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Precise cerebral dynamics of action of the anesthetics are a challenge for neuroscientists.

This explains why there is no gold standard for monitoring the Depth of Anesthesia (DoA)

and why experimental studies may use several electroencephalogram (EEG) channels,

ranging from 2 to 128 EEG-channels. Our study aimed at finding the scalp area providing

valuable information about brain activity under general anesthesia (GA) to select the more

optimal EEG channel to characterized the DoA. We included 30 patients undergoing

elective, minor surgery under GA and used a 32-channel EEG to record their electrical

brain activity. In addition, we recorded their physiological parameters and the BISmonitor.

Each individual EEG channel data were processed to test their ability to differentiate

awake from asleep states. Due to strict quality criteria adopted for the EEG data and

the difficulties of the real-life setting of the study, only 8 patients recordings were taken

into consideration in the final analysis. Using 2 classification algorithms, we identified

the optimal channels to discriminate between asleep and awake states: the frontal and

temporal F8 and T7 were retrieved as being the two bests channels to monitor DoA.

Then, using only data from the F8 channel, we tried to minimize the number of features

required to discriminate between the awake and asleep state. The best algorithm turned

out to be the Gaussian Naïve Bayes (GNB) requiring only 5 features (Area Under the ROC

Curve - AUC- of 0.93± 0.04). This finding may pave the way to improve the assessment

of DoA by combining one EEG channel recordings with a multimodal physiological

monitoring of the brain state under GA. Further work is needed to see if these results

may be valid to asses the depth of sedation in ICU.

Keywords: consciousness, general anesthesia, electroencephalography, depth of anesthesia, machine learning,

brain monitoring

1. INTRODUCTION

An optimal General Anesthesia (GA) state is assessed by the Depth of Anesthesia (DoA) defined
by the experts as “the probability of non-response to stimulation, calibrated against the strength
of the stimulus, the difficulty of suppressing the response, and the drug-induced probability of
non responsiveness at defined effect site concentrations” (Shafer and Stanski, 2008). Ensuring
an adequate DoA is important to avoid awareness during the surgery without overdosage of
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anesthetics drugs. In 2014, the 5thNational Audit Project (NAP5)
estimated the incidence of Accidental Awareness during General
Anesthesia (AAGA), to be roughly 1/19,000 (Pandit et al., 2014).
It is important to detect such event because it exposes the patient
to complications like post-operative stress disorder (Pandit et al.,
2014) or postoperative delirium (Fritz et al., 2016). An ideal DoA
monitor should exhibit high sensitivity, specificity, and positive
predictive values as a diagnostic tool. Moreover, its output should
relate to the probability of consciousness in real time and should
fulfill practical criteria such as being portable, easy to use, cost-
effective and safe (Pandit et al., 2014). Such a monitor providing
a precise estimation of the DoA remains an unmet need so far.

Currently, DoA is assessed by calculating appropriate
drug concentration for each patient and monitoring
physiological variables such as heart rate, blood pressure, oxygen
concentration, eye lash reflex, patient reactions and Minimal
Alveolar Concentration (MAC), which is the concentration of
inhaled anesthetic required to suppress movement to a surgical
incision in 50% of the patients (Campagna et al., 2003). While
these variables give valuable information, ElectroEncephaloGram
(EEG) should also be an obvious candidate to monitor DoA
because the brain is the targeted organ of anesthesia. However,
it is only used in between 2.8 and 4.3% of anesthesia in a
clinical setting (Pandit et al., 2014). This is due to the numerous
limitations of the available EEG-based DoA monitors (Bruhn
et al., 2006). In particular to know which EEG channels would
be optimal to monitor anesthesia remains elusive. While several
studies and reviews focused on the question of EEG channel
reduction (Al-Ani and Al-Sukker, 2006; Arvaneh et al., 2011;
Alotaiby et al., 2015) in the context of the control of sleep and
wakefulness or motor imagery, they remain scarce in the field
of GA. Different pairs of channels had been used to monitor
the DoA, mainly located on the frontal and temporal locations
[F3-T3 and F4-T4 (Khan et al., 2014), Fp1-Fp2 (Sleigh et al.,
2001), AT1, M2, Fz (Schneider et al., 2014)], and it is also the
case for the Bispectral (BIS) and Entropy monitors. However,
to the best of our knowledge, a study investigating which to the
best of our knowledge, a study investigating which subset of
EEG channels should be preferentially used to monitor the DoA
remains to be done.

Over the last several years, the use of Machine Learning
(ML) in neuroscience has been rapidly increasing with a wide
range of applications. For instance, recent advances in computer
vision using ML are becoming important tools for image-based
cancer detection (Hu et al., 2018). Brain-computer interface or
close-loop control are also two important areas of research in
neuroscience and anesthesia (Dumont, 2012). Another major
use of ML in neuroscience is to examine which input variables
allows better understanding of the behavior of the brain and
the relationship between its areas. There are many methods to
establish this feature selection. One of the simplest methods,
known asWrappers, takes advantage of the learning performance
of a classifier to assess the quality of selected features (Li et al.,
2018). This is the method used in this paper.

In neuroscience, these features most often come from brain
EEG signals. These laters are widely studied in ML to improve
different tasks such as age prediction (Al Zoubi et al., 2018),

EEG classifications and features extractions (Amin et al., 2017;
Wang and Veluvolu, 2017). More related to our work, recently
Bresch et al. have studied the use of deep neural network for
real-time sleep stage classification from single channel EEG
(Bresch et al., 2018).

In this paper, we investigated this question by monitoring
during GA the physiological variables mentioned above together
with the brain activity using 32-channel EEG. Then, we employed
a ML-based approach, to determine the optimal EEG channel to
assess the DoA.

2. MATERIALS AND METHODS

2.1. Study Design
This was a single-center observational study of patients
undergoing GA with propofol/sufentanil induction and
maintenance by sevoflurane. Patients were included if they
were scheduled for an outgoing surgery under GA in the Begin
military hospital between March and May 2018. The study
protocol has been approved by Pr. JE Bazin, head of the ethics
committee of the French society of anesthesiology (SFAR) under
the number IRB 00010254-2016-018, and the protocol was in
accordance with the Declaration of Helsinki.

2.2. Inclusion and Exclusion Criteria
The patients included in this study were (1) American
Society of Anesthesia I–III patients (ASA Physical Status
Classification System. American Society of Anesthesiologists;
https://www.asahq.org/resources/clinical-information/asa-
physical-statusclassification-system) (2) between 18 and 80 years
old, and (3) gave their written informed consent to the study.
Patients were excluded if they presented complications during
the surgery (cardiac arrhythmias, variation of the blood pressure
or cardiac frequency more than 20% compared to the baseline
value, or unplanned hospitalization).

2.3. Anesthesia Protocol
All patients were pre-oxygenated via face-mask by 100% oxygen
for at least 3 min before induction. Sufentanil 0.3 µg/kg of
ideal-body weight was injected rapidly followed, 3 min later, by
2–4 mg/kg of propofol in combination with ketamine 20 mg.
When required for the surgery, patients were paralyzed following
induction with a bolus of 0.17 mg/kg of cisatracurium. After
tracheal intubation, patients were ventilated with tidal volume
of 6 mg/kg ideal-body weight, 5 cmH2O Positive end-expiratory
pressure (Peep) and a respiratory rate between 10 and 14/min
to maintain EtCO2 between 30 and 40 mmHg. Anesthesia was
maintained with sevoflurane MAC age-adjusted (e.g., 1.0). Dose
adjustments were made by the anesthesiologist in charge of the
patient depending on clinical variables available. Once asleep,
patients received a single bolus of local anesthesia when indicated
for the surgery.

2.4. Clinical Assessment of Consciousness
During the present study, the DoA was continuously assessed
by the anesthesiologist or by the nurse anesthesiologist, using
standard tools and unit protocols. Adequate anesthesia was

Frontiers in Computational Neuroscience | www.frontiersin.org 2 October 2019 | Volume 13 | Article 65

https://www.asahq.org/resources/clinical-information/asa-physical-statusclassification-system
https://www.asahq.org/resources/clinical-information/asa-physical-statusclassification-system
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Dubost et al. EEG Channel Selection

defined as a patient having received the anesthetic drugs, being
unresponsive to stimulus and to surgery, with a MAC above
0.7. Arousal was defined as a patient being responsive to
simple orders. The time points of propofol administration, loss
of consciousness assessed clinically (i.e., corresponding to loss
of verbal contact and response to simple order, respectively),
tracheal intubation, and return of consciousness were recorded.
The DoA was continuously monitored both clinically and thanks
to the Bispectral Index (BIS).

2.5. Monitoring and Data Collecting
During the surgery, patients were continuously monitored with
a multiparametric device, the Carescape monitor B850, from
General Electrics (GE) HealthcareTM Finland Oy, Helsinki,
Finland. The monitoring included electrocardiogram (EKG),
arterial pulse oximetry, non-invasive arterial blood pressure,
gas analysis and plethysmography. The following variables
were recorded with a sampling frequency of 1 Hz during
the anesthesia: systolic, diastolic and mean arterial blood
pressures, arterial pulse oximetry, end-tidal CO2, MAC, inspired
fraction of sevoflurane, end-tidal sevoflurane, BIS (Quatro Sensor
manufactured by Covidien), and inspired fraction of O2. The
heart rate and heart derivation Lead II were recorded at 300 Hz.
All the recorded variables are presented in the Table 1.

We used SmartRea Monitor, a personal software developed
by our lab. During the surgery, the following time-stamps were
noted precisely: beginning of the anesthesia (with the different
drugs injected), loss of eyelash reflex, mechanical ventilation,
intubation of the trachea, beginning of the surgery, end of
surgery, answer to basic verbal command (grasping the hand or
opening the eyes on command) and tracheal extubation. The
monitoring from the multiparametric device was stopped just
before leaving the Operating Room (OR) for the Post-Anesthesia
Care Unit (PACU) and was then restarted until the patient was
transferred to the out-patient ward.

2.6. EEG Acquisition
EEG was recorded using a Brain Vision actiCHamp amplifier
with 32 active electrodes. The cap was put on the patient in their
room, and a SuperVisc Electrolyte-Gel was applied immediately
after. The electrodes were placed following the standard 10–20
system. The reference and the mass were located at Fz and Fpz,

respectively. The EEG electrodes were protected by a disposable
cap. We waited until the electrodes reached an impedance
between 20 and 400 ohms. Electrodes with impedance over 500
ohms throughout the recording were ignored. The EEG signal
was recorded at 250 Hz–24 bits thanks to the same software
than for the monitoring (SmartRea). The recording began 10
min before inducing the anesthesia and lasted until 3 h after
arousal (Figure 1).

2.7. EEG Data Processing
2.7.1. Preprocessing
The signal was digitally filtered using a Butterworth bandpass
filter of order 5 between 1 and 30 Hz to remove the potential
drift below 1 Hz, to keep the frequencies characterizing GA and
to remove any noise over 30Hz. The spectrogram of each channel
in every recording has been plotted and visually inspected
by a couple of a neuroscience engineer and an experienced
anesthesiologist. A channel was considered unexploitable when
more than 30% of the recording presented artifacts. If too many
channels of a recording were classified unexploitable, the patient’s
data was excluded from the analysis. If only a few channels were

TABLE 1 | List of the variables recorded and their respective frequencies.

Variable Abbreviation Frequency

of recording

Only during

GA

Electroencephalogram EEG 250 Hz No

Electrocardiogram Lead II EKG 300 Hz No

Heart rate HR 1 Hz No

Systolic arterial blood pressure SBP 1 Hz No

Diastolic arterial blood pressure DBP 1 Hz No

Mean arterial blood pressure MBP 1 Hz No

Pulse oxymetry SpO2 1 Hz No

End tidal carbon dioxyde EtCO2 1 Hz Yes

Mean alveolar concentration MAC 1 Hz Yes

Fraction inspired sevoflurane FiSevo 1 Hz Yes

End tidal sevoflurane EtSevo 1 Hz Yes

Fraction inspired of dioxygen FiO2 1 Hz Yes

Respiratory rate RR 1 Hz Yes

Bispectral index BIS 1 Hz Yes

FIGURE 1 | Recording Session for one patient. The recording began 10 min before induction of propofol and Loss Of Consciousness (LOC), and lasted 3 h after the

Recovery Of Consciousness (ROC), including 1 h in the Post-Anesthesia Care Unit (PACU) and 2 h in the Outpatient Ward.
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FIGURE 2 | Effect of electrosurgical knife electromagnetic emissions on the recordings. The high amplitude epochs obtained are due to these emissions and

represent a heavy artifact that must be removed from analysis, as shown after preprocessing.

considered bad, they were marked as such and were excluded
from analysis. The data was segmented into epochs of 2 s. To
remove obvious artifacts such as electrosurgical knife emissions
(Figure 2) or brutal head movements typically characterized by
a high amplitude (Nolan et al., 2010), we marked as bad every
epoch with an amplitude higher than 0.3 mV.

Independent Component Analysis (ICA) (Makeig et al., 1996)
on each recording was used to remove vertical and horizontal
ElectroOculoGraphic (EOG) artifacts. ICA is a multivariate
method used in several fields such as neuroscience (Makeig
et al., 1996; Calhoun et al., 2001; Beckmann and Smith,
2004), or biology (Lee and Batzoglou, 2003; Scholz et al.,
2004). One underlying assumption of ICA is that the data
are a combination of latent components which are statistically
independent. In particular, linear ICA problem addresses the case
where latent variables and observations are linked by a linear
transformation. Hence, in linear ICA we want to estimate a linear
transformation of the input signals into “source signals” which
are as independent as possible.

More formally, given N signals x1, · · · , xN of length T
arranged in a matrix X, linear ICA is based on the model X = AS
where A is the unknown mixing matrix, and S is the source
matrix with N statistically independent zero-mean rows. For
ICA to become a well-posed problem it has been proved that
we only required that all sources except one are non-Gaussian
and statistically independent (Comon, 1994). The challenge is to
recover A and S.

The ICA algorithm is therefore effective for source separation
task where (1) the mixing is linear and propagation delays
negligible, (2) the time courses of the sources are independent,
and (3) the number of sources is the same as the number
of sensors.

In the case of EEG, neural activity is instantaneously and
linearly spread across channels, due to Maxwell’s equations
(Hari and Puce, 2017), hence assumption (1) holds. Assumption
(2) is reasonable because the most commun artifacts (eye
and muscle activity, cardiac signals) are independant from the
activity of cortical neurons. Assumption (3) remains unknown
since we do not know the effective number of statistically-
independent signals contributing to the EEG signals. Fortunately,
numerical simulations have confirmed that the ICA algorithm

can accurately identify the time courses of activation and the
scalp topographies.

In order to perform ICA, we used the ICA algorithm
implemented in the python library MNE. EOG and heart rate
artifacts were removed and the data were then recreated without
these components (Figures 3, 4).

Small head movements may remain undetected by the
previous procedure but still contaminate some epochs. To detect
those artifacts, we calculated for each channel the standard
deviation in three different states: Awake before GA, Asleep,
and Awake after GA. Criteria defining an appropriate DoA
and arousal have been stated previously (see section 2.4).
We then applied an amplitude threshold for each epoch of
these states. We often found artifacts resembling very regular
sinusoidal waves with high amplitude. To detect these artifacts,
we calculated the Fast Fourier Transform (FFT) of the epoch
and compared the maximal amplitude with the standard
deviation of the FFT, thus detecting relative high amplitude
on single frequencies which would be the case for a sine
wave. All the steps of the preprocessing are summarized in
the Figure 5.

2.7.2. Processing
After preprocessing, our dataset contained 9,630 epochs labeled
“awake” and 12,665 epochs labeled “asleep.” This represents 43%
of awake epochs and 57% of asleep epochs. We considered
the labels “asleep” as positive and “awake” as negative. To
differentiate awake state from sleeping state, we calculated 10
features, based on the repartition of delta, theta, alpha and beta
powers in the EEG signals, on each epoch of every channels and
for all the subjects after preprocessing (Table 2).

We used features of Table 2 to train the following
ML algorithms:
K-Nearest Neighbors (KNN): the output label is based on the k
closest training examples from the feature space.
Decision Tree Learning (DTL): recursive algorithm treating
the feature space with a decision tree where each internal node
corresponds to a feature and each leaf corresponds to a label.
Quadratic Discriminant Analysis (QDA): draws a quadratic
boundary between the dataset to maximize the separation of the
class labels.
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FIGURE 3 | Example of an Independent Component Analysis on one patient. The component 3 is typically vertical eye blink due to the frontal correlated location of

the component. The component 5 is typically horizontal eye movement due to the frontal anticorrelation location around each eye. These components have been

selected for removal.

FIGURE 4 | Comparison between before and after the EOG components removal with ICA. On the signal before ICA, the eye blinks are clearly visible. On the signal

after removing the EOG components, the eye blinks are extremely reduced.

Let consider some data (X, y), where X are observations and y

is the class variable.
QDA is derived from probabilistic models which model

the class conditional distribution of the data P(X | y =

k) for each class k. Prediction is then obtain using the
bayes formula

P(y = k|X) = P(X | y = k)P(y = k)/P(X)
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FIGURE 5 | Block diagram of EEG recording and processing. The raw signal was recorded with an ActiChamp amplifier in 24 bits–250 Hz. Due to the lengths of the

recordings and the large number of epochs, the artifact removal was partially unsupervised. The recordings were filtered with a BPF between 1–30 Hz. The

spectrograms of the channels were plotted for visual inspection, bad channels were marked and excluded from the analysis. An Independent Component Analysis

(ICA) was used to remove Electrooculographic (EOG) artifacts. Each epoch was compared to various threshold on their time series and power spectrum and were

kept or rejected depending of these thresholds.

TABLE 2 | List of the features calculated on the dataset.

Nb Features Description

1 Standard deviation Standard deviation in the time

domain

2 Sample Entropy Approximate sample entropy of the

epoch

3 Mean Power Spectrum Mean value of the power spectrum

from 0 to 30 Hz

4 Power Spectrum Delta Mean value of the power spectrum

of Delta frequencies (0–4 Hz)

5 Power Spectrum Theta Mean value of the power spectrum

of Delta frequencies (4–8 Hz)

6 Power Spectrum Alpha Mean value of the power spectrum

of Delta frequencies (8–12 Hz)

7 Power Spectrum Beta Mean value of the power spectrum

of High Beta frequencies (18–30

Hz)

8 Ratio PWS Delta/Beta Ratio of the mean Power Spectrum

Delta frequencies/Beta frequencies

9 Ratio PWS Theta/Beta Ratio of the mean Power

Spectrum Theta frequencies/Beta

frequencies

10 Ratio PWS Alpha/Beta Ratio of the mean Power

Spectrum Alpha frequencies/Beta

frequencies

and by selecting the class k which maximizes this conditional
probability. In QDA, P(X | y) is modeled as a multivariate
gaussian distribution. Notice that, in the case of QDA,

there are no assumptions on the covariance matrices of
the Gaussians. In order to perform QDA, we used the
QuadraticDiscriminantAnalysis method implemented in the
python library sklearn.
Gaussian Naive Bayes (GNB): classification based on the
assumption that the value of a particular feature in a class is
independent of the value of any other feature, which is why it
is called “naive.”

Given a class variable y and feature vectors x1, · · · , xN ,

P(y | x1, · · · , xN) = P(y)P(x1, · · · , xN | y)/P(x1, · · · , xN).

Using the naive conditional independence assumption

P(y| | x1, · · · , xN) = P(y)

N∏

i=1

P(xi | y)/P(x1, · · · , xN).

The classification rule is given by

argmax
y

P(y)

N∏

i=1

P(xi | y).

In Gaussian Naive Bayes, the likelihood of the features is
assumed to be Gaussian. In order to perform GNB, we
used the GaussianNB method implemented in the python
library sklearn.

The last two algorithms were used for channel selection
(QDA, GNB) whereas the four algorithms were used for features

Frontiers in Computational Neuroscience | www.frontiersin.org 6 October 2019 | Volume 13 | Article 65

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Dubost et al. EEG Channel Selection

selection. We used the Wrappers method, one instance of subset
selection techniques (Li et al., 2018).

2.7.3. Channel Selection
Considering each channel individually, we computed the
previously defined features (see Table 2). With these features, we
used QDA and GNB algorithms to classify states between Awake
and Asleep. These two algorithms do not need hyperparameters
which make them suitable for small dataset. Before any
computation, we separated our dataset multiple times in 3
subsets: Training, Validation, and Test sets. We used a leave-
p-out procedure with p = 2. Hence, all possible subsets were
tried for a total of 168 tries with 5 patients in the Training set,
2 in the Validation set, and 1 in the Test set. The Training set
was used to train the algorithm. The Validation set was used
to compute the Area Under the Curve (AUC) of each channel.
The numerical integration of the AUC was calculated by the
trapezoid method. We then selectionned the channels with the
best mean AUC with the smallest standard deviation on these
Valid tests. Finally, the Test set was used to expose the AUC
of an unknown subject based on the results obtained with the
Valid set.

3. RESULTS

From February to May 2018, 30 patients have been included.
Demographic and epidemiologic data are presented in Table 3.
The flow chart of the inclusions is presented in Figure 6. Due
to the need of a high quality EEG in the remote environment of
surgical theater, we kept only 8 patients for the final analysis. To
obtain quick visual inspections, we drew the raw spectrograms
of every channel for each recording before any preprocessing.
On the spectrogram Figure 7, we notice drastic changes in
the brain wave oscillations during GA, which are the clear
apparition of alpha waves and the reduction of frequencies
over 20Hz. These particularities disappeared at the end of
the anesthesia.

3.1. Channel Selection
Channels marked as bad in two subjects or more were ignored.
With the GNB, the three channels with the best mean AUCs
and with a small standard deviation were F8 (AUC = 0.92
± 0.04), T7 (AUC = 0.91 ± 0.04) and FC5 (AUC = 0.91
± 0.05). With the QDA, the three channels with the best mean
AUCs and with a small standard deviation were F8 (AUC
= 0.91 ± 0.04), T7 (AUC = 0.9 ± 0.04) and T8 (AUC =

0.89 ± 0.06). All the values are reported in the Table 4 and
results are displayed in the Figure 8. Channel F8 was the best
regarding the two algorithms. Hence, we selected it as the best
channel. The following computations have been done on the
channel F8.

3.2. Validation of the Selected Channel
Using only features associated to channel F8, the goal was to
classify epokes in Awake or Asleep using less variables possible.
We compared the following algorithms: KNN, QDA, DTC, and

TABLE 3 | Patients metadata containing their range of age, weight, height,

surgery underwent and ASA score.

Patient

nb

Age Weight

(kg)

Height

(cm)

Surgery ASA

1 50–60 115 196 Umbilical hernia

repair

1

2 60–70 70 169 Prostate resection 3

3 70–80 60 158 Inguinal hernia

repair

2

4 40–50 59 150 Breast tumor 2

5 30–40 97 186 Cholecystectomy 1

6 20–30 50 164 Hallux valgus 2

7 50–60 64 165 Arthroscopy 2

8 40–50 65 178 Hysterectomy 2

9 20–30 76 178 Sacrococcygeal

cyst

2

10 30–40 78 175 Varicocele 1

11 50–60 69 158 Ureteroscopy 2

12 40–50 70 172 Pseudarthrosis 1

13 70–80 79 172 Circumcision 2

14 40–50 57 176 Fibroscopy/

Colonoscopy

1

15 20–30 63 162 Hysteroscopy 1

16 70–80 106 163 Coloscopy 3

17 60–70 74 175 Inguinal hernia

repair

1

18 30–40 60 168 Urinary lithiasis 2

19 20–30 85 185 Mastectomy 1

20 50–60 76 176 Colonoscopy 2

21 70–80 75 169 Hysteroscopy 2

22 70–80 90 172 Urinary lithiasis 2

23 20–30 60 183 Hydrocele 1

24 30–40 100 190 Knee arthrosis 1

25 40–50 86 173 Circumcision 2

26 70–80 49 159 Ovariectomy by

laparoscopy

2

27 40–50 60 165 Ureteral stenting 2

28 50–60 70 170 Inguinal hernia

repair

1

29 30–40 97 174 Exploratory

Laparoscopy

2

30 60–70 98 166 Cholecystectomy 2

The eight patients kept for analysis are in bold.

GNB. While QDA and GNB do not have hyperparameters,
KNN has the amount of neighbor and DTC has the maximum
depth. To compare the best algorithms possible applied to our
problem, we determined the hyperparameters accordingly with
cross-validations. We separated our dataset in Training set (6
patients) and Test set (2 patients) leading to a total of 56 possible
combinations. The mean AUC obtained on the Test set with
all the combinations was used as a performance measure. We
first computed the mean AUC for k neighbors ranging from
1 to 20 (Figure 9A). After computing very high k values (>
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FIGURE 6 | Flow chart of the inclusions with the number of patients operated in the period of the inclusions, the number of patients included, the number of patients

kept for analysis and the main reasons of exclusion.

FIGURE 7 | Spectrogram of the channel FP1 of the patient. The times marked as “propofol induction,” “stopping the sedation,” and “Awakening” are reported from

time marks written down during the surgery. They coincide with the apparition of alpha waves and reduced beta waves.

100), the AUC seems to be converging toward 0.84. To limit
computational time, we decided to take k = 20 for an AUC
= 0.82 ± 0.061 which is 0.98% of 0.84. Similarly, we computed
the mean AUC for k maximum depths ranging from 1 to 20
(Figure 9B). The best AUC (0.84 ± 0.08) has been obtained for
k = 4. Our optimal hyperparameters being fixed, we compared

the four different algorithms by computing the mean AUC of
every possible subset (512) of the 10 features used. We kept
the best one obtained for each algorithm with their respective
optimal features (Figure 10). The algorithm with the best AUC
is the GNB with an AUC of 0.92 ± 0.04 using the features
Standard Deviation, Sample Entropy, Power Spectrum Theta,
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TABLE 4 | Mean AUCs (± standard deviation) obtained for each channel with

each algorithm (GNB and QDA).

GNB QDA

Channel

names

AUC validation AUC test AUC validation AUC test

FP1 0.89 ± 0.06 0.89 ± 0.06 0.87 ± 0.07 0.87 ± 0.06

F3 0.85 ± 0.06 0.84 ± 0.07 0.85 ± 0.06 0.83 ± 0.06

F7 0.90 ± 0.05 0.88 ± 0.06 0.89 ± 0.05 0.87 ± 0.06

FT9 0.90 ± 0.05 0.87 ± 0.06 0.89 ± 0.05 0.86 ± 0.06

FC5 0.91 ± 0.05 0.89 ± 0.06 0.90 ± 0.05 0.88 ± 0.05

FC1 0.87 ± 0.09 0.86 ± 0.08 0.86 ± 0.1 0.84 ± 0.08

C3 0.90 ± 0.06 0.88 ± 0.06 0.89 ± 0.07 0.87 ± 0.07

T7 0.91 ± 0.04 0.88 ± 0.05 0.90 ± 0.04 0.87 ± 0.05

P3 0.89 ± 0.08 0.87 ± 0.08 0.86 ± 0.1 0.85 ± 0.09

P7 0.88 ± 0.07 0.85 ± 0.06 0.87 ± 0.07 0.85 ± 0.07

O1 0.86 ± 0.1 0.84 ± 0.07 0.81 ± 0.15 0.81 ± 0.11

Oz 0.87 ± 0.08 0.85 ± 0.07 0.83 ± 0.12 0.82 ± 0.09

P8 0.87 ± 0.07 0.84 ± 0.07 0.84 ± 0.12 0.82 ± 0.09

TP10 0.9 ± 0.06 0.88 ± 0.06 0.89 ± 0.07 0.87 ± 0.06

C4 0.89 ± 0.07 0.85 ± 0.08 0.88 ± 0.08 0.84 ± 0.08

T8 0.91 ± 0.05 0.88 ± 0.05 0.89 ± 0.06 0.87 ± 0.05

FT10 0.91 ± 0.05 0.89 ± 0.05 0.89 ± 0.07 0.88 ± 0.06

FC6 0.91 ± 0.06 0.88 ± 0.06 0.89 ± 0.06 0.86 ± 0.06

FC2 0.87 ± 0.08 0.84 ± 0.08 0.863 ± 0.09 0.83 ± 0.08

F4 0.84 ± 0.14 0.83 ± 0.1 0.83 ± 0.15 0.82 ± 0.1

F8 0.92 ± 0.04 0.9 ± 0.05 0.91 ± 0.04 0.89 ± 0.04

FP2 0.9 ± 0.05 0.89 ± 0.05 0.88 ± 0.06 0.87 ± 0.05

The channels faulty on two patients or more were removed from the selection.

Power Spectrum Alpha and Ratio PWS Theta/Beta. An example
of prediction on one subject using the GNB method can be seen
on Figure 11, with awake state on one side and the asleep state
on the other side.

4. DISCUSSION

We found that the best channel to monitor the DoA
was F8, which corresponds to the frontal brain area.
The temporal area, represented by the channel T7, also
performed well whereas the central, parietal and posterior
EEG channels poorly discriminated the states between
Awake and Anesthesia. This result is in accordance with
the use of EEG-based DoA monitors, such as BIS and
Entropy monitors.

4.1. One Channel May Be Enough to
Predict the Depth of Anesthesia
The location that gave the best AUC was the frontal channel
F8 with a value of 0.92 ± 0.04. This could even be improved
with more complex features since the ones used here were based
on the repartition of delta, theta, alpha, and beta powers in the
EEG signals. Analysis was limited to four algorithms selected
for their computational time, simplicity and familiarity. Other

FIGURE 8 | Graphic representation of channel performances. In gray are the

faulty channels not included in the analysis. In orange are channels with mean

AUCs ranging from 0.83 to 0.89 with GNB. In green are channels with mean

AUCs ranging from 0.90 to 0.93 with GNB.

algorithms with optimal parameters may perform better than
GNB. Also, using the physiological variables we recorded could
be a source of improvement to discriminate the patient state. It
would be interesting to establish a parallel between the present
results with those of BIS, a commercially available EEG based
monitoring system of the DoA. However because the EEG data
processing and the algorithm at play are not in the public domain,
it precludes comparison. Nevertheless, BIS does have several
limitations including high inter-individual variations and low
performance with volatile anesthetics (Whitlock et al., 2011), long
latency and interferences with surgical knife and artifacts from
movements or from forced air warming therapy (Hemmerling
and Migneault, 2002). In addition it is not known if BIS can
reduce the risk of intraoperative awareness (Avidan et al., 2011).
As far as the clinical practice is concerned, less than 3% of
the patients are monitored with an EEG during GA (Pandit
et al., 2014), and when applied, it is a preprocessed EEG in
the majority of the cases (Chander et al., 2014). Experimental
studies published in the field of EEG during GA used between
2 and 128 EEG channels. To the best of our knowledge, there
is currently no recommendation on the number of channels
to use in an experimental protocol. The neuronal substrate of
anesthesia remains to be understood. While the distribution
of the anesthetics in the brain is thought to be homogeneous
(Shyr et al., 1995), Uhrig et al. demonstrated that anesthesia
disconnected frontal eye fields and premotor areas from parietal
and cingular cortices (Uhrig et al., 2018). It could be related
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FIGURE 9 | (A) Comparison of k values from 1 to 20 for the KNN algorithm based on their mean AUC after a cross-validation. The mean AUC seems to be growing

with k and converging toward 0.84. (B) Comparison of different k values for DTL algorithm based on their mean AUC after cross-validation. The best AUC 0.84 is

obtained for k = 4 and decreases for higher values.

to the fact that monitoring the frontal area was sufficient to
discriminate between Awake and Anesthesia. Finally, using the
same methodology, Alotaiby et al. demonstrated that the use
of 10–30% of the available channels was enough for emotion
classification, motor imagery classification, and seizure detection
(Alotaiby et al., 2015).

4.2. Potential Clinical Applications
Our result can have potential implications for clinical practice,
as the minimal number of EEG channels needed to discriminate
a proper DoA had not been previously studied. The observation
of the typical alpha-delta pattern on a single channel appeared
to be sufficient to discriminate between Awake and Anesthesia
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and thus to objectively assess the DoA. Only a few monitors
have been developed and validated to assess the DoA in routine
clinical use. Our results suggest that it could be useful to use a
single EEG channel to improve the multimodal prediction of the
DoA such as the one developed by Schneider et al. (2014). In
addition, the prediction of the depth of sedation (DoS) in the ICU
is even trickier than under GA. No monitor is currently available
and this remains an unmet need for intensivists (Vincent et al.,
2016). Indeed BIS is not appropriate due to the variety of drugs
used and the number of muscular artifacts (Vivien et al., 2003).
In that context, the present results pave the way to monitor the
DoS by combining physiological parameters with a single channel
EEG monitoring.

4.3. Limitations and Methodological
Considerations
Our study has some limitations due to real life conditions.
The impedance tolerated for the electrodes was higher than
in laboratory studies due to subject’s different skull anatomies

FIGURE 10 | Algorithm comparison with optimal hyperparameters and feature

sets. Among the 4 algorithms tested, Naive Bayes gives the best AUC of

0.92± 0.04. The features’ numbers refer to the features listed in details in

Table 2.

and sometimes important hair density impeding good signal
transmission. Despite this hindrance, our spectrograms displayed
good recording quality. However, to ensure that the data, which
were used for the ML algorithm, were not corrupted by any
artifact and had a low level of noise, we excluded 22 patients
out of the 30 included. This small sample may be the main
limitation of our work, however we used the best suited ML
protocols (cross-validation). A larger sample of data should be
used to confirm the present results. Our anesthesia protocol
was limited to propofol/sufentanil induction and maintenance
with sevoflurane/sufentanil. Therefore, we cannot state that our
conclusions would stand with other anesthetics. However, based
on the recent literature and the strong alpha power in the
frontal lobes, it seems reasonable to think that extrapolation
would be possible. Moreover, the results could be improved
thanks to a larger set of features and algorithms. We applied a
binary classification; thus, it would be interesting to compare our
algorithm with a BIS-driven DoA using a single EEG channel.
Indeed, patient’s states were binary classified between awake
and asleep, which may lead to errors around LOC and ROC
where the separation between awake and asleep is less clear.
In these states some features may not be directly related to
physiological variations but to environmental stimuli such as
the head pressure on the cap. While such factors cannot be
discriminated by the algorithms, we are confident that our
results have not been biased by these phenomena since LOC
and ROC were confirmed clinically and electrophysiologically
and the data collected during these states were not used to feed
the database.

5. CONCLUSION

The purpose of this study was to determine the best
channel to predict the DoA among the 32 EEG channels
we recorded. We found that channel F8 gives the most
valuable information on single-channel monitoring. More
generally, the fronto-temporal region gives good results
to monitor GA with a single channel. Our results are
consistent with the current use of DoA monitors and with
the previous studies demonstrating that anteriorization and high
amplitude slow-waves gave decisive information on the patient’s
vigilance states.

FIGURE 11 | Example of prediction on one subject using the GNB method. Awake states before and after GA are concatenated at the beginning in orange, and GA

epochs are at the end in blue, which means it is not a temporal representation but a classified one.
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