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Disrupting the pathological synchronous firing patterns of neurons with high frequency

stimulation is a common treatment for Parkinsonian symptoms and epileptic seizures

when pharmaceutical drugs fail. In this paper, our goal is to design a desynchronization

strategy for large networks of spiking neurons such that the neuronal activity of the

network remains in the desynchronized regime for a long period of time after the

removal of the stimulation. We develop a novel “Forced Temporal-Spike Time Stimulation

(FTSTS)” strategy that harnesses the spike-timing dependent plasticity to control the

synchronization of neural activity in the network by forcing the neurons in the network

to artificially fire in a specific temporal pattern. Our strategy modulates the synaptic

strengths of selective synapses to achieve a desired synchrony of neural activity in the

network. Our simulation results show that the FTSTS strategy can effectively synchronize

or desynchronize neural activity in large spiking neuron networks and keep them in the

desired state for a long period of time after the removal of the external stimulation.

Using simulations, we demonstrate the robustness of our strategy in desynchronizing

neural activity of networks against uncertainties in the designed stimulation pulses and

network parameters. Additionally, we show in simulation, how our strategy could be

incorporated within the existing desynchronization strategies to improve their overall

efficacy in desynchronizing large networks. Our proposed strategy provides complete

control over the synchronization of neurons in large networks and can be used to either

synchronize or desynchronize neural activity based on specific applications. Moreover, it

can be incorporated within other desynchronization strategies to improve the efficacy of

existing therapies for numerous neurological and psychiatric disorders associated with

pathological synchronization.

Keywords: synchronization, desynchronization, spiking neural network, spike-timing dependent plasticity,

harnessing plasticity

1. INTRODUCTION

Most of the existing therapies for neurological disorders focus on suppressing symptoms and
ignore the dynamical aspects of the underlying network that create the pathological symptoms.
Therapies that purely focus on suppressing the pathological symptoms instead of addressing
aberrant dynamic characteristics of the network could fail to achieve a long term behavioral
recovery (Popovych and Tass, 2014). One such example is the treatment of Parkinson’s Disease
motor symptoms by suppressing the strong oscillatory firing pattern of neurons in the brain
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using high frequency stimulation (HFS) (Temperli et al., 2003;
Hammond et al., 2007; Benabid et al., 2009; Postuma et al., 2015;
Singh, 2018). The applied HFS suppresses the oscillatory activity
and the Parkinsonian motor symptoms while the stimulation
is on but when the stimulation is off, the oscillations and
motor symptoms reemerge (Temperli et al., 2003; Deuschl et al.,
2006). Additionally, epilepsy is also characterized by an excessive
synchronous firing pattern of neurons, which causes epileptic
seizures (Duncan et al., 2006). Similar to Parkinson’s diseases,
HFS helps to control the excessive synchronization of neurons
and epileptic seizures (Klinger and Mittal, 2016). To improve
upon open-loop stimulation protocol, new neural stimulation
strategies have been developed to more effectively and efficiently
desynchronize pathologically synchronous neuronal networks
throughout the brain.

Recently, control-theoretic approaches have been used to
design more effective and energy efficient desynchronization
strategies (Popovych and Tass, 2014). These optimal
stimulation protocols include a single pulse minimum energy
desynchronizing control input (Deuschl et al., 2006; Nabi et al.,
2013a,b; Mauroy et al., 2014; Wilson and Moehlis, 2014; Monga
et al., 2018) and closed-loop delayed feedback (Hauptmann et al.,
2005; Popovych et al., 2005, 2017; Kiss et al., 2007; Vlachos et al.,
2016) approaches. The minimum energy control input approach
designs a pulse that pushes the state of the network to a phaseless
set-point, which is the point where all the isochrons of the system
converge (Nabi et al., 2013a,b). Here, the network’s inherent
noise randomly pushes each individual neuron onto a different
isochron with its own phase. The net effect of this random
reset is an asynchronous population activity. Another approach
is closed-loop delayed feedback control. In the closed-loop
delayed feedback control approach (Vlachos et al., 2016), the
time-delayed average population activity is used as a feedback to
desynchronize the network. Since this approach only feeds the
past population activity, the applied desynchronizing input is
only active whenever the network becomes synchronous. While
these approaches provide an optimal desynchronization strategy,
most of them assume that the network connections are static and
ignore the inherent plastic nature of neuronal synapses (Abbott
and Nelson, 2000).

Hebbian plasticity is a well-known form of activity-dependent
synaptic plasticity (Abbott and Nelson, 2000). This form of
plasticity enforces productive connections between neurons
that produce action potentials and depresses unproductive
connections that do not elicit action potentials (Hebb, 1949).
One form of activity-dependent synaptic plasticity is spike-
time dependent plasticity (STDP) (Song et al., 2000). This rule
increases the weight of a synaptic connection when the pre-
synaptic neuron fires before the post-synaptic neuron within a
given time window and decreases the weight when the order
is reversed (Song et al., 2000). An increase or decrease in
the synaptic weight is coined long-term-potentiation (LTP) or
long-term-depression (LTD), respectively. The introduction of
plasticity into a neuronal network creates multiple stability
points with different levels of synchronous activity (Tass and
Hauptmann, 2007; Pfister and Tass, 2010; Popovych and Tass,
2014). Since the connections are plastic, an external stimulus can

move the network from one stability point to another in order to
drive the network from a synchronous to an asynchronous state.

To incorporate the synaptic plasticity within the
desynchronization stimulation protocol, Coordinate Reset
(CR) based stimulation strategies have been developed, which
temporarily makes the pathologically synchronous stability
point unstable to move the network into the asynchronous
state by harnessing synaptic plasticity (Tass, 2003a,b; Tass
and Majtanik, 2006; Tass and Hauptmann, 2007; Pfister and
Tass, 2010; Ebert et al., 2014; Zeitler and Tass, 2015). In this
approach, the network is driven to the asynchronous regime
in the presence of external stimulation because of the inherent
domination of LTD in asynchronous bistable networks. Once
CR stimulation moves the network from the synchronous to
the asynchronous stability point, the stimulation input is no
longer required (Tass and Hauptmann, 2007; Pfister and Tass,
2010). This results in a long-lasting desynchronization of
the network after the stimulation protocol is turned off (Tass
and Majtanik, 2006). While this protocol is effective, it has its
own limitations. CR based stimulation strategies rely on acute
desynchronization of the networks regardless of the plasticity
rules during the stimulation. If the network is not bistable, the
acute-desynchronization of the network may not depress the
synaptic weight of the network and the desynchronization of
the network will be brief (Pfister and Tass, 2010). This lack of
bistability may arise in a network where LTP dominates LTD (i.e.,
pathological networks). Moreover, this strategy only provides
a way to desynchronize neural activity and not to control the
synchronization level of the network.

In this work, we have developed a novel stimulation strategy
“Forced Temporal Spike-Time Stimulation (FTSTS)” which
addresses above shortcomings of the CR-based stimulation
approach. While all other stimulation strategies focus on
desynchronizing neural activity within a network, our strategy
focuses on harnessing the underlying synaptic plasticity of
the network to control the average network synaptic strength
by forcing the spiking neurons to fire in specific temporal
patterns. Thus, our strategy provides complete control over the
synchrony level of networks for a long period of time, not
just desynchronization. We demonstrate the efficacy of FTSTS
strategy in controlling the desired synchrony level in large
excitatory-inhibitory (E-I) networks. We show in simulation
that the FTSTS strategy can effectively desynchronize the neural
activity in networks where LTP dominates LTD on average.
Further, we combine the FTSTS strategy with the CR stimulation
strategy to demonstrate how this can enhance the overall
performance of the CR stimulation strategy in desynchronizing
large networks.

The paper begins with a description of models used to
describe the spiking E-I networks dynamics, STDP rules, and
a measure of synchrony as well as the stability analysis of E-I
networks in section 2. In section 3, we first provide a mechanistic
understanding of the FTSTS strategy by considering control of
synchrony in a two neuron E-I network. We then demonstrate
the efficacy of the FTSTS strategy in desynchronizing large E-I
networks subject to different plasticity rules, and uncertainties
in the network parameters and the designed stimulation
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parameters. Finally, we show how the FTSTS strategy can be
incorporated within the CR stimulation strategy to improve
the overall performance of the CR stimulation strategy. The
paper ends with a detailed discussion on the comparison
of our approach with the existing stimulation strategies for
desynchronization of spiking neural networks as well as the
limitations of our strategy in section 4.

2. SYSTEM MODEL

2.1. Excitatory-Inhibitory (EI) Network
Model
We consider networks of 2, 000 and 10, 000 spiking neurons
consisting of 80% excitatory (E) and 20 % inhibitory (I)
neurons (Brunel and Hansel, 2006; Vlachos et al., 2016). The
following Leaky-Integrate-and-Fire (LIF) model describes a
single excitatory or inhibitory neuron’s dynamics in the E-
I network.

τm
dvE(t)

dt
= −vE(t)+ ZE(t)+ µE + σE

√
τmχ(t)+ VE

stim(t), (1)

τm
dvI(t)

dt
= −vI(t)+ ZI(t)+ µI + σI

√
τmχ(t)+ VI

stim(t). (2)

Here, vE(t) and vI(t), in millivolts (mV), represent the membrane
potential of the excitatory and inhibitory neurons, respectively.
τm (in ms) is the membrane time constant. Zi(t) denotes the
synaptic input to the ith population of neurons where i ∈ {E, I}.
The synapses between the excitatory and inhibitory populations
are randomly connected with a probability of ǫ. The synaptic
input function:

Zi(t) =
Jij

Cij
Sij(t) (3)

defines the input to the ith neuron population. In Equation (3),
Jij represents the synaptic strength between a presynaptic neuron
in population j and postsynaptic neuron in population i, in mV,
where i ∈ {E, I} and j ∈ {E, I}. For example, the synaptic strength
of a I-to-E synapse is JEI . Cij = 0.3Ntot denotes a scaling factor
where Ntot is the total number of neurons in the network. Sij(t) is
the synaptic function. The Gaussian distributed baseline current
to the ith type neuron is denoted as:

µi + σi
√
τmχ(t) (4)

with a mean baseline current of µi and a variance of σ 2
i τm.

χ(t) is white noise with a mean of 0 and a variance of 1.
Finally, V i

stim(t) denotes the external stimulation input to the ith

neuron population.
The synaptic function Sij(t) is modeled as

(Brunel and Hansel, 2006):

τd
dSij(t)

dt
= −Sij(t)+ Xij(t), (5)

τr
dXij(t)

dt
= −Xij(t)+Wij(t)δ(t − tpre + tdelay). (6)

Here,Xij describes the input to the i
th population of neurons from

the jth population of neurons. The time constants governing the
decay and rise time are τd (in ms) and τr (in ms), respectively.
Synaptic connections between the ith and jth neuron populations
are randomly connected with a probability of ǫ. The weight
of each synaptic connection is defined as Wij. Throughout the
work, we assume that E-to-I connections (WIE(t)) are plastic
and the I-to-E connections (WEI) are static except in section
3.9 and Figure 11 where we consider both connections to
be plastic. Unless otherwise specified, we further assume no
synaptic connectivity among neurons in excitatory or inhibitory
populations. The Dirac-Delta function δ(t − tpre + tdelay) models
the synaptic input to a postsynaptic neuron from a presynaptic
neuron when the presynaptic neuron fires at time tpre (in ms)
with a synaptic delay of tdelay (in ms).

2.2. Spike-Timing Dependent Plasticity
(STDP) Model
The coupling value of the plastic E-to-I synapse (WIE(t)) is
governed by STDP (Song et al., 2000), which is defined as follows:

WIE(t +1t) = WIE(t)+1WIE(t), (7)

where1WIE(t) is given as:

1WIE(t) = ηeaLTPApost(t) if tpre − tpost < 0, (8)

1WIE(t) = ηeaLTDApre(t) if tpre − tpost > 0. (9)

Here, 1WIE(t) defines the change in the synaptic weight
determined by the spike-time of a presynaptic (tpre) and
postsynaptic (tpost) neuron. The rate at which the E-to-I
synaptic coupling changes is governed by the learning rate
ηe. Additionally, the relative contribution of LTD and LTP
to 1WIE(t) is denoted by aLTP and aLTD. (Song et al., 2000;
Ebert et al., 2014). Since LTD generally dominates LTP, aLTD is
10% larger than aLTP. Apost(t) and Apre(t) are described by the
following two exponential functions:

τLTP
dApost

dt
= −Apost + A0δ(t − tpost), (10)

τLTD
dApre

dt
= −Apre + A0δ(t − tpre). (11)

Here, the size of the LTP and LTD time window is defined by the
STDP time constants τLTP and τLTD. In a similar fashion to aLTP
and aLTD, τLTD is set to be 10% greater than τLTP. Upon the firing
of a presynaptic or postsynaptic neuron, a small valueA0 is added
to the appropriate exponential STDP decay function. The E-to-I
synaptic weight is defined as the coupling valueWIE(t) multiplied
by the synaptic strength JIE (i.e., JIEWIE(t)).

2.3. Synchrony Measurement
We measure the synchrony level of the network by computing
the Kuramoto order parameter (R(t)) based on the spike times
of neurons in the excitatory population (Kuramoto, 1984; Daido,
1992; Tass, 2007; Ebert et al., 2014). The phase (φk(t)) of the
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FIGURE 1 | The synchrony level and stability points of a plastic 2,000 spiking neuron E-I network. (A) The average synaptic weight either converges to the maximum

or minimum value. Each line represents the trajectory of the synaptic weight with a different initial condition. The stability threshold is depicted as a blue dashed line.

(B) The synchrony level of the network, represented by the Kuramoto order parameter R(t), increases with increasing average synaptic weight [JIEWIE (t)].

kth neuron in the excitatory population is calculated using the
following equation:

φk(t) =
2π(tk,i+1 − t)

tk,i+1 − tk,i
, (12)

where tk,i is the i
th spike time for the kth neuron. The Kuramoto

order parameter (R(t)) and the average phase of the neurons
(ψ(t)) are calculated using:

R(t)eiψ(t) =
1

NE

NE∑

k=1

eiφk(t). (13)

Here, NE represents the number of excitatory neurons. A highly
synchronous network has a Kuramoto order parameter of R(t) =
1 and a completely asynchronous network has a value ofR(t) = 0.

2.4. Determination of Synchronous and
Asynchronous Regimes
It is well-known that plastic neural networks exhibit multiple
stability points (Song et al., 2000; Tass and Hauptmann, 2007;
Pfister and Tass, 2010; Popovych and Tass, 2014). Similar to
other networks, our E-I network exhibits two stability points at
a high and low average E-to-I synaptic weight value. Figure 1A
shows the average E-to-I synaptic weight converging to either
JIEWIE = 10 mV or JIEWIE = 290 mV. The average synaptic
weight converges to JIEWIE = 290 mV if the initial average
synaptic weight is >100 mV and converges to JIEWIE = 10
mV when it <100 mV. Additionally, we find that the network
becomes more synchronous as the average E-to-I synaptic weight
increases, which is shown in Figure 1B in terms of the Kuramoto
order parameter R(t). Therefore, the network exhibits a high
level of synchrony at high synaptic weights and a low level of
synchrony at low synaptic weights.

TABLE 1 | The model parameters of our E-I network.

Neuron

parameters

Value Plasticity

parameters

Value

Brunel and Hansel

(2006), Vlachos

et al. (2016)

Song et al. (2000),

Hauptmann and

Tass (2009)

vreset 0 mV WEI,0 1

vthreshold 20 mV ǫ 0.1

µE 20.8 mV aLTD −1.1

µI 18 mV aLTP 1

σE 1 mV τLTD 22 ms

σI 3 mV τLTP 20 ms

τm 10 ms A0 0.005

τd 1 ms ηe 0.25

τr 1 ms cP 0.038

τdelay 5 ms cD 0.02

JEI 100 mV τP 10 ms

JIEWIE (t) ∈ [10, 290] mV τD 25 ms

2.5. Model Parameters
We use the model parameters defined in Table 1 unless stated
otherwise. All the simulation are performed in Matlab R2016b.
The differential equations are solved using Euler’s method with
a step size of 0.1 ms. All our codes and relevant simulation
parameters to replicate the presented results in this manuscript
are available on our research webpage (https://webpages.uidaho.
edu/gkumar) and in the Supplementary Material.

3. RESULTS

We begin by providing an insight into the underlying mechanism
of our stimulation strategy “Forced Temporal Spike-Time
Stimulation” (FTSTS) using an illustrative example of a two
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FIGURE 2 | The FTSTS protocol for a two neuron E-I network. (A) Shows an excitatory-inhibitory network. (B,C) Show the FTSTS input pattern for the inhibitory and

excitatory neuron, respectively. The FTSTS pulse parameters are Ustim = 300 mV, Tstim = 1 ms, and Tneutral = 10 ms. This FTSTS protocol depresses the E-to-I

synaptic weight as shown in (D). The drop in synaptic weight is due to FTSTS inducing a post-before-pre spiking pattern in the E-I network, which is shown in (E).

On the other hand, (F) Shows how swapping the FTSTS inputs to the excitatory and inhibitory neuron increases the E-to-I synaptic weight. This induces the

pre-before-post spiking pattern shown in (G).

neuron E-I network in section 3.1. Next, we demonstrate the
efficacy of the FTSTS strategy in controlling synchronized activity
of a 2,000 and 10,000 neuron E-I networks (see sections 3.2,
3.3). We then show the robustness of the FTSTS strategy in
the presence of uncertainties in the designed stimulation pulses,
model parameters and network connectivity (see sections 3.4,
3.5, 3.6, 3.7). Next, in section 3.8, we combine the FTSTS
strategy with the existing coordinate reset (CR) stimulation
strategy to show the efficacy of the FTSTS-CR strategy over
the CR stimulation strategy. Finally, in sections 3.9 and 3.10,
we demonstrate that FTSTS strategy can desynchronize E-I
networks with additional plastic synapses and symmetric spike-
time plasticity rules.

3.1. Control of E-to-I Synaptic Weight in a
Two Neuron Network
We considered an excitatory-inhibitory (E-I) network of
two neurons to develop our “Forced Temporal Spike-Time

Stimulation” (FTSTS) strategy (Figure 2A). We set a scaling
factor of Cij = 10Ni and probability of connectivity of ǫ = 1 (see
section 2.1 for themeaning of these variables). Based on the STDP
rule of activity-dependent plasticity, we designed stimulation
inputs for both the inhibitory (VI

stim(t)) and excitatory (VE
stim(t))

neuron that forced the postsynaptic inhibitory neuron to
spike before the presynaptic excitatory neuron, as shown
in Figures 2B,C, respectively. The protocol stimulated the
postsynaptic inhibitory neuron and the presynaptic excitatory
neuron using charge-balanced rectangular pulses with an equal
and opposite amplitude (Ustim). Figure 2E shows the induced
firing patterns in neurons, which decreased the average E-to-I
synaptic weight of the network as shown in Figure 2D. On the
other hand, the average E-to-I synaptic weight increased when
VE
stim(t) and VI

stim(t) were switched such that the presynaptic
excitatory neuron fired before the postsynaptic inhibitory
neuron. The increased synaptic weight observed from the
induced spiking pattern in Figure 2G is shown in Figure 2F.
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FIGURE 3 | Desynchronization of neural activity in 2,000 neuron E-I network. (A) Shows the FTSTS waveform for inhibitory neurons. (B) Shows the FTSTS waveform

for excitatory neurons. (C) Shows the time evolution of the average E-to-I synaptic weight. As shown here, the average E-to-I synaptic weight of network is decreased

to 75 mV (blue-line), where the stimulation is turned off. (D) Shows the synchrony level of excitatory neurons as a function of time. (E–G) Show the spiking patterns

before, during, and after the FTSTS protocol, respectively. The FTSTS pulse parameters are Ustim = 100 mV, Tstim = 1 ms, and Tneutral = 10 ms.

3.2. FTSTS Effectively Controls the
Neuronal Synchronization in a 2000 Neuron
Network
We applied the FTSTS strategy to a E-I network of 1,600

excitatory and 400 inhibitory neurons to demonstrate how our

strategy can be used to control the synchrony of neuronal

activity in large networks. In a larger network of neurons, our

strategy forces the postsynaptic inhibitory population of neurons

to spike before the presynaptic excitatory neuron population.

We assumed that all the neurons in each specific population

receives the same input. The applied FTSTS inputs to each
neuron population are shown in Figures 3A,B. These inputs

induced a specific spiking pattern, as shown in Figure 3F,

which depressed the average E-to-I synaptic weight (shown in
Figure 3C). The period of stimulation is highlighted with a solid
black line in Figure 3C. Since the network has an asynchronous
regime that converges to a low average E-to-I synaptic weight,
we only required enough input to drive the network into the
asynchronous regime. Therefore, we provided enough input to
depress the synaptic weight of the network to 75 mV, which is
slightly over the synchronous-asynchronous regime boundary
(see Figure 1). As a result, the system naturally converged to the
low synaptic weight stability point when the FTSTS protocol was
turned off. The synchronous and asynchronous firing patterns
before and after the stimulation protocol are displayed in
Figures 3E,G, respectively. The synchrony level of the network
as it transitioned from the synchronous to asynchronous regime
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FIGURE 4 | Resynchronization of neural activity in 2,000 neuron E-I network. (A) Shows the FTSTS waveform for inhibitory neurons. (B) Shows the FTSTS waveform

for excitatory neurons. Note that the FTSTS waveforms for inhibitory and excitatory populations are swapped from the desynchronization case (see Figures 3A,B).

(C) Shows the time evolution of the average E-to-I synaptic weight. As shown here, the average E-to-I synaptic weight of network is increased to 125 mV (blue-line),

where the stimulation is turned off. (D) Shows the synchrony level of the network as a function of time. (E–G) Show the spiking patterns before, during, and after the

FTSTS protocol, respectively. The FTSTS pulse parameters are Ustim = 200 mV, Tstim = 1 ms, and Tneutral = 10 ms.

is shown in Figure 3D. The activity of the E-I network prior
to the applied stimulation (the first 2 s) was measured around
R(t) = 0.75. When the stimulation protocol was turned on, the
measured synchrony level became low (see Figure 3D). This is
due to the asynchronous firing between each FTSTS pulse. When
the FTSTS protocol was turned off, the network remained in the
asynchronous regime at the measured network synchrony level
of R(t) = 0.05 (see Figure 3D).

Next, we demonstrate how our FTSTS strategy can also be
used to synchronize the asynchronous network activity. To do
so, we swapped the inputs to the inhibitory and excitatory
neurons used in the desynchronization case, which are shown in
Figures 4A,B. This stimulation protocol forced the presynaptic
excitatory neuron population to fire prior to the postsynaptic
inhibitory neuron populations, which is shown in Figure 4F.
Similar to the two neuron case, swapping the inputs to the

excitatory and inhibitory neurons induced LTP in the network
and increased the average E-to-I synaptic weight of the network,
as shown in Figure 4C. Again we are only required to drive
the network into the synchronous regime (i.e., the average E-
I synaptic weight above 100 mV) to synchronize the network.
Therefore, the stimulation protocol was turned off when the
average E-to-I synaptic weight reached 125 mV, which was
slightly over the threshold. Here, the network will remain in the
synchronous regime and the average E-to-I synaptic weight will
converge to the high synaptic weight stability point. The spiking
patterns of the E-I network before, during, and after the FTSTS
protocol are shown in Figures 4E–G, respectively. Figure 4D
shows the changes in the network synchrony level before, during,
and after the FTSTS protocol. As shown in Figure 4D, the
network synchrony increased from R(t) = 0.05 to R(t) = 0.6
after the removal of the stimulation. It should be noted that
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FIGURE 5 | Desynchronization of neural activity in 10,000 neuron E-I network. (A) Shows the decrease in the average E-to-I synaptic weight of the network during

and after the FTSTS stimulation (black line), which is compared to the decrease of the average synaptic of the 2,000 neuron E-I network (red line) by FTSTS. Due to

the change in network dynamics for the 10,000 neuron network, the synaptic weight was decreased to 25 mV in order to push it into the asynchronous regime

(green-dashed line). (B) Shows the network synchrony level during and after the FTSTS stimulation. The FTSTS pulse parameters used in this simulation are

Ustim = 100 mV, Tstim = 1 ms, and Tneutral = 10 ms.

the synchrony level increases significantly during the stimulation
in this case compared to the case of desynchronization (see
Figure 3D for comparison). This is due to the large input of
Ustim = 200 mV compared to the input used in Figure 3, which
forces the neurons to fire in a highly synchronous firing pattern. If
a smaller input is used to resynchronize the network, it would be
more noisy during the FTSTS protocol and the FTSTS would be
required for a longer period of time to resynchronize the network.

3.3. Desynchronization of Neural Activity in
a Large E-I Network
We applied our FTSTS protocol to demonstrate its applicability

in larger networks. For demonstration purpose, we considered a
E-I network with 8,000 excitatory and 2,000 inhibitory neurons.

We set the probability of connectivity of the E-to-I and I-to-E

synapses ǫ to 0.01. The FTSTS protocol induced the same post-
before-pre firing patterns in the larger network which decreased
the average E-to-I synaptic weight, as shown in Figure 5A.
The stimulation protocol desynchronized the network in ∼22
s, which is comparable to the desynchronization time of the
2,000 neuron network. The changes in the network synchrony
level before, during, and after the FTSTS protocol are shown
in Figure 5B. As noted in Figure 5B, the initial synchrony
level of R(t) = 0.8 is reduced to approximately R(t) =
0.05 after the FTSTS protocol. Once the stimulation protocol
reduced the average E-to-I synaptic weight below 75 mV (i.e., the
asynchronous regime), we no longer required the external inputs
to keep the network in the asynchronous regime.

3.4. Robustness to Uncertainties in the
FTSTS Pulse Parameters
Here, we demonstrate the robustness of our protocol
in desynchronizing a 2,000 neuron E-I network against

uncertainties in the FTSTS pulse parameters. In particular, we
considered uncertainty in the FTSTS pulse amplitude Ustim,
which we modeled in the form of a Gaussian distribution
with mean Ustim and variance Ustim

10 . Each of the applied pulse
amplitude during stimulation was randomly chosen from
this distribution. As shown in Figure 6B, the FTSTS strategy
efficiently desynchronized the network by driving the network
into the asynchronous regime. Figure 6A shows the changes in
the average synaptic weight of the network before, during, and
after the FTSTS protocol.

3.5. Robustness to Uncertainties in the
Network Model Parameters
In this section, we show the robustness of our FTSTS strategy
against uncertainties in the network model parameters. For
demonstration, we considered variations in the membrane time
constant τm of neurons in the network. We randomly assigned
the membrane time constant τm of individual neurons in the
2,000 neuron E-I network from a uniform distribution U(8, 12)
to show the efficacy of our FTSTS strategy in desynchronizing
the network activity. Figure 7A shows our simulation results for
τm ∈ U(8, 12). Here, the FTSTS protocol forced the average E-to-
I synaptic weight of the network into the asynchronous regime
within ∼15 s of stimulation which led to desynchronization of
the network activity after the removal of the stimulation, as
shown in Figure 7B. As noticed here, the stimulation protocol
desynchronized the network faster in this case compared to the
case in Figure 3C where there is no variation in the membrane
time constant. This is not surprising as an increase variability
in the membrane time constant would induce more noise
and desynchronize the firing pattern of the neurons initially,
which is seen in Figure 7B with a lower initial Kuramoto order
parameter value.
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FIGURE 6 | Robustness of the FTSTS strategy against random variations in the FTSTS pulse amplitude. The FTSTS pulse amplitude for each pulse has been chosen

from a Gaussian distribution with mean Ustim and a variance of
Ustim
10 . (A) Shows the decrease in the average E-to-I synaptic weight of the network during and after

the FTSTS stimulation (black line). The red line shows the decrease in average synaptic weight of a network without random variation in the applied FTSTS pulse

amplitude. (B) Shows the network synchrony level during and after the FTSTS stimulation. The FTSTS pulse parameters used in this simulation are Ustim = 100 mV,

Tstim = 1 ms, and Tneutral = 10 ms.

FIGURE 7 | Robustness of the FTSTS strategy against uncertainty in the membrane time constant of neurons in the 2,000 neuron E-I network. (A) Shows the

changes in the average E-to-I synaptic weight of the network, which is compared to a network without uncertainty in the membrane time constant (red line). (B)

Shows the network synchrony level of the network throughout the simulation where the membrane time constant τm of individual neurons in the network is drawn

from a uniform distribution U (8, 12). The applied FTSTS pulse parameters are Ustim = 100 mV, Tstim = 1 ms, and Tneutral = 10 ms.

3.6. Addition of E-to-E and I-to-I Synaptic
Connections
In this section, we show the efficacy of the FTSTS strategy in
desynchronizing 2000 neuron E-I network in the presence of
E-to-E and I-to-I synaptic connectivity. We assumed that the
synaptic strength of all synapses within the network are static
except E-to-I synapses. We set the synaptic strength of the static
I-to-E, E-to-E and I-to-I synapses as JEI = 90 mV, JEE = 50
mV, and JII = 50 mV, respectively, with scaling factors of
CEE = Ntot and CII = Ntot , where Ntot = NE + NI . The
probability of connectivity of the E-to-E and I-to-I was 0.1. The
addition of E-to-E and I-to-I synapses within the E-I network
didn’t change the bifurcation of the regime into synchronous and

asynchronous with respect to the network average E-I synaptic
weight qualitatively. Our simulation results show that the FTSTS
strategy effectively desynchronized the network activity, shown
in Figure 8B, in the presence of E-to-E and I-to-I synapses by
driving the average E-to-I synaptic weight of the network into
the asynchronous stability regime, as shown in Figure 8A.

3.7. Robustness to Partial Spatially
Inseparable Excitatory and Inhibitory
Neuron Population
In this section, we show the robustness of the FTSTS strategy for
a case where E-I populations are not well separated. We assume
that 25% of the excitatory and 25% of the inhibitory population
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FIGURE 8 | Efficacy of the FTSTS strategy in desynchronizing 2,000 neuron E-I network in the presence of E-to-E and I-to-I synaptic connectivity (black line).

(A,B) Show the changes in the average E-to-I synaptic weight of the network and the network synchrony level, respectively. The red line in (A) Shows the decrease in

average synaptic weight of a network with only E-to-I and I-to-E synapses. The FTSTS pulse parameters are Ustim = 100 mV, Tstim = 1 ms, and Tneutral = 10 ms.

are not spatially separable. Therefore, this inseparable population
of E-I neurons receives inputs designed for the excitatory and the
inhibitory population. Figure 9A shows that the FTSTS strategy
is still able to push the average synaptic weight of the network into
the asynchronous regime. The change in slope during the FTSTS
protocol in Figure 9A is most likely due to the synaptic weight of
the separable populations reaching the minimum weight value.
At this point, the disruption from the stimulation protocol and
the low average synaptic weight of the network helped to further
depress the synaptic weight of the neurons. Figure 9B shows the
reduction of the network synchrony with the Kuramoto order
parameter dropping from R(t) = 0.72 to R(t) = 0.05.

3.8. Integration of FTSTS With the
Coordinate Reset Strategy
In this section, we demonstrate how our FTSTS strategy could
be incorporated within the standard coordinate reset (CR)
stimulation protocol to effectively stimulate a large population
of neurons. One way to implement the CR stimulation protocol
is to divide the synchronous population of neurons into four
subpopulations, which receive separate but identical inputs at
different times over the course of period T (Tass, 2003a,b). T
is the overall period of the synchronous neuron population
without input. If the neuron population is divided into four
subpopulations, then each subpopulations approximately will
receive input every T/4. The order that each subpopulation
receives input is randomly assigned at every period. In order to
compare the CR to the FTSTS strategy, we individually divide the
excitatory and inhibitory population into four subpopulations
(8 subpopulations for the E-I network). Figures 10E,G show
the CR stimulation pattern applied for one period to the
excitatory and inhibitory population, respectively. These figures
show the stimuli provided to the first quarter of neurons in
the E-I network with one pulse to excitatory subpopulation 1
(Figure 10E, blue) and one pulse to the inhibitory subpopulation

2 (Figure 10G, orange). The stimuli to the second quarter
of the E-I network is a pulse delivered to the excitatory
subpopulation 3 (Figure 10E, yellow) and a pulse to the
inhibitory subpopulation 1 (Figure 10G, blue). This is repeated
for the remaining subpopulations in the excitatory and inhibitory
populations. After every subpopulation has been stimulated over
period T, a new random stimulation order is assigned for each
subpopulation. The efficiency of the CR approach is shown in
Figure 10A. Here, the CR stimulation depresses the average
synaptic weight of the network over the course of ∼100 s. This
causes a drop in synchrony from R(t) = 0.7 to R(t) = 0.05, which
is shown in Figure 10C.

We integrated this strategy with our FTSTS strategy and
applied it to an E-I network, consisting of 2,000 neurons, in
the presence of E-to-E and I-to-I synaptic connectivity. We
randomly divided each excitatory and inhibitory population into
four subpopulations. Then, we adjusted the CR stimulation
pattern to incorporate our FTSTS protocol (FTSTS-CR), such
that each randomly selected pair of excitatory and inhibitory
subpopulations are forced to spike post-before-pre. The FTSTS-
CR stimulation pattern for one period is shown in Figures 10F,H.
For a single FTSTS-CR pulse, we set Ustim = 100 mV, Tstim = 1 ms
and Tneutral = 7 ms. Similar to CR, we repeated this stimulation
protocol for the other subpopulations in a random sequence
for one period. Then, a new stimulation order is assigned for
the next period T. Our protocol forces a randomly selected
inhibitory subpopulation to fire prior to a randomly selected
excitatory subpopulation, which over the course of 60 s depresses
the average E-to-I synaptic weight of the entire population
into the asynchronous regime as shown in Figure 10B. When
the average E-to-I synaptic weight reached a preset value of
75 mV (asynchronous regime), we turned off the stimulation
protocol. Figure 10D shows that the network remained in the
desynchronized state at a synchrony level of R(t) = 0.05 for the
rest of the simulation after removal of the FTSTS-CR protocol.
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FIGURE 9 | Efficacy of the FTSTS strategy in desynchronizing 2,000 neuron E-I network where 25% of the population is inseparable and receives both the excitatory

and inhibitory population input. (A) Shows the change in the average E-to-I and I-to-E synaptic weight of the network (black line), which is compared to the

completely separable case considered in Figure 3 (red line). (B) Shows the network synchrony level during the simulation. The FTSTS pulse parameters are Ustim =

100 mV, Tstim = 1 ms, and Tneutral = 10 ms.

3.9. Robustness to Additional Plastic
Synapses
In previous sections, we presented our results for networks
where we considered only E-to-I plastic synapses. In this
section, we demonstrate the efficacy of our FTSTS strategy in
desynchronizing networks where both E-to-I and I-to-E synaptic
connections are plastic. We modeled the plasticity dynamics of
I-to-E synapses using an anti-Hebbian STDP plasticity rule (Bell
et al., 1997; Luz and Shamir, 2012). For anti-Hebbian STDP, we
used (Equations 8, 9) with the changed parameters aLTD = 1
and aLTP = −1.1 so that pre-before-post spike times decrease
and post-before-pre spike times increases the synaptic weight.
Our simulation results (see Figures 11A,B) show that the FTSTS
strategy can potentially desynchronize the network by depressing
both the E-to-I and I-to-E synaptic weights. Additionally,
Figure 11C shows a decrease in the network synchrony from
R(t) = 0.82 to R(t) = 0.05.

3.10. Robustness to a Symmetric Plasticity
Rule
We demonstrate how a modified FTSTS protocol is able to
control the synaptic weight of an E-I network with a symmetric
plasticity rule. We use the same network described in section
2 with the following changes to the plasticity rule. The E-to-I
synaptic weight is govern by the following equation (Hauptmann
and Tass, 2009; Tass and Hauptmann, 2009):

1WIE(t) = cPe
−|ISIIE|/τp − cDe

−|ISIIE|/τD , (14)

where ISIIE is the inter-spike-interval between spike-times of
inhibitory and excitatory neurons in an E-to-I synapse. cP
and cD are the potentiation and depotentiation learning rates,
respectively. τP is the potentiation time constant and τD is
the depotentiation time constant. The symmetric plasticity
parameters can be found in Table 1.

In order to apply our FTSTS protocol for desynchronizing
E-to-I network with a symmetric plasticity rule, we modified
the FTSTS protocol by offsetting the pulse to the inhibitory
population by Toffset . This forced ISIs that promote either an
increase or decrease in the synaptic weight. Using our modified
FTSTS protocol, we show in Figures 12A,C that our FTSTS
strategy can efficiently depress the synaptic weight of the
synchronous network and desynchronize the network by forcing
larger ISIIE values. Additionally, our protocol can also increase
the average synaptic weight of the network to resynchronize
the network by forcing short ISIIE values. Figure 12B shows the
increase in the average E-to-I synaptic weight. The subsequent
increase in the synchrony level is shown in Figure 12D, where
the order parameter increases from R(t) = 0.05 to R(t) = 0.6.

4. DISCUSSIONS

In this paper, we developed and presented a novel stimulation
strategy “Forced Temporal Spike-Time Stimulation” (FTSTS)
for controlling synchronous activity of neurons in large
spiking neural networks. Compared to other desynchronization
strategies for large-scale spiking neural networks reported in
the literature, our strategy focuses on controlling the average
network synaptic weight by harnessing synaptic plasticity using
a Hebbian-based spike-timing dependent plasticity (STDP)
protocol that as a result controls the synchronization of neurons
within the network. We presented a two neuron excitatory-
inhibitory (E-I) network as an example to provide a mechanistic
understanding of our approach. We later demonstrated the
efficacy and robustness of the FTSTS strategy on large networks
by varying themodel parameters, synaptic connectivity and noisy
inputs to the network. These results are also summarized in
Figure 13 for clarity. While we only considered a LIF network,
our method will lead to similar outcomes qualitatively for other
neuronal models, since our approach is based on Hebbian
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FIGURE 10 | Efficacy of the FTSTS-CR strategy in desynchronizing 2,000 neuron E-I network in the presence of E-to-E and I-to-I synaptic connectivity. Each

excitatory and inhibitory population of neurons is individually divided into 4 subpopulations (8 subpopulations for the E-I network). (A,C) Show the changes in the

average E-to-I synaptic weight of the network and the network synchrony level, respectively, for the CR desynchronization strategy. The FTSTS-CR is compared to the

CR approach in (B,D), which show the changes in the average E-to-I synaptic weight of the network and the network synchrony level, respectively. (E,G) Show one

cycle of coordinate reset (CR) stimulation applied to the subpopulations in each excitatory and inhibitory neuron population. (F,H) Show one cycle of the FTSTS-CR

stimulation protocol applied to the excitatory and inhibitory populations. The designed FTSTS-CR and CR pulse parameters are Ustim = 100 mV, Tstim = 1 ms, and

Tneutral = 7 ms.

activity-dependent plasticity. One of the prominent features
of our FTSTS strategy is that it allows both synchronization
and desynchronization of network activity by reversing the
stimulation protocol (see Figures 3, 4), thus provides a complete
control over the synchronization level of neural activity within a
given network.

Our FTSTS strategy differs from existing stimulation strategies
for desynchronizing spiking neural networks in many ways. Our

strategy is based on harnessing the underlying synaptic plasticity
compared tomost of the desynchronization strategies reported in
literature (Hauptmann et al., 2005; Popovych et al., 2005, 2017;
Deuschl et al., 2006; Kiss et al., 2007; Nabi et al., 2013b; Mauroy
et al., 2014; Wilson and Moehlis, 2014; Vlachos et al., 2016;
Monga et al., 2018). Most of these strategies ignore the inherent
synaptic plasticity among neurons in the network in designing
the stimulation protocol for desynchronizing the network activity
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FIGURE 11 | Efficacy of the FTSTS strategy in desynchronizing 2,000 neuron E-I network in the presence of Hebbian E-to-I and anti-Hebbian I-to-E plasticity.

(A,B) Show the change in the average E-to-I and I-to-E synaptic weight of the network, respectively. (C) Shows the network synchrony level during the simulation.

The FTSTS pulse parameters are Ustim = 100 mV, Tstim = 1 ms, and Tneutral = 10 ms.

FIGURE 12 | Efficacy of the FTSTS strategy in desynchronizing (A,C) and resynchronizing (B,D) a 2,000 neuron E-I network with symmetric plasticity. (A) Shows the

decrease in average synaptic weight of the network with the modified FTSTS protocol for symmetric plasticity. (C) shows the change in the synchrony of the network

before, during, and after stimulation. (B) Shows the increase in average synaptic weight of the network with the modified FTSTS protocol for symmetric plasticity.

(D) Shows the change in the synchrony of the network before, during, and after stimulation. The FTSTS parameters used to decrease the average E-to-I synaptic

weight are Ustim = 200 mV, Tstim = 1 ms, Tneutral = 22 ms, and Toffset = 11 ms. The FTSTS parameters used to increase the average E-to-I synaptic weight are

Ustim = 100 mV, Tstim = 1 ms, Tneutral = 10 ms, and Toffset = 5 ms.

(One exception is “Coordinate Reset” (CR) (Tass, 2003a,b; Tass
and Majtanik, 2006; Tass and Hauptmann, 2007; Pfister and Tass,
2010; Ebert et al., 2014; Zeitler and Tass, 2015). As a result, these
strategies effectively desynchronize the network activity if the
stimulation protocol is active. Once the stimulation protocol is
turned off, the network resynchronizes rapidly because of the
disappearance of the asynchronous regime in the absence of

stimulation. Our strategy alleviates this problem, like CR, by
explicitly incorporating and harnessing Hebbian-based STDP,
which allows the network to stay in the asynchronous regime
for a longer-time period after the stimulation is turned off
(see Figure 3).

Almost all the stimulation strategies focus on desynchronizing
the network activity by randomizing the firing patterns
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FIGURE 13 | Summary of the robustness studies (red line) of the FTSTS approach with varying network and input parameters compared to the base E-I network in

Figure 3 (black line). (A) Desynchronization of neural activity in 10,000 neuron E-I network. (B) Robustness of the FTSTS strategy against random variations in the

FTSTS pulse amplitude. (C) Robustness of the FTSTS strategy against uncertainty in the membrane time constant of neurons in the 2,000 neuron E-I network.

(D) Efficacy of the FTSTS strategy in desynchronizing 2,000 neuron E-I network in the presence of E-to-E and I-to-I synaptic connectivity. (E) Efficacy of the FTSTS

strategy in desynchronizing 2,000 neuron E-I network where 25% of the population is inseparable and receives both the excitatory and inhibitory population input.

The FTSTS pulse parameters for all the studies are Ustim = 100 mV, Tstim = 1 ms, and Tneutral = 10 ms.

of neurons through direct stimulation. In comparison, our
FTSTS strategy focuses on decreasing the average synaptic
weight of the network by taking advantage of the Hebbian-
based STDP protocol, which leads to the desynchronization
of network activity. For example, the CR-based stimulation
strategy desynchronizes the network activity by forcing different
subpopulations of neurons to fire out of phase with each other,
which resets the phase and desynchronizes the network (Tass,
2003a,b; Tass and Majtanik, 2006; Tass and Hauptmann, 2007;
Pfister and Tass, 2010; Ebert et al., 2014; Zeitler and Tass, 2015).
This generates an artificial asynchronous firing pattern that
increases the basin of attraction of the asynchronous regime (i.e.,
lower synaptic weight stability point) (Pfister and Tass, 2010;
Popovych and Tass, 2014). The underlying synaptic plasticity
within the network then drives the average synaptic weight of
the network toward the lower synaptic weight stability point (see
Figures 10, 14 for comparison of our approach to the CR-based
stimulation strategy).

Our developed framework can be incorporated into other
desynchronization strategies, such as CR, to improve their
efficacy. Figure 10 shows a comparison between the FTSTS-CR

and CR performances in desynchronizing a E-I network
consisting of 2,000 neurons with E-I synaptic plasticity (see
section 3.8 for details of model parameters and specifics about the
design of FTSTS-CR stimulation strategy). Since the FTSTS-CR
stimulation strategy focused on decreasing the average synaptic
weight of network, which as a result desynchronized the neural
activity (see Figures 10B,D), this strategy outperformed the CR
stimulation strategy shown in Figures 10A,C.

One of the limitations of the CR stimulation strategy is that the
long-lasting effects occur only in networks where the long-term
depression (LTD) dominates the long-term potentiation (LTP) of
the synapses on average so that the network exhibits bistability
(Pfister and Tass, 2010). It has been found that LTP dominates
in specific aberrant neuronal pathways and brain regions such
as the striatum indirect pathway underlying Parkinson’s disease
and hippocampus underlying epilepsy (Mathern et al., 1998;
Johnston, 2004; Shen et al., 2008). In such brain networks, the CR
and FTSTS-CR stimulation strategy would both fail to produce
long-lasting desynchronization of the network activity but the
FTSTS-CR will have a longer acute desynchronization effect
compared to the CR protocol. To demonstrate this, we applied
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FIGURE 14 | Comparison of the FTSTS-CR stimulation strategy with the coordinate-reset (CR) stimulation strategy on a network where LTP dominates LTD.

(A,C) Show the changes in the average E-to-I synaptic weight of the network and the network synchrony level, respectively, for the FTSTS-CR stimulation strategy.

(B,D) Show the changes in the average E-to-I synaptic weight of the network and the network synchrony level, respectively, for the CR stimulation strategy.

(E,F) Show the FTSTS-CR stimulation pattern. The FTSTS-CR pulse parameters are Ustim = 200 mV, Tstim = 0.5 ms, and Tneutral = 3 ms. The STDP plasticity

parameters are aLTD = −1, aLTP = 1.01,τLTD = 20 ms, and τLTP = 20 ms.

the CR stimulation strategy to an E-I network consisting of 2,000
neurons where LTP dominates LTD. As shown in Figure 14D,
the network synchrony level is disrupted during the stimulation
period of 140 s but increased to a synchrony level of R(t) =
0.7 after removal of the stimulus. Since CR stimulation, in this
scenario, only induces acute desynchronization of the network
and does not reduce the average synaptic weight, the average
synaptic weight of the network remains in the synchronous
regime the entire time, as shown in Figure 14B. As a result,
the network resynchronized rapidly after the removal of the
CR stimulus. We compare the desynchronization efficacy of

the FTSTS-CR and CR approach in Figures 14A,B, respectively.
During the period of FTSTS-CR stimulation, there is a decrease
in the average synaptic weight (see Figure 14A). This results in
a reduction in the synchrony level to R(t) = 0.05 when the
FTSTS-CR stimulus is removed. While this desynchronization
is transient due to the domination of LTP, the network remains
desynchronized for a longer period of time compared to CR as
shown in Figure 14C.

In this work, we have considered excitatory-inhibitory (E-
I) networks with plastic E-to-I synapses. In general, our
approach is applicable to other types of spiking neural networks
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such as purely excitatory or inhibitory networks as well as
to networks with other plastic synapses such as E-to-E or
I-to-I synapses. One of the limitations of our approach is
that it assumes the same stimulus waveform is delivered to
individual neurons within a subpopulation. Although we have
demonstrated in simulation that our FTSTS strategy effectively
desynchronizes the neuronal firings in a network even when
the stimulation waveform parameters for individual neurons are
drawn randomly from a given distribution (see Figure 6) and are
contaminated with input designed for the opposite population
(Figure 9), it is still able to utilize the relationship between pre
and post firings to effectively harness the synaptic plasticity.
Multi-laser optogenetics and recent development in optogenetics
to excite or inhibit the same neuron using two different
light wavelengths could potentially alleviate this limitation for
experimental implementation of our strategy (Forli et al., 2018).
Additionally, we assumed the majority of the excitatory and
inhibitory neuron populations were spatially separate, which
allows for the neuron populations to be separately stimulated.
Two examples of spatially separate excitatory and inhibitory
neuron populations are the striatum and cortex or the globus
pallidus external segment (GPe) and subthalamic nucleus (STN)
(Lanciego et al., 2012; Hegeman et al., 2016). The GPe-STN
network has traditionally been targeted for DBS-HFS to treat
PD and could be potential area to test this hypothesis. Although
we have not optimized the FTSTR pulses to achieve a better
performance or to make it more energy efficient, it is not

difficult to formulate optimization problems that minimizes
the average synaptic weight, network synchrony level, and
applied stimulation energy simultaneously to achieve a better
overall performance.
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