors yielded in improved prediction accuracy
results over the other alternatives in estimating glioblastoma
patients’ survival.

The AUC plots of the three classificationmodels, including the
ensemble model (the superior one among the other alternative
models), were shown in Figure 7. Ideally, the perfect AUC plot
is a right angle to the top left of the plot (with no misclassified
points). The AUC value measures/quantifies the overall quality

of the classification model. The larger AUC value demonstrates
better model performance. Figure 7 shows the AUC values
for each survival class/group individually. In other words, it
quantifies how the model under study is capable to classify a
specific group of survivors from the other classes correctly.

Results Comparison
A comparison of this study results with other published works
was presented in Table 5. The proposed model performance, the
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FIGURE 7 | The AUC plot of the three best overall ML classifier invariants in each machine learning category: SVM (Coarse Gaussian), KNN (Medium), and Ensemble

(Subspace Discriminant) in classifying OS into three classes using the best feature combination.

signature plus theMLmodel, was judged amongst other works in
various manners.

DISCUSSION

Radiomics analysis is the concept of extracting features
quantitatively from the images/medical images using a variety of
computational approaches. Then, the obtained imaging features
may be used to provide clinicians with diagnosis, prognosis (e.g.,
survival), or treatment response. This study was aimed to identify
a radiomics-based imaging signature on pre-operative mpMRI to
stratify patients with de novo glioblastomamultiforme into short-
, medium-, and long-survivors group using data from multiple
institutions. Also, establishing a practical ML model for the same
purpose through testing a wide range of various classification
models and different features combination. Statistics, Computer
Vision, and Machine Learning tools were used implementing the
proposed model of radiomics analysis of patient stratification
based survival grouping, which may offer unique clinical insights
to support decision-making toward precision oncology.

Various image features (n= 147), representing tumor’s shape,
intensity, GLCM, HOG, and LBP (Table 2), were extracted and

derived via different approaches on multi-parametric MRI (T1-
Gd, T2, and T2-FLAIR) sequences characterizing the tumor
structures [AT, TC, andWT (Figure 1)]. When a two-step feature
selection method was employed, MAD followed by LASSO
regression (Figure 4), a final set of 9 features retained (Table 3).
LASSO turns all none relevant features/variables coefficients to
zero during the optimization and tunes the regression model via
a user-specified k–fold cross-validation. It performs both feature
selection and regularization to improve the prediction accuracy
and the interpretability of the statistical model it produces. The
selected features indicated a high association with OS (P <

0.05) as shown in Table 3. Among those features, a gray-level
co-occurrence matrix derived texture feature has shown the
highest association with GBM survival stratification (Table 3).
This finding agrees with that reported in the literature (Chaddad
et al., 2015, 2016a). Image entropy and energy selected features
have also shown a good correlation with survival (Chaddad et al.,
2016b, 2019b; McGarry et al., 2016). Those features, typically
calculated within a region of interest, indicate that intra-tumoral
heterogeneity has a high impact on the survival stratification.
The quantitative nature of radiomics features and the qualitative

nature of radiologists to interpret the MRI sequences could
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TABLE 5 | The comparison of this study’s findings with similarly published works for GBM patients stratification based on survival with radiomics analysis.

Method MRI sequences Feature selection

and classification

models

Survival stratification Overall

accuracy

AUC Signature model

association with OS

Yang et al. (2015) T1 and T2-FLAIR Ensemble (random

forest) learning

12-months survival – 0.67 –

Macyszyn et al.

(2016)

T1, T1-Gd, T2,

T2-FLAIR, DTI, and DSC

SVMs Short- (<6 months),

medium- (6–18 months),

and long-term (>18

months)

80.0% – –

This work T1, T1-Gd, T2, and

T2-FLAIR

LASSO and Cox

regression,

ensemble (subspace

discriminant)

learning

Short- (<10 months),

medium- (10–15 months),

and long-term (>15

months)

57.8% 0.81, 0.47,

0.72

Discovery (P < 0.001),

validation (P = 0.110)

Sanghani et al.

(2018)

T1, T1-Gd, T2, and

T2-FLAIR

SVMs Short- (<10 months),

medium- (10–15 months),

and long-term (>15

months)

88.95% – –

Liu et al. (2018b) T1, T1-Gd, T2, and

T2-FLAIR

SVMs Short- (<12 months) vs.

long-term (≥12 months)

80.7% 0.79 –

Chen et al. (2019) T1-Gd LASSO Cox

regression

Short- (<12 months) vs.

long-term (≥12 months)

85.1% 0.81 Discovery (P < 0.001),

validation (P < 0.001)

Chaddad et al.

(2019b)

T1-Gd and T2-FLAIR Random forest Short- (<12 months) vs.

long-term (>12 months)

– 0.78 –

Zong et al. (2019) T1, T1-Gd, T2, and

T2-FLAIR

CNNs Short- (<6 months),

medium- (6–18 months),

and long-term (>18

months)

64.3%, – –

Rathore et al.

(2019)

T1, T1-Gd, T2,

T2-FLAIR, DSC-MRI,

and DTI

K-means clustering,

Cox regression

Worst (MS = 6 months),

intermediate (MS = 12

months), and longest

survival (MS = 19 months)

– – Validation (P < 0.001)

DTI, Diffusion Tensor Imaging; DSC, Dynamic Susceptibility Contrast-Enhanced; CNNs, Convolutional Neural Networks; MS, Median Survival.

complementary improve the GBM patient survival prognosis
quality toward precision oncology.

Amulti-parametric MRI radiomics signature of 9 features was
constructed on the discovery cohort for glioblastoma patients
stratification based on overall survival. LASSO Cox regression
model was used to extract the selected features’ coefficients
(Table 3) for developing a signature model. The author discussed
the reason for applying this approach in the method section.
Also, it has been reported that regression coefficients estimated
by the LASSO are biased by intention, but can have smaller
mean squared error than conventional estimates (Heinze et al.,
2018). The radiomics signature model, trained and validated, had
a good performance (P < 0.001) with survival association in
the discovery set (n = 109), but this results not confirmed (P
= 0.110) in the validation set (n = 54) (Figure 5). The possible
reasons for non-significant results obtained in the validation
set could be due to signature model overfitting during the
training. It has been reported that over-fitting is possible when
the number of features is greater than the number of data
samples or if there are too many unique values for a discrete
feature (Meinshausen and Bühlmann, 2006). The poor results
obtained show the lack of generalizability of the signature model
on the new unseen data set. From the statistical perspective,
non-significant relationship with survival does not necessarily

mean less importance (Lao et al., 2017). A second reason could
be due to high contribution (almost a half, 49% as shown in
Table 1) of patient data with missing resection status information
in the combined, discovery/training and validation, cohort. These
data with unknown resection information could significantly
affect the overall or/and individual, training or validation, results.
And, a third reason could be due to possible sub-optimal
determination the cutoff points’ values or thresholding in which
some possibly valid assumptions had applied.

The machine learning results of several studied classifiers
indicated the superiority of ensemble (Subspace Discriminant)
learning over the other methods achieving the best performance
accuracy of 57.8% (Table 4 and Figure 7) in categorizing
the survival into short-, medium-, and long-survivors. This
result is not sufficiently encouraging and more tuning is
needed for improved prediction accuracy. The LASSO selected
imaging features, combined with clinical factors, provided better
prediction results among the other options. According to the
survival data distributions used in this study (Table 1), the
best survival grouping achieved for predicting short-survivors
(representing 40% of the total OS data distribution) with an
AUC of 0.81. Then it followed by long-survivors (representing
36% of the total OS data distribution) with an AUC of 0.72.
Finally, medium-survivors (representing 26% of the total OS
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data distribution) were lasted with an AUC of 0.47. Lower
performance in predicting an individual class correlated with a
decreased class data distribution in the study sample. Strengths
and limitations of the ML classifiers used in this study could
be summarized here. Based on prediction speed, all reported
models were relatively fast. In contrast, Linear models (SVM and
Discriminant Analysis) are easy to interpret, SMV (with Gaussian
kernels, Medium, and Coarse), KNN (Coarse, Cosine, Medium),
and Ensemble (Subspace Discriminant) are hardly interpretable.

The results comparison of the proposed method (signature
model and the practical ML model) with most relevant published
studies are presented in Table 5. While the proposed method’s
results, the signature model and the ML model, was not
impressive compared to most recently reported works (Macyszyn
et al., 2016; Liu et al., 2018b; Sanghani et al., 2018; Chen
et al., 2019), it was comparable or even better with respect
to others studies for example that reported by Yang et al.
(2015) (AUC = 0.67 for 12 months survival prediction) and
Chaddad et al. (2019b) (AUC = 0.78 for short- vs. long-term
OS prediction). Also, this study results are relatively comparable
with that obtained by Zong et al. (2019) on multi-institutional
data (accuracy of 64.3% for three-class OS prediction) using
Convolutional Neural Networks, where CNN based methods
are commonly expected to provide much-improved performance
compared to traditional methods. The works by Macyszyn et al.
(2016), and Rathore et al. (2019), reported good performance
results in predicting GBM patient’s survival group. However,
these studies were conducted on a single institution’s data,
where the data is more homogeneous/consistent and more
likely to obtain improved accuracy than the one used multiple
institutions as a case in this study. Consequently, the model
trained in local data is likely to suffer in generalizing its
performance to unseen data from other institutions. On the
other hand, a model trained on multi-institution data may
gain generalizability but less prediction accuracy due to the
heterogeneity of the data.

Finally, this study establishes that multi-parametric
MR images in patients with glioblastoma hold prognostic
information, which can be called up by radiomics analysis via
Statistics and Machine Learning/Computer Vision methods.
The proposed method in this study still has some limitations
and weaknesses, which may have influenced its reported
results. This work represents a retrospective study from
multiple institutions with a relatively small sample patient
data set used on discovery (n = 109) with an independent
validation data set (n = 54) for signature model construction
and evaluation. Also, almost half (49%) of the clinical data
information/predictors were with no given tumor resection
status (GTR or STR) information (Table 1). By making available

a large standard multi-institution data set, it would enable
us to fully evaluate the generalizability, and thus improve the
performance of the radiomics signature model on the new
unseen data set.

CONCLUSIONS

Image features were extracted from pre-operative multi-
parametric MR images of patients with glioblastoma to
generate a radiomics signature model and a practical ML
model for stratifying patients into groups based on overall
survival. A derived gray-level co-occurrence matrix feature
was found to have a high association with survival, which
means that intra-tumoral heterogeneity has an essential role
in the survival stratification. The proposed radiomics signature
model had good performance in the discovery set and lower
performance in the validation cohort. Despite the limitations,
the offered signature model has the potential for improved
pre-operative care of glioblastoma patients. Ensemble learning
showed superior performance over the tested ML classifiers
for survival prediction as a function of the choice of features.
Clinical factors, when added to the radiomics imaging-based
features, boosted the performance of the machine learning
classification model in predicting individual glioblastoma
patient’s survival prognosis. These findings may help in
choosing an optimal treatment strategy and assist in making
personalized therapy decisions of glioblastoma patients which
improve prognostic quality and represent a step forward toward
precision oncology.
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