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Metastability refers to the fact that the state of a dynamical system spends a large

amount of time in a restricted region of its available phase space before a transition

takes place, bringing the system into another state from where it might recur into

the previous one. beim Graben and Hutt (2013) suggested to use the recurrence plot

(RP) technique introduced by Eckmann et al. (1987) for the segmentation of system’s

trajectories into metastable states using recurrence grammars. Here, we apply this

recurrence structure analysis (RSA) for the first time to resting-state brain dynamics

obtained from functional magnetic resonance imaging (fMRI). Brain regions are defined

according to the brain hierarchical atlas (BHA) developed by Diez et al. (2015), and as a

consequence, regions present high-connectivity in both structure (obtained from diffusion

tensor imaging) and function (from the blood-level dependent-oxygenation—BOLD—

signal). Remarkably, regions observed by Diez et al. were completely time-invariant.

Here, in order to compare this static picture with the metastable systems dynamics

obtained from the RSA segmentation, we determine the number of metastable states

as a measure of complexity for all subjects and for region numbers varying from 3 to

100. We find RSA convergence toward an optimal segmentation of 40 metastable states

for normalized BOLD signals, averaged over BHA modules. Next, we build a bistable

dynamics at population level by pooling 30 subjects after Hausdorff clustering. In link

with this finding, we reflect on the different modeling frameworks that can allow for such

scenarios: heteroclinic dynamics, dynamics with riddled basins of attraction, multiple-

timescale dynamics. Finally, we characterize the metastable states both functionally

and structurally, using templates for resting state networks (RSNs) and the automated

anatomical labeling (AAL) atlas, respectively.

Keywords: resting state, recurrence structure analysis, metastability, BOLD fMRI, diffusion tensor imaging, brain

hierarchical atlas

1. INTRODUCTION

Mapping the brain’s functional-structural relationship remains one of the most complex challenges
in modern neuroscience (Park and Friston, 2013), in part due to the highly dynamic multi-scale
nature of the brain’s processes and structures as observed by different measurement modalities,
which leads to technical and mathematical difficulties for establishing dynamically invariant
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relations across scales. As a result, which precise function
emerges at the macro-scale (as measured by BOLD signals)
from the underlying static neuronal architecture is not yet
fully understood. In fact, this rests on a many-to-one function-
structure relationship, which is hard to resolve and therefore
novel methodologies are demanded. The present study addresses
aspects of this macro-scale question by leveraging on recent
developments of novel data-driven computational methods,
which weeds out recurrent dynamical states from times series
and associates to optimal brain structures, thus resolving the
function-structure of the so-called resting state networks (RSNs)
(Raichle et al., 2001; Fox et al., 2005; Diez et al., 2015; Smitha et al.,
2017).

Several methodological advances are making strides in
unveiling the macro-scale organization of the brain, comprising
both hierarchical brain network structures and functions. These
methods classify brain’s macro-scale organization under the
following terms: structural connectivity (resolved from diffusion
tensor imaging techniques—DTI), functional connectivity
(determined by statistical dependencies from BOLD signals)
and effective connectivity (deduced by causality measures
from BOLD signals). The neural structures and patterns of
dynamical similarity are represented by e.g., the connectivity
matrices. Specifically, for structural connectivity, functional
connectivity, and effective connectivity the entries of the network’s
connectivity matrix indicate the anatomical links (white-matter
tracts connecting different gray matter regions), the correlation
strength and the causal strength between pairs of imaging
regions of interest, respectively (Alonso Montes et al., 2015).
Subsequently, features of this matrix can be exploited by using
for example standard tools from linear algebra that rely upon
spectral analysis (e.g., invariants such as eigenvalues) and
other related/complementary methods, such as independent
component analysis (ICA) (Bell and Sejnowski, 1997), partial
least squares (PLS) (Krishnan et al., 2011), andmanymore. These
procedures extract meaningful and independent quantities and
thus decompose features within the connectivity matrix.
However, mapping between these different matrices and
additionally accounting for temporal dynamics is of paramount
interest and an active research area in brain mapping.

To reduce the complexity of this issue, neuroscientists have
primarily focused on a precise context provided by the RSNs.
This global brain dynamics (measured from the observable fMRI)
emerges while a subject is at rest and can be decomposed as a
superposition of multiple activation patterns (Bell and Sejnowski,
1995; Beckmann and Smith, 2005; Vergun et al., 2016). Despite
the simplicity of the context in which these brain activity
patterns are generated, RSNs dynamics is rich and complex.
Indeed, different RSNs have been associated to specific cognitive
networks, for example, visual networks, sensory-motor networks,
auditory networks, memory (default mode) networks, executive
control networks, and some others (see for instance Beckmann
et al., 2005 and references therein). This has led to the hypothesis
that underlying such activation patterns (often recurring) is the
existence of stable switching attractors that enhance information
maintenance and facilitates cognitive transitions (Vidaurre et al.,
2017; Iraji et al., 2018; Shine et al., 2018). Moreover, it is observed

that the base resting state network is well conserved across
subjects (Damoiseaux et al., 2006).

The mapping between structural connectivity and functional
connectivity of RSNs (without considering temporal dynamics)
was recently investigated by some authors of the present study
and, as a by-product, a novel brain hierarchical atlas was
identified (Diez et al., 2015). This was achieved by starting
from the hypothesis that segregated functions are associated
with distinct brain regions and both structure and functions
have a hierarchical modular organization. This provided a tree
(dendrogram) structure where the leaves of the tree (first-
order nodes) associated to voxel measurements represent self-
correlation (i.e., singleton) for the functional connectivity matrix
and self-connectivity for the structural connectivity matrix.
Moving up the tree corresponds to pairing up tree leaves that have
strong correlations or connectivity (for functional connectivity
and structural connectivity, respectively), thus forming higher-
order nodes (or modules). Recursively, these modules are paired
until the entire brain is represented by a mother node. It
was shown that for about twenty modules maximal similarity
between structural modules and functional ones was achieved
and precisely these modules define the novel brain hierarchical
atlas (BHA), which also explains the structure-function mapping
in RSNs. However, the dynamical evolution of RSNs over time
was not investigated and in fact has never been exploited directly
from data, though indirect approaches have been explored.
For example, computational brain network models have been
proposed in attempt to reveal fundamental principles of RSNs
(Hansen et al., 2015; Deco et al., 2017; Surampudi et al., 2019),
and some of these models predict (for instance) that the human
brain during resting state operates at maximummetastability, i.e.,
in a state of maximal network switching (also observed in EEG
Roberts et al., 2019). Moreover, it is conjectured that information
flow in the brain is guided by ordered sequences of metastable
states (Friston, 1997; Rabinovich et al., 2008; Kelso, 2012; Tognoli
and Kelso, 2014; Fingelkurts and Fingelkurts, 2017).

The present work takes a step further and considers a
direct approach by employing a data-driven computational
method to investigate the stable switching attractors hypotheses
of RSNs, leveraging a recently developed method, called
recurrence structure analysis (RSA) (beim Graben and Hutt,
2013, 2015; beim Graben et al., 2016). We note however that
the proposed framework is not the only method for extracting
reproducible time-resolved networks from data as very recently
a competing framework based on dynamic mode decomposition
was proposed (Kunert-Graf et al., 2018). Briefly, our method
utilizes advanced theories of dynamical systems and time series
analysis, attempting to extract optimal symbolic dynamics from
time series observations that display transient and recurrent
states (i.e., metastable states). This is achieved by building upon
Poincaré’s recurrence theorem, on the one hand, which states
that trajectories of a complex dynamical system visit frequently
certain regions of their available state space in the course of
time and by the so-called recurrence plot method (RP), on
the other hand, allowing visualization and matrix identification
of recurrent states. These are then transformed to symbolic
space by introducing recurrence grammars, which map state
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space trajectories onto symbolic sequences (beim Graben and
Hutt, 2013, 2015; beim Graben et al., 2016). This is carried
out by constructing state space partitions that are maximally
metastable, based on the assumption that the discretized symbolic
dynamics should be approximately Markovian. Thus combining
the structure-function modules of the novel brain hierarchical
atlas with optimized recurrence structure analysis, opens for the
first time new avenues to identifying resting state networks with
time-dependent recurrent cognitive states.

2. METHODS

In this section we review our methods for the data acquisition,
preprocessing, structure-function clustering and recurrence
structure analysis.

2.1. Data Acquisition
Data from N = 30 healthy subjects (14 males) with age
between 22 and 35 were used in this study. Data were provided
by the Human Connectome Project, WU-Minn Consortium
(Principal Investigators: David Van Essen and Kamil Ugurbil;
1U54MH091657) funded by the 16 NIH Institutes and Centers
that support the NIH Blueprint for Neuroscience Research;
and by the McDonnell Center for Systems Neuroscience at
Washington University. The acquisitions were conducted on
the Connectome Skyra, which is a customized Skyra platform
with 100mT/m gradients for diffusion encoding and 42mT/m
gradients for imaging. High resolution T1 anatomical images and
functional images were used in this study.

High-resolution anatomical MRI was acquired using a T1-
weighted 3D MPRAGE sequence with the following parameters:
TR= 2,400 ms; TE = 2.14ms; TI = 1, 000ms; Flip angle =

8◦; FOV =224 × 224; Voxel size = isotropic 0.7mm; BW =

210Hz/Px; iPAT: 2; Acquisition time 7 min and 40 s.
To measure changes in blood-oxygenation-level-dependent

(BOLD) T2* signals a gradient-echo EPI sequence was used to
acquire 1,200 volumes (approximately 15 min). The acquisitions
were performed with the following parameters: TR= 720ms, TE
= 33.1ms; Flip Angle 52; field of view 208× 180mm (RO× PE);
104 90 (RO× PE) matrix; 72 slices with 2.0mm isotropic voxels;
multiband factor 8; echo spacing 0.58ms; and BW 2, 290Hz/Px.

For further information on acquisition parameters
and scanning paradigms see the Human connectome
documentation1.

2.2. Data Preprocessing
Functional data were preprocessed using FSL (FMRIB Software
Library, version 5.0) and AFNI, following a procedure similar
to previous work (Diez et al., 2017; Rasero et al., 2017, 2019;
Stramaglia et al., 2017; Bonifazi et al., 2018; Camino-Pontes et al.,
2018). First, slice-time correction was applied to the fMRI. Next,
each volume was aligned to themiddle volume to correct for head
movement artifacts. After intensity normalization, we removed
the effect of confounding factors: movement time courses, the
average cerebrospinal fluid (CSF) signal and the average white

1 http://www.humanconnectome.org/

matter signal, followed by a bandpass filter between 0.01 and
0.08Hz. The functional data were normalized to the MNI152
brain template, with a voxel size of 3 × 3 × 3mm3 and spatially
smoothed with a 6mm full-width-at-half-maximum (FWHM)
isotropic Gaussian kernel. In addition to head motion correction,
we performed scrubbing, which means that all time points with
framewise displacement greater than 0.5 were interpolated by a
cubic spline (Yan et al., 2013).

2.3. Brain Hierarchical Atlas
Voxel time series were grouped using the brain hierarchical atlas
(BHA), recently developed by Diez et al. (2015)2. The use of
the BHA guarantees three conditions simultaneously: (1) That
the dynamics of voxels belonging to the same module is very
similar, (2) that those voxels belonging to the same module are
structurally wired by white-matter streamlines; and (3) when
varying the level of the hierarchical tree, it provides a multi-
scale brain partition, where the highest dendrogram levelM = 1
corresponds to all 2,514 regions belonging to a single module
(coincident with the entire brain), whereas the lowest level M
= 2,514 corresponds to 2,514 isolated modules (all of them
composed of only one region). Figure 1 illustrates the functional
image preprocessing pipeline.

2.4. Recurrence Structure Analysis
The recurrence structure analysis (RSA) exploits the Poincaré
recurrence theorem, the recurrence plot (RP) technique
introduced by Eckmann et al. (1987) and Markov state
modeling to extract symbolic dynamics and recurrent metastable
states from time series data3.

Consider a discretely sampled trajectory X = {xt ∈ R
M | 0 ≤

t ≤ T} of duration T where R
M denotes the M-dimensional

phase space of the system. In our case, the states xi are obtained
as normalized, voxel-averaged resting state fMRI (rsfMRI BOLD)
measurements such that M is the number of structure-function
modules (SFM) from the BHA analysis of section 2.3 (Diez et al.,
2015).

The RP is a binary time-by-time matrix R indicating
recurrence events, Rik = 1, when two states xi, xj ∈ R

M at times
i > j are detected as being recurrent, i.e., state xj falls into a ball
of radius ε > 0 centered around state xi:

Rij =

{

1 if xj ∈ Bε(xi)

0 else
(1)

with Bε(xi) = {x ∈ R
M | d(x, xi) < ε} and an appropriately

chosen metric or distance function d(x, y). Here, we use the
cosine distance

dcos(x, y) = 1− x · y (2)

for normalized states, ‖x‖ = ‖y‖ = 1.

2 Available for download at http://www.nitrc.org/projects/biocr_hcatlas/. A new

Python version, that was developed during Brainhack Global 2017 – Bilbao, can be

downloaded at https://github.com/compneurobilbao/bha
3 A toolbox is freely available at https://www.researchgate.net/publication/

317597921_RSA_Recurrence_Structure_Analysis_Toolbox_in_MATLAB
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FIGURE 1 | Functional image preprocessing pipeline. Dual acquisition is needed, high-resolution anatomical images (T1) and functional images at rest. Following

state-of-the-art pipeline of neuroimaging preprocessing, time series of the blood oxygenation level dependent (BOLD) signal were obtained for each region of interest

(ROI), defined by a functional atlas of 2,514 ROIs. Finally, the time series were averaged using different partitions of the brain hierarchical atlas (BHA). The partition with

maximal metastability was the one with M = 40 modules (see section 2.4 for details).

According to beim Graben and Hutt (2013, 2015), the RP (1)
can be interpreted as a rewriting grammar, called the recurrence
grammar, acting on sequences of time indices si = i in the

following sense. If the system is recurrent at time points i, j (Rij =
1) and if i > j, then a grammar rule i → j is defined, replacing
the larger time index i in the sequence s by its smaller recurrent
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counterpart j. Moreover, if the system is recurrent at time points
i, j, k (Rij = 1,Rik = 1) and if i > j > k, two grammar rules i → k
and j → k are introduced that replace the two larger indices i, j
in the sequence s by the smallest one k. Applying this grammar
at least twice to the sequence s yields a transformed sequence s′

whose indices indicate the distinguishedmetastable system states.
A metastable state Sk is then rendered as a cloud of all states

from the trajectory X that have the same index k in the sequence
s′, that is,

Sk = {xi ∈ R
M | s′i = k} . (3)

The metastable states partition the phase space of the system into
mutually disjoint equivalence classes. However, the discretization
of the phase space and segmentation of system’s trajectories
into metastable states depends on a free parameter, the ball size
ε. Determining the optimal ε value is pivotal as it enables to
explain the time series observations. Several methods have been
proposed to optimize ε (beim Graben and Hutt, 2013, 2015) but
a more robust approach is based on Markovian optimization
(beim Graben et al., 2016). Specifically, it assumes that the time
series can be described by a Markov state model expressed
via a transition matrix, P = (pij), which specifies conditional
transition probabilities from metastable state Sj into state Si,

pij(ε) = Pr(xt+1 ∈ Si | xt ∈ Sj) , (4)

where xt is the state at time t and xt+1 its immediate successor
in the given sampling. Moreover, it is assumed that the system
spends most time in its respective metastable states and that
the transitions from one metastable state into a transient
regime and back into (another) metastable state are uniformly
distributed (according to a maximum entropy principle). These
combined assumptions enable the derivation of the following
utility function

u(ε) =
1

n+ 2

[

trP(ε)+ hr(ε)+ hc(ε)
]

(5)

where trP(ε) is the trace of the transition matrix and

hr = −
1

log(n− 1)

n−1
∑

j=1

p′0j log p
′
0j,

hc = −
1

log(n− 1)

n−1
∑

i=1

p′i0 log p
′
i0 .

(6)

are entropies (for the row and column of the transition matrix)
with renormalized transition probabilities

p′0j =
p0j

∑n−1
j=1 p0j

,

p′i0 =
pi0

∑n−1
i=1 pi0

.

(7)

An optimal partition is then obtained through

ε∗ = argmax
ε

u(ε) , (8)

entailing a maximally metastable Markov state model; for
more details see beim Graben et al. (2016). The number of
segments n(ε∗) characterizes the “complexity” of the transition
model comprising one distinguished transient and hence n − 1
metastable states (beim Graben et al., 2016).

Next, we have to consider ensemble analysis. Instead of
looking at a single trajectory X we are concerned with an
ensemble of N trajectories E = {Xm | 1 ≤ m ≤ N}, which in
our case refers to rsfMRI time series from N = 30 individual
subjects. As our data are normalized to a unit hypersphere, we
are able to compare metastable segments from different subjects.

This is achieved by collecting all metastable states S
(m)
k

from all
individualsm and calculating their pairwise Hausdorff distances

Dij = max{max{δ(y, Sj) | y ∈ Si}, max{δ(y, Si) | y ∈ Sj}} (9)

according to Hutt and beim Graben (2017). Here,

δ(x,A) = min{d(x, y) | y ∈ A} (10)

measures the “distance” of the point x from the compact set
A ⊂ X. Note that the Hausdorff distance of two overlapping
compact sets vanishes. Again, we use the cosine distance (2) for
our normalized data here. Thresholding the distance matrix D

with respect to a parameter θ > 0, yields another binary matrix
Q as follows

Qij =

{

1 if Dij < θ

0 else
(11)

which induces another recurrence grammar from which a
Hausdorff clustering of metastable states is obtained; for further
details see Hutt and beim Graben (2017). The threshold θ must
be chosen in such a way that the entire ensemble E is covered by
a minimal set of metastable states.

Finally, we have to express the metastable states either in
terms of resting state networks (RSN) or in terms of anatomical
structures (AAL). To that aim, Diez et al. (2015) have presented
overlap matrices M ∈ M(M × K) relating M structure-
function modules to K nodes in the RSN or AAL representations,
respectively. Here we consider the matrix M as a mixing matrix
mapping a module state vector x ∈ R

M onto a network state
y ∈ R

K through

y = M · x . (12)

For each metastable state Si, which is actually given as a spherical
distribution of sampling points, we select a representative point.
Hutt and beim Graben (2017) suggested to use the ensemble
mean, i.e., the barycenter of the distribution. Here, however, we
choose the vector

x∗i = argmax
x∈Si

‖x‖∞ (13)

maximizing the maximum norm of the distribution for
enhancing the contrast between metastable states. We project
these particular representatives x∗i onto the RSN and AAL
representations, according to

y∗i = M · x∗i , (14)

withM either the RSN or AAL mixing matrix, respectively.
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3. RESULTS

We combine the time-independent structure-function and
HBA analysis of Diez et al. (2015) with the time-dependent
recurrence structure analysis. We compute the optimal number
of metastable states n − 1 determined by the RSA as a measure
of complexity (beim Graben et al., 2016) for all subjects and for
module numbers ranging from 3 to 100 from normalized rsfMRI
BOLD signals. Figure 2 shows the results, where the error bars
indicate one standard deviation of the complexity averaged over
all subjects. The RSA stabilizes aroundM = 40 metastable states.

Carrying out the RSA of an M = 40 dimensional phase
space for four representative subjects gives the results plotted in
Figure 3. For each plot, the upper panel shows theM time series

FIGURE 2 | Segmentation complexities measured as number of metastable

states against number of structure-function modules for normalized data using

the cosine distance.

of the rsfMRI BOLD signal before normalization. The lower
panels depict the resulting segmentation into metastable states,
i.e., the symbolic sequences s′.

The state space partitioning and symbolic segmentation
is achieved by optimizing the Markov criterion (8). The
corresponding utility functions are plotted in Figure 4 and we
observe that for each plot there exists a global maximum,
establishing an optimal ball size for the symbolic segmentation
around ε = 0.05.

We next consider the ensemble dynamics from the population
of N = 30 subjects by employing the Hausdorff clustering (9)
and optimally thresholding the distance matrix (11) to obtain a
minimal set of metastable states that covers the entire ensemble.
For the choice θ = 0.8, we get a bistable segmentation of the

resting state dynamics, specifically, into twometastable states and

one transient state, which is depicted in Figure 5. Here, yellow

and turquoise indicate the two metastable states, while dark blue

represents transients.
In Figure 6 we present the spatial distributions of both

metastable population states, resulting from the projection of

the most distinctive representatives x∗ onto the AAL atlas in

Figure 6A and with respect to the resting state network (RSN) in

Figure 6B. Finally, Figure 6C displays the same results as brain

map projections for the first metastable state (plotted in blue) in

Figures 6A,B, because the second one is largely its complement.

Maximal metastability occurred bilaterally at lingual,

calcarine, precuneus, occipital and cingulate cortices. The

projection over the functional networks revealed maximum

participation of the auditory and medial visual networks.

Finally, we assess the robustness of the population analysis by

breaking it down to the four selected subjects shown in Figures 3,

4. Figure 7 displays the AAL projections, whereas Figure 8 shows

the corresponding RSN projections.

FIGURE 3 | Selection of segmented rsfMRI time series. Upper panels: rsfMRI time series averaged over 40 modules, lower panels: symbolic sequences s′ resulting

from optimal partitions into metastable states. Selected subjects: (A) #1, (B) #7, (C) #18, (D) #30.
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FIGURE 4 | Markov utility functions from averaged rsfMRI time series over 40 modules. Subjects: (A) #1, (B) #7, (C) #18, (D) #30.

FIGURE 5 | Bistable population resting state dynamics as resulting from

Hausdorff clustering.

Both analyses indicate that these findings for single subjects
are consistent with the population results.

4. DISCUSSION

We introduced a novel framework to track the spatiotemporal
dynamics of resting state fMRI BOLD signals. Specifically,

a time dependent functional-structural brain mapping
is achieved by combining the structural-functional brain
hierarchical atlas (BHA) partitioning with the recurrence
structure analysis (RSA). The combined method is applied to
resting state fMRI BOLD signals and successfully identifies
their corresponding time dependent metastable states, which
are finally mapped to the anatomical brain structures and
functional networks. Maximum metastability was found
anatomically at lingual, calcarine, precuneus, occipital and
cingulate cortices, which encompass both primary and
high-order visual and auditory networks, together with the
precuneus, that forming part of the default mode network
is well-known to be one of the major functional hubs of
the human brain. Although this is an observation rather
than an interpretation, future studies are needed to really
understand the brain organization of the metastable circuits at
the large-scale.

The overall framework, in particular the time dependent
aspect, relies fundamentally on Poincaré’s recurrence theorem,
which demands two conditions to be met for the underlying
system under study. Specifically, if the system (typically an
isolated or autonomous system) is volume preserving and has
only bounded trajectories then for each open set (in phase
space) there exist orbits that intersect the set infinitely often
and are hence recurrent. It is critical to be cautious in drawing
immediate interpretations of our results, however we will risk
a tentative interpretation under the constraints made by the
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FIGURE 6 | Spatial projections of metastable brain resting states. (A) Projection onto AAL regions. Notice that just for illustration purposes, although the spatial

projection has been performed over all the 45 AAL brain regions, some of the labels have been removed from the x-axis. Brain areas corresponding to maximum

projections (written in text) were lingual, calcarine, precuneus, occipital and cingulate cortices. (B) Projection onto RSN regions. Maximum projections occurred for the

auditory and medial visual networks. (C) Brain localization of blue attractor with regard to AAL and RSN partitions. Notice that projection strength might have positive

or negative values depending on the direction of the basis vectors.

aforementioned theorem. To begin, we first assume that the
brain (and associated processes) can be explained by some
suitable complex multi-scale dynamical system. However, under
the experimental fMRI condition in which the subjects are
at rest, we will further assume that the underlying brain’s
dynamical system is autonomous (or at least approximately).
Moreover, since fMRI BOLD relates to blood oxygenation and
indirectly to local energy consumption through brain neural
circuits, and thus correlates with neural activity, we assume that
the values taken by the brain for its energy consumption are
bounded. Finally, energy is not quantized, that is, it can take any
value within this bounded domain. These assumptions satisfy
the premises of the aforementioned theorem, which ultimately
enables us to identifying time dependent recurrent states of
resting state networks.

Under this setup, we find convergence toward an optimal
segmentation of about 40 metastable states (for normalized data).
This convergencemay reflect preferred oxygen/energy levels (and
switching between these levels) among all possible energy levels
consumed across all structure-function brain modules. Thus at
rest, it is likely that the energy is equally distributed globally
across all networks (i.e., the whole brain), which in feedback
entrains locally each module. However, each local module (or
a set of few communicating modules) may have high transient
use of energy consumption. These preferred energy levels and
switching, indirectly reflect time dependent cognitive states
mediated by the neural circuits of the resting state networks.
To compare across all subjects we consider normalized data and
following the Hausdorff clustering we find that across all subjects
they share a common transition between two oxygen/energy
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FIGURE 7 | Anatomical AAL projections of the two metastable states obtained from optimizing RSA over 40 modules. Subjects: (A) #1, (B) #7, (C) #18, (D) #30.

levels (possibly interpreted as bistability). It is premature yet to
draw any hard conclusions, however, we could extrapolate that
there are two fundamental dwelling states that could represent
a common homeostatic switching process that gateways the
remaining energy levels, driving the dynamical transitions of the
resting state structure-function network modules.

We subsequently contemplate on the dynamical systems point
of view, the mechanistic alternatives that could explain switching
between metastable states. Typically, within the brain mapping
literature (specifically in computational modeling studies) it is
often emphasized that transitions are explained via multistability.
However, we would like to argue that again, it is crucial to
be cautious since there are a multitude of mechanisms that
can equally explain transition between states. For the sake of
discussion, without wanting to exhaust all possible scenarios
and avoiding modeling neurophysiological processes as it would
go beyond the scope of the present manuscript, we showcase
three canonical alternative mechanisms (as depicted in Figure 9).
Moreover, we only focus on transitions between two states (to
simplify the discussion). However, the proposed mechanisms can
be easily extended to account for a larger number of metastable
states. Nonetheless, these canonical mechanisms could be part
of neural and hemodynamic biophysical models that explain,
electrical-fMRI activity, such as those described via the dynamic
causal modeling (DCM) framework (Friston et al., 2000), and/or

other macroscopic modeling approaches (Breakspear et al., 2005;
Chizhov et al., 2007; Rodrigues et al., 2007, 2009; Marten et al.,
2009; beim Graben and Rodrigues, 2013).

The first canonical mechanism shown in Figure 9A is that
of multiple-timescale dynamical systems, which are ubiquitous
in neural modeling (Desroches et al., 2012, 2013, 2016). In this
example, we consider a planar slow-fast system (Figure 9A3)
with one slow variable x1 and one fast variable x2, where the
separation of timescales between these variables is captured by
the small timescale parameter 0 < ε≪1. The phase plane (x1, x2)
(Figure 9A1) displays the fast nullcline or so-called critical
manifold of the system, which consists of two horizontal lines and
a third line intersecting the other two with a slowly-time-varying
angle with respect to the vertical direction. This slowly-time-
varying angle is arbitrary but could represent slow fluctuations
inducing varying dwell times along a given attractor. The
structure (i.e., fast nullcline) is the bifurcation diagram of the fast
subsystem obtained by freezing the dynamics of the slow variable
x1 (by setting ε = 0) and hence considering it as a parameter. In
this context, the intersection points between the two horizontal
components and the third component of the critical manifold
correspond to transcritical bifurcation points (Rodrigues et al.,
2016). Therefore, the fast subsystem possesses a hysteresis loop
with two stable levels of activity, which in the full system
(ε > 0 small) correspond to two metastable states s1 and
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FIGURE 8 | Resting state network (RSN) projections of the two metastable states obtained from optimizing RSA over 40 modules. Subjects: (A) #1, (B) #7, (C) #18,

(D) #30.

s2 that a given trajectory (black curve) will visit recurrently
in alternation. The single (respectively double) arrows along
the trajectory correspond to slow (respectively fast) dynamics.
Thus the transition between the slow and fast dynamics allows
metastability. Parameter values for the simulation shown in
Figure 9A2 are: a = 0.3, b = −1, c = 1, α = −2,
β = −0.5, ε = 0.004.

A second canonical mechanism that captures switching
dynamics between two metastable states is that of a dynamical
system with two stable equilibria via so-called intermingled or
riddled basins of attraction (Ding and Yang, 1996); this scenario
is presented in Figure 9B. As illustrated in panel Figure 9B1
the basins of attraction of the both system’s attractors can be
arbitrary close to each other and they can even overlap in
some region (and projections) of the phase plane of interest.
This complex intermingling of basins of attraction enables the
trajectory of the system to switch in a complex way between
metastable states s1 and s2, as shown in Figure 9B2. The specific
model that we consider is formed by two coupled second-
order differential equations with a sinusoidal forcing; see panel
Figure 9B3. Parameter values for the simulation shown in panel
(b2) are: A = 1.011, µ = 0.632, α = −4, p = 0.1, q = 0.005.

The third and last proposed mechanism shown in panels
Figure 9C corresponds to a system possessing a robust
heteroclinic cycle between two saddle equilibria (Rabinovich
et al., 2008; Rodrigues and Labouriau, 2014; beim Graben and

Hutt, 2015; Hutt and beim Graben, 2017). In this case, the
metastable states are in fact saddles where the unstable manifold
of each saddle connects to the other saddle, hence allowing
for a stable robust heteroclinic cycle to exist. In this case, the
system’s trajectory as shown in Figure 9C2 displays recurrent
switching between the two saddles that correspond to the two
metastable states s1 and s2. The heteroclinic cycle formed by these
two states is stable and attracts trajectories. However, each new
passage near one of the states brings the trajectory closer to one
underlying saddle, hence passage times increase monotonically.
However, fluctuations such as system noise (as is often the
case in real systems) can disrupt or counteract these monotonic
increase in passage times. The specific model is depicted in
Figure 9C2, which is a four-dimensional dynamical systems on
the 3-sphere S

3
: = {r2 = x21 + x22 + x23 + x24 = 1} possessing a

robust stable heteroclinic cycle between two equilibria located
at (0, 0, 0,±1). The two saddles have only their last coordinate
different. We add noise in the last equation with a time-
dependent amplitude of the Brownian term and the resulting
trajectory is depicted in Figure 9C2. Parameter values for the
switching trajectory shown in panel (c2) are: α1 = 1, α2 = −0.1,
a = 5·10−5, b = 0.33.

To conclude, there are potentially infinitely many models
(and a multitude of dynamical mechanisms) that can equally
explain the same fMRI BOLD observables. Thus a fundamental
question for future research is what signatures within the

Frontiers in Computational Neuroscience | www.frontiersin.org 10 September 2019 | Volume 13 | Article 62

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


beim Graben et al. Metastable Resting State Brain Dynamics

FIGURE 9 | Three possible mathematical mechanisms to model switching dynamics: (A1–A3) slow-fast systems with a hysteresis loop; (B1–B3) systems with

intermingled basins of attraction; (C1–C3) systems with a robust heteroclinic cycle. In all parts (left, central, right), the top panel shows a sketch of the phase space;

the middle panel shows a time series of the minimal model representing one of the frameworks displaying alternating switches between two metastable states s1 and

s2; the bottom panel shows minimal ODEs for a given framework. All equations are phenomenological but the resulting dynamics can be found in biophysical models

of brain activity.

data could potentially exclude cases and narrow down the
possibilities enabling biophysical and parsimonious models to be
derived. Finally, the present manuscript shows that is feasible
to extract temporal information of the resting state networks,
however it also opens up novel questions and avenues in brain
mapping research.
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