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Nervous systems need to detect stimulus changes based on their neuronal responses

without using any additional information on the number, times, and types of stimulus

changes. Here, two relatively simple, biologically realistic change point detectionmethods

are compared with two common analysis methods. The four methods are applied to

intra- and extracellularly recorded responses of a single cricket interneuron (AN2) to

acoustic simulation. Solely based on these recorded responses, the methods should

detect an unknown number of different types of sound intensity in- and decreases

shortly after their occurrences. For this task, the methods rely on calculating an adjusting

interspike interval (ISI). Both simple methods try to separate responses to intensity in- or

decreases from activity during constant stimulation. The Pure-ISI method performs this

task based on the distribution of the ISI, while the ISI-Ratio method uses the ratio of actual

and previous ISI. These methods are compared to the frequently used Moving-Average

method, which calculates mean and standard deviation of the instantaneous spike rate

in a moving interval. Additionally, a classification method provides the upper limit of the

change point detection performance that can be expected for the cricket interneuron

responses. The classification learns the statistical properties of the actual and previous

ISI during stimulus changes and constant stimulation from a training data set. The main

results are: (1) The Moving-Average method requires a stable activity in a long interval

to estimate the previous activity, which was not always given in our data set. (2) The

Pure-ISI method can reliably detect stimulus intensity increases when the neuron bursts,

but it fails to identify intensity decreases. (3) The ISI-Ratio method detects stimulus in- and

decreases well, if the spike train is not too noisy. (4) The classificationmethod shows good

performance for the detection of stimulus in- and decreases. But due to the statistical

learning, this method tends to confuse responses to constant stimulation with responses

triggered by a stimulus change. Our results suggest that stimulus change detection does

not require computationally costly mechanisms. Simple nervous systems like the cricket’s

could effectively apply ISI-Ratios to solve this fundamental task.

Keywords: change point analysis, spike train analysis, spike coding, burst detection, interspike interval, ROC,

cricket, AN2
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1. INTRODUCTION

Has anything relevant changed in the sensory environment? This
question is so essential for all organisms that the major task
of sensory systems is to reflect behaviorally relevant stimulus
changes in their neuronal activity. While vertebrates usually
rely on large populations of neurons in each processing step,
invertebrates have to accomplish stimulus detection with few
individual neurons. This study is focused on the detection of
multiple stimulus changes based on the spike train of a single
invertebrate neuron. Four different change point (CP) detection
methods are compared, which rely solely on information
available to the nervous system—one or two interspike intervals
(ISI) preceding a spike.

Detecting relevant changes in the neuronal activity (Ellaway,

1978; Legéndy and Salcman, 1985; Goense and Ratnam, 2003;
Gourévitch and Eggermont, 2007; Levakova et al., 2015) was
frequently used for the detection of stimulus changes (Ellaway,

1978; Goense and Ratnam, 2003; Levakova et al., 2015; Koepcke
et al., 2016), e.g., based on the CUSUM (CUmulative SUM)
method (Ellaway, 1978; Koepcke et al., 2016). A common
application is the identification of the response latency to

stimulus onset/offset of a single stimulus (Oram and Perrett,
1992; Ratnam et al., 2003; Levakova et al., 2015). This requires
a good estimation of the starting point of the neural response. To
achieve a better estimation, many CP detection methods use the
entire recording and/or averaged data over responses to multiple
stimulus repetitions. Approaches that rely on spike patterns
occurring after the stimulus change that would not be readily
available to the nervous system, are called “offline.” In contrast,
“online” algorithms identify a CP in the stimulus based on data
that is updated in every time step of the experimental recording.
Since offline algorithms use a larger amount of data for making a
decision, they are usually more accurate and detect changes with
shorter delay than online methods (Aminikhanghahi and Cook,
2017).

Another approach of CP detection methods is the detection of
“bursts” and/or “pauses” in spike trains (Legéndy and Salcman,
1985; Cocatre-Zilgien and Delcomyn, 1992; Gourévitch and
Eggermont, 2007; Tokdar et al., 2010; Kapucu et al., 2012). The
goal of this approach is to analyze the relevance of bursts and
response gaps in sensory coding. Most published methods for
the detection of bursts or pauses in spike trains utilize offline-
algorithms. Especially the identification of bursts has received
a lot of attention in the neuroscientific literature (Legéndy and
Salcman, 1985; Cocatre-Zilgien and Delcomyn, 1992; Xu et al.,
1999; Pauluis and Baker, 2000; Gourévitch and Eggermont, 2007;
Pasquale et al., 2010; Tokdar et al., 2010; Kapucu et al., 2012; Ko
et al., 2012). The simplest approach for detecting a burst onset
is to apply a simple threshold to the interspike interval or spike
frequency (Kepecs and Lisman, 2004; Marsat and Pollack, 2006),

Abbreviations: AN, Ascending neuron; ISI, Interspike interval; ISR,

Instantaneous spike rate; PSTH, Peri stimulus time histogram; CP, Change

point; TP-Rate, True positive rate; FP-Rate, False positive rate; ROC, Receiver

operating characteristic; AUC, Area under the curve; IFB, Intensity increase from

baseline; IBB, Intensity increase back to baseline; DFB, Intensity decrease from

baseline; DBB, Intensity decrease back to baseline.

sometimes followed by hypothesis testing (Cocatre-Zilgien and
Delcomyn, 1992). These thresholds are usually determined by the
analysis of the (transformed) interspike interval (ISI) histogram
(Legéndy and Salcman, 1985; Gourévitch and Eggermont, 2007;
Ko et al., 2012). ISI distributions also provide the basis for the
publishedmethods for the detection and analysis of intervals with
a particularly low firing rate (“pauses”; Elias et al., 2007; Yartsev
et al., 2009; Ko et al., 2012; Gärtner et al., 2017).

In this study, we propose two biologically realistic CP
detection methods that rely on interspike intervals, which we
compare to two less plausible but frequently used approaches.
We apply these four methods to the responses of single first
order auditory interneurons (AN2) in crickets. Crickets use their
auditory system to find mating partners (“low frequency,” 3–
8 kHz, Wyttenbach et al., 1996) and to avoid predators (bat
echolocation, 15–80 kHz, Hoy, 1992). For both auditory tasks,
crickets have to recognize intensity changes, which can be either
in- or decreases in the sound intensity.

The crickets’ auditory system can perform complex analysis
of the acoustic environment with a relatively simple structure.
Sounds are received via the tympana in the forelegs, where
∼70 auditory receptor neurons are located (Young and Ball,
1974). The first stage of auditory processing comprises only two
bilateral pairs of ascending interneurons (AN1 and AN2) that
are directly connected to the brain. AN2 is mainly specialized
in the high frequencies (ultrasound) of the echolocation of
hunting bats. Bursts in AN2 trigger an avoidance behavior of the
cricket (Marsat and Pollack, 2006). However, AN2 also receives
excitation and inhibition at the dominant frequency (3–8 kHz) of
the calling song (Moiseff and Hoy, 1983).

In AN2, neuronal activity is usually increased, when the
sound intensity rises and decreased during intensity declines
(Hildebrandt et al., 2011). However, external stimuli are not
the only cause for changes in the neuronal activity. They
can also result from internal sources including adaptation or
intrinsic noise. Therefore, the system has to find a balance
between missing perceptions and oversensitive interpretation of
the neuronal activity. Because a change of an acoustic signal is
reflected in the activity of a single neuron (AN2), the auditory
system has to rely on individual spike times and interspike
intervals (ISI). In this study, we analyzed recordings of AN2
interneurons stimulated with varying sound intensities. The
neurons were stimulated with their preferred frequency (16 kHz,
echolocation) or, for comparison, the fundamental frequency of
the calling song (3 kHz).

The CP detection methods compared in this study had to face
the following specific challenges: (1) The activity of only a single
neuron was available. (2) Only online-methods were considered,
which are able to make their decisions based on data available to
the neuronal system. (Neither spikes occurring after each time
point nor averaged data was used.) (3) The methods had to
detect an unknown number of stimulus changes. (4) Different
types of stimulus changes (i.e., intensity in- and decreases) had
to be detected.

We selected four CP detection methods, which are based
on the analysis of ISIs: (1) The Moving-Average method, also
known as the Rate-Change Method (Baker and Gerstein, 2001;
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FIGURE 1 | Sample stimulus and neuronal response. (A) Stimulus pattern consisting of DFB (decrease from baseline), IBB (increase back to baseline), IFB (increase

from baseline), and DBB (decrease back to baseline), as well as (B) one resulting intracellular recording. The cell was stimulated with a 16 kHz tone with different

intensities, the base intensity was 98SPL. The acoustic stimulation started at the time of 0.5 s and ended at 3.75 s of the 4.25 s long recording. The green rectangle

indicates the period shown in (D). (C) Adjusting ISI (Ia(t), Equation 3), The light (dark) gray areas represent the periods when a response to an intensity increase

(decrease) was expected. If a CP was detected in this period, it was classified as true positive. (D) A blow-up of the raw voltage data in the range marked by the green

rectangle in (B). For the time point t the three previous spike times [s1(t), s2(t), s3(t)] as well the two previous ISIs [i1(t), i2(t)] and an example of the adjusting ISI are

illustrated (section 2.2.2).

Levakova et al., 2015; Koepcke et al., 2016), is a classical approach
for detecting changes in a time series. It compares the inverse
of the actual ISI with the mean and the standard deviation
of the neuronal activity in a previous reference interval. This
procedure is a standard method to test if a value belongs
to the same distribution as some reference values. (2) The
Pure-ISI method, the simplest biologically plausible CP detection
approach we could think of, compares the actual ISI with
a given threshold, without comparing it to previous activity.
(3) The ISI-Ratio method we propose assumes that stimulus
changes result in multiplicative changes of the neuronal activity.
It applies a threshold to the ratio of actual and previous
ISI. (4) The classification method detects stimulus changes
by identifying combinations of actual and previous ISI. The
underlying assumption of this powerful, but computationally
expensive method is that nervous systems can adapt their
responses to stimulus statistics.

Hence, two of these methods, Pure-ISI and classification,
rely on absolute ISI values, while the other two methods use
relative changes from previous activity. All four of our methods
critically depend on a predefined threshold as a criterion for CP

detection. The tradeoff is that increasing the threshold increases
the probability of missing stimulus changes, whereas it decreases
the probability for false positives, which are not caused by a
stimulus change. We apply the receiver operating characteristic
(ROC) to analyze different thresholds for the evaluation of the
CP detection methods.

2. METHODS

All applied methods, data analysis and figures were programmed
and created with MATLAB (R2017a, The MathWorks, Inc.).

2.1. Experiments
We adopted neuronal data published byHildebrandt et al. (2011),
which was not optimized for the development of our methods,
but rather was used as an example for available data. In the
present study, data from 21 crickets (13 females and 8 males)
(Teleogryllus leo) were analyzed, of which 9 animals were used
for intracellular recordings and 12 animals for extracellular
recordings. For technical details of the experiments, refer to
Hildebrandt et al. (2011).
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The carrier frequency (pitch) of 16 or 3 kHz of a stimulus
pattern remained constant during each experiment (Figure 1A).
The ultrasound (16 kHz) represented the frequency of the
bat echolocation, whereas the low frequency sound (3 kHz)
corresponded to the fundamental frequency of the calling song
Teleogryllus leo (Rothbart and Hennig, 2012). Each stimulus
pattern had a base sound intensity and consisted of rectangular
positive and negative steps relative to the baseline intensity
(Figure 1A; 1.3 and 0.9 s). The positive steps lasted 50ms and
were 2–18 dB louder than the baseline intensity. The duration of
the negative steps was 100ms and the intensity was 2–5 dB lower.
Intensity steps were presented every 400ms, leading to 300 or
350ms of baseline intensity between the steps.

The neural activity was recorded 500ms before and after
stimulation (Figure 1A). Consequently, three different kinds of
intensity increases were applied: sound onset (onset; at 0.5 s),
increases from baseline (IFB; e.g., at 1.3 s) and increases back to
baseline (IBB; e.g., at 1 s). Correspondingly, intensity decreases
consisted of: sound offsets (offset; at 3.75 s), decreases from
baseline (DFB; e.g., at 0.9 s), and decreases back to baseline
(DBB; e.g., at 1.35 s). However, since positive intensity steps
occurred more frequently than negative steps, onsets and offsets,
the most common stimulus changes were IFBs and DBBs.
The baseline sound level varied between 75 and 98 SPL. Each
recording consisted of 10 trials, identical repetitions of the same
stimulus protocol, interrupted by breaks of 1,500ms. All 10 trials
were used for analysis. Between one and nine different stimulus
protocols were used for each animal. In total, we analyzed 9
intracellular recordings with 16 kHz stimulation as our standard
data set. Additionally, 11 intracellular recordings with 3 kHz and
73 extracellular recordings (16 kHz: 43, 3 kHz: 30, in 12 animals)
were analyzed to test the robustness of our methods.

2.2. Prerequisites for Stimulus Change
Point Detection Methods
The goal of the four change point (CP) detection methods
compared in this study is to detect the responses to all stimulus
intensity changes (increases as well as decreases, Figure 1A)
based on the recorded neuronal data. Since an intensity
increase typically resulted in an increase of the neural activity
(Hildebrandt et al., 2011), while an intensity decrease reduced
the neuronal activity, the intensity in- and decreases were
analyzed independently. The time points of stimulus changes
are called “(stimulus) change points” (CPs), the outcomes of
the CP detection methods are called “putative CPs” and the
time points, which fulfill the criteria of a putative CP before the
application of restriction criteria, are called “threshold crossings.”
The restriction criteria for a putative CP are described below.

2.2.1. Putative Change Points and True and False

Positives
The classification of a putative CP as a correctly or falsely detected
CP (true and false positive) relies on the time period, during
which a neuronal response to a stimulus CP can be expected. To
determine this period, the distribution of the response latencies
was estimated (Supplementary Material).

The time interval after a stimulus change, during which a
putative CP is classified as true positive is called accepted time
range (Taccept). The accepted time range for intensity increases
was set to [10, 40]ms and for intensity decreases to [15, 55]ms
(Supplementary Material).

Because the analyzed data were continuous time series,
multiple putative CPs could be detected in this time range. If
this was the case, only the first putative CP was classified as true
positive (TP) and the others as false positives (FP).

If the threshold for CP detection stayed crossed for several
consecutive time points, only the first threshold crossing was
considered as a putative CP. Therefore, it could happen that
CPs were missed when the corresponding threshold crossings
occurred within a longer period (e.g., more than 40ms) of
continuously crossed threshold. This caused a theoretical
problem when applying the ROC curve as an evaluation
technique. It was necessary that lower sensitivity resulted in
high numbers of TPs and FPs. If threshold crossings occurred
successively longer than the accepted time range (|Taccept|), the
algorithm was reset, allowing detection of further putative CPs.
However, it was not allowed to detect several putative CPs
between two spikes. With this modification the number of FPs
increased with the number of TPs (e.g., Figures 2A–D3) when
relaxing the threshold criterion for CP detection.

2.2.2. Interspike Interval (ISI)
All four methods compared in this study rely on the analysis
of adjusting ISIs. For the spike times t1, t2, . . . , tn in one trial
(response to one representation of a stimulus protocol), with s1(t)
the previous spike time of any time point t > t2, s2(t) the second
last and si(t) the i-th last spike time (Figure 1D) are defined by

s1(t) = max
{

tj|tj ≤ t
}

, s2(t) = max
{

tj|tj < s1(t)
}

,

si(t) = max
{

tj|tj < si−1(t)
}

. (1)

The actual ISI at time point t (i1(t)) is the time difference between
the two previous spike times. Correspondingly, the previous
ISI (i2(t)) is the difference between the second and third last
spike time:

i1(t) = s1(t)− s2(t), i2(t) = s2(t)− s3(t),

i3(t) = s3(t)− s4(t). (2)

The adjusting ISI (Ia(t)) (Figures 1C,D), which is the basis for all
four methods, is defined as

Ia(t) =

{

i1(t), if t − s1(t) < i1(t)

t − s1(t), otherwise
. (3)

The adjusting ISI increases linearly if the difference of the
actual time t to the previous spike (s1(t)) is greater than the
previous ISI (i1(t)). This case occurs in Figure 1C e.g., around
1 s. The advantages of using this definition of adjusting ISI are
(1) no knowledge of the future spike times is needed and (2)
the adjusting ISI increases automatically if the last ISI (i1(t)) is
shorter than the period between the actual time point to the last
spike (t − s1(t)).
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FIGURE 2 | Overview of all methods. The example data is identical to the data in Figure 1. The first column (A1–D1) shows the main idea of the first step of each

method. The second column (A2–D2) depicts the basis of decision when a CP was found and indicates the resulting CPs and missed changes. Here, the thresholds

were chosen to yield a false positive rate of 0.05 (increases) and 0.15 (decreases). The third column (A3–D3) shows the ROC-curves for this particular experiment and

specific methods’ parameter settings (section 2.4) for the detection of intensity increases and decreases. The triangles indicate the performance for the thresholds

applied in the second column. The black line represents the chance level. The rows of the figure represent the CP detection methods: (A1–A3) Moving Average

method: (A1) Instantaneous spike rate (section 2.3.1, Equation 5); (A2) Instantaneous spike rate together with moving average and the corresponding multiple of

standard deviation (Equation 6). Here, a moving average window size of 100ms was applied and the multiple of standard deviation was 13.7 for intensity increases

and 1.65 for decreases. (B1–B3) Pure ISI method: (B1,B2) Sketch of the method (section 2.3.2). The adjusting ISI (Equation 3) is illustrated together with a specific

pair of thresholds (θin = 30ms, θde = 77ms Equation 10). (C1–C3) ISI-Ratio method: (C1) Adjusting and previous ISI with weight 0 (Ia(t), Ipre(t, 0)) (section 2.2.2

Equations 3, 4); C2 Ratio of adjusting and previous ISI with a logarithmically scaled y-axis. The thresholds in this example were θin = 0.7 and θde = 1.4. (D1–D3)

Classification method: (D1) Adjusting and previous ISI. The different background gray-levels indicate ten different categories (section 2.3.4, Equation 14); (D2)

Probabilities of intensity increase and decrease with thresholds θin = 0.17 and θde = 0.11.

Two ISI-methods (ISI-Ratio and classification) require
additional knowledge of previous ISIs for comparison with the
adjusting ISI. For this purpose a weighted mean of the two
previous ISIs (Ipre(t,ω)) was employed. We consider relative
weights of the second last ISI and the last ISI in the range from
ω = 0 (no effect of the second last ISI, only of the last ISI), via
ω = 0.5 (same effects of last and second last ISI), to ω = 1 (no

effect of the last ISI, only of the second last ISI). Consequently,
the weighted previous ISI is defined as

Ipre(t,ω) =

{

((1− ω) · i1(t)+ ω · i2(t)), if t 6= s1(t)

((1− ω) · i2(t)+ ω · i3(t)), if t = s1(t)
, ω ∈ [0, 1].

(4)
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If only one previous ISI was considered, ω was equal to 0
(

Ipre(t, 0) =

{

i1(t), if t 6= s1(t)

i2(t), if t = s1(t)

)

.

Consequently, Ipre(t, 0) is in many time points t identical to
the adjusting ISI Ia(t), which is illustrated in Figures 1C, 2B.
The two curves only differ when a new spike is generated or
when the adjusting ISI increases linearly. An example of the
weighted previous ISI with a weight of 0.5 (Ipre(t, 0.5)) is shown
in Figure 2C1.

2.3. Stimulus Change Point Detection
Methods
2.3.1. Moving-Average Method
The Moving-Average method was selected for comparison with
our proposed ISI-methods as the standard approach that is most
frequently found in neuroscientific studies. In this method (see
also Koepcke et al., 2016) the actual spike rate was compared to
a mean spike rate and a multiple of the standard deviation based
on the previous recording period. To keep the required previous
recording as short as possible, we used the instantaneous spike
rate as an estimate of the spike rate at each time point.

The instantaneous spike rate (ISR) is defined as the inverse of
the adjusting ISI (Equation 3):

r̂(t) =
1

Ia(t)
. (5)

By applying the adjusting ISI, this method is a true online
method, that does not employ any future information. However,
it differs slightly from published ISR definitions (Pauluis and
Baker, 2000; Lánský et al., 2004; Kostal et al., 2018), which
rely the next spike to determine the ISI and its corresponding
inverse. Because in our definition the ISR is the reciprocal of
Ia(t), the estimated spike rate of the cell decreases hyperbolically
when the adjusting ISI increases until the next spike is
generated (Figure 2A1).

The mean (r̄) of the ISR and its standard deviation (s)
is calculated for every point t in the interval [t − W, t] of
length W (Figure 2A2). We tested 17 different window sizes
(W = 5, 10, . . . , 50, 60, 70, . . . , 100, 150, 200ms). Threshold
crossings are:

Ein(t) =

{

1, if r̂(t) > r̄(t)+ θins(t)

0
,

Ede(t) =

{

1, if r̂(t) < r̄(t)− θdes(t)

0
. (6)

θin, θde > 0 denote the units of standard deviation used as
the thresholds for CP detection. The suffixes “in” and “de”
indicate stimulus in- and decrease, respectively, used for the two
different thresholds required for asymmetric distributions. The
threshold parameter spaces covered by 300 tested values are listed
in Table S2. Since only the first time point t after a threshold
crossing should be considered as a putative CP, but not the

succeeding time points while the threshold stays crossed, putative
CPs are defined as:

CPin = {t | Ein(t) = 1 ∧ ∀τ ∈ [s1(t), t[:Ein(τ ) = 0}, (7)

CPde = {t | Ede(t) = 1 ∧ ∀τ ∈ [s1(t), t[:Ede(τ ) = 0}. (8)

Please note that CPin can only occur at spike times tj, while θde is
usually crossed between spike times.

2.3.2. Pure-ISI Method
We introduce the Pure-ISI method as the simplest CP detection
method a neuron could apply. The only information it uses
is the actual neuronal activity with the underlying assumption
that a particularly short or long ISI indicates a stimulus change.
Therefore, this methods tries to separate the distribution of
the adjusting ISI into the three conditions by applying two
thresholds (θin and θde) for finding particularly short or long
adjusting ISIs (section 2.2.2, Figure 1C) to detect putative CPs
(Figures 2B1–B3). The putative CPs are:

CPin = {t | Ia(t) < θin ∧ ∀τ ∈ [s1(t), t[: Ia(τ ) ≥ θin}, θin > 0,
(9)

CPde = {t | Ia(t) > θde ∧ ∀τ ∈ [s1(t), t[: Ia(τ ) ≤ θde}, θde > 0
(10)

with θ denoting a pre-defined threshold for detecting changes
and the suffixes “in” and “de” again indicating stimulus increase
and decrease, respectively. The threshold parameter spaces
sampled by 600 tested values are listed in Table S2. Again, CPin
always refer to spike times tj, while CPde are usually between
spike times.

2.3.3. ISI-Ratio Method
As a more elaborate, but still biologically plausible CP detection
method, we introduce the ISI-Ratio method, which compares the
adjusting ISI (Ia(t)) with the weighted previous ISI (Ipre(t,ω)) by
analyzing their ratio (R(t,ω)) (section 2.2.2, Figure 2C2).

R(t,ω) =
Ia(t)

Ipre(t,ω)
. (11)

The bigger ω the stronger is the impact of the second last ISI
on the ISI-Ratio. The effect of this weight was analyzed with 17
different weights (ω = [0, 0.0625, 0.125, . . . , 1]). An example of
the adjusting and previous ISI is shown in Figures 2C1,D1 and
the ratio in Figure 2C2.

For intensity increases a putative CP is detected at a spike
time tj if the ratio is smaller than a threshold θin < 1
under the condition that the ratio at the previous spike time
(tj−1) did not reach the threshold (Figure 2B2). For detecting
intensity decreases the ratio has to be greater than a threshold
θde > 1 at any time point t and the ratio has to be
smaller at the last spike time s1(t). Therefore, putative CPs are
defined as

CPin = {t | R(t,ω) < θin ∧ ∀τ ∈ [s1(t), t[:R(τ ,ω) ≥ θin}, (12)

CPde = {t | R(t,ω) > θde ∧ ∀τ ∈ [s1(t), t[:R(τ ,ω) ≤ θde}. (13)

The 500 tested values for θin and θde are listed in the Table S2.
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FIGURE 3 | Distributions of previous and actual ISI and their relationship under three different conditions. The data contains all ISIs in 10 recorded trials of the

experiment shown in Figure 1. The data is divided according to the stimulation that elicited the analyzed spikes into responses to stimulus intensity increases (A1–A4)

(red: IFB, gray: IBB, black: onset), intensity decreases (B1–B4) (green: DBB, gray: DFB, black: offset), and constant simulation (C1–C4) (blue). The data of the

intensity in- and decreases were taken from the accepted time ranges (section 2.4, Figure 1C). The first column (A1–C1) shows the histograms of the actual ISI for all

three conditions (Figure 1D). The red and green markers represent the example thresholds, which were applied in Figure 2B by the Pure-ISI method. The second

column (A2–C2) illustrates the distributions of the previous ISI (i1, section 2.2.2; Figure 1D). The third column (A3–C3) shows the ISI-Ratios of the previous and

actual ISI ( actual ISI
previous ISI

). The scale of the x-axis is logarithmic. The red and green markers indicate the example thresholds used for the ISI-Ratio in Figure 2C. The

scatter plots in the right column (A4–C4) show the pair of previous and actual ISI for each spike on a logarithmic scale. The colors again indicate the type of in- or

decrease for each data point.

2.3.4. Classification-Method
For rigorous evaluation of our introduced ISI-methods, we chose
to use a naive Bayes classifier, which is frequently applied in
machine learning (Hand and Yu, 2001). This method should act
as reference for an upper limit of the CP detection performance
that can be obtained for the given data. In contrast to the ISI-
Ratiomethod, the classificationmethodmakes use of the absolute
values of the ISIs (Figures 3A–C4). The main idea is to use a
training data set to learn the statistical properties of the ISIs
during constant stimulation and in response to stimulus changes.
The method was applied for the detection of in- and decreased
activity changes independently.

Applying leave-one-out cross-validation, one training data
set consisted of the trials l = [1, . . . ,m − 1] and the test
data set the m-th trial. (In our specific case, m = 10 trials
were used.) Here, for simplification of the description only
the case of intensity increases is illustrated, decreases were
identified equivalently.

First the adjusting and weighted previous ISI (Ia(t), Equation
(3), Ipre(t,ω), Equation (4)) were calculated for all training
trials l. The next step was to replace in every time point the
continuous values of the adjusting and previous ISI by discrete
categories (Figures 3A–C4, 2D1). The discrete categories were
determined by the logarithmic spacing between the minimum
and the maximum ISI of the training data set. In this study, we
divided the interval into k = 10 categories.

Ca(t, l) = c, for ec−1 < Ia(t) ≤ ec,

Cpre(t, l,ω) = c, for ec−1 < Ipre(t,ω) ≤ ec. (14)

The borders [e0, . . . , ek] of the categories were defined as:

e0 = 0, e1 = a
(

ba−1
)
1
k , e2 = a

(

ba−1
)
2
k , . . . ,

ek−1 = a
(

ba−1
)
k−1
k , ek = ∞, (15)
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where a and b are the minimal and maximum ISI, respectively,
which occurred in the training data set. For comparing the
category of the adjusting ISI at time point t and trial l with
the category of the weighted previous ISI both categories
were combined:

Cpair(t, l,ω) = (Cpre(t, l,ω),Ca(t, l)). (16)

In total, k2 possible combinations exist. The categories
Cpair(t, l,ω) were further subdivided into two groups: one group
corresponding to the activity in response to an intensity increase
(Tin), and the other group covering constant stimulation or
intensity decreases (Tc,de). The determination of Tin depends
on the response latency of the system. We set Tin equal to the
accepted time range, in which a putative CP was classified as true
positive (section 2.2.1).

Nin(k1, k2) = #{t | Cpair(t, l,ω) = (k1, k2), t ∈ Tin}, (17)

Nc,de(k1, k2) = #{t | Cpair(t, l,ω) = (k1, k2), t ∈ Tc,de}. (18)

The relative frequency for every category combination
was calculated:

f (k1, k2) =
Nin(k1, k2)

Nc,de(k1, k2)+ Nin(k1, k2)
. (19)

For the test data set (trial m), the adjusting and previous ISI,
as well as their categories were calculated. With the combined
categories, a CP probability (P) with the relative frequencies of
Equation (19) was determined (Figure 2D2)

P(t) = f (Cpre(t,m,ω),Ca(t,m)). (20)

Threshold crossings occur if the probability of a stimulus change
was greater than a pre-defined threshold θ . Then are the
putative CPs:

CP = {t | P(t) > θ ∧ ∀τ ∈ [s1(t), t[:P(τ ) ≤ θ}, θ ∈ [0, 1].
(21)

For the weighted previous ISI we tested the same 17 different
weights between 0 and 1 as for the ISI-Ratio method. The
200 tested values of θ are given for intensity in- and decreases
in Table S2.

2.4. Evaluation Technique: ROC Curve and
AUC-Value
In a receiver operating characteristic curve (ROC curve), the
true positive rate (TP-Rate) is plotted against the false positive
rate (FP-Rate; Krzanowski and Hand, 2009; Aminikhanghahi
and Cook, 2017). One point on the ROC curve (FP-Rate,
TP-Rate) corresponds to one parameter setting of a method
(Figures 2A–D3). To evaluate a CP method the Area Under
the Curve (AUC) was calculated (Aminikhanghahi and Cook,
2017). It can be interpreted as the probability increase of
detecting a time point after a stimulus change compared to
a randomly chosen time point during constant stimulation
(Hanley and McNeil, 1982).

The evaluation technique is described here based on the
intensity increases, the intensity decreases were evaluated
analogously. Because the recordings are continuous time series, a
modification of the TP- and FP-Rate was necessary. The TP-Rate
is the number of TP (#TP) divided by the number of intensity
increases (nin). The FP-Rate is the ratio between the number of
FPs (#FP) and a number of intervals where constant stimulation
or intensity decreases are present. Each intensity increase refers
to an interval of the accepted time range (Taccept), where a CP
is identified as true positive. The rest of the recording duration
contains neuronal activity which is not triggered by an intensity
increase. The FP-Rate is normalized by the maximum number
of CPs that could theoretically be reached during the recording,
calculated as the ratio of the total recording duration D and
the length of the accepted time range |Taccept|, from which the
number of intensity increases (nin) is subtracted.

TP-Rate =
#TP

nin
; FP-Rate =

#FP

D/|Taccept| − nin
. (22)

In theory, the FP-rate can be greater than 1, but in practice,
the maximal FP-rate was normally around 1. For calculating the
AUC-value the TP-Rate and FP-Rate were determined for each
trial independently and the mean was analyzed.

3. RESULTS

The goal of this study is to test two simple, biologically
realistic approaches for identifying multiple stimulus changes
in neuronal responses. These methods are compared to two
established change point detection methods by applying them
to intracellularly recorded responses to acoustical stimulation
of the cricket’s AN2 neuron. The method’s robustness was
checked with extracellularly recorded spike trains elicited by the
same stimulation of 16 kHz, as well as with responses to 3 kHz
stimulation. The stimulation protocols comprised three different
types of intensity in- and decreases (section 2.1, Figure 1A):
sound onset (onset), increase from baseline (IFB) and back
to baseline (IBB); sound offset (offset), decrease from baseline
(DFB) and back to baseline (DBB).

3.1. ISI and ISI-Ratio Distributions
All methods rely on the hypothesis that the distributions of
“actual” ISI and its previous ISI are distinguishable under
the three conditions (intensity in- and decreases and constant
stimulation). It is obvious that the histograms of the actual ISI
and the ISI-Ratio (actual ISI/previous ISI) differ between the
different conditions (Figure 3). However, they also overlap, in
particular for the intensity decreases and constant stimulation.

Figure 3 shows the distributions of the actual ISI
(Figures 3A–C1), its previous ISI (Figures 3A–C2) and
their relationship in form of the distribution of their ratio
(Figures 3A–C3) and a scatterplot of their combination
(Figures 3A–C4) for one example experiment. The distributions
are displayed in form of histograms under the three
conditions (intensity increase; Figures 3A1–A4) and decreases
(Figures 3B1–B4), constant stimulation (Figures 3C1–C4).
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FIGURE 4 | Overview of change point detection performances. The boxplots contain the best AUC-values of every experiment for each method. For parameter

optimization, the weight of the second last ISI influencing the ISI-Ratio and classification method was limited to the range between 0 and 0.5 and the window size of

the Moving-Average method was limited to a maximum of 100ms. (A) Responses to 16 kHz stimulation: intracellular recordings (n = 9) and extracellular recordings (n

= 43); (B) Responses to 3 kHz stimulation: intracellular recordings (n = 11) and extracellular recordings (n = 30).

The displayed data for the actual ISI correspond to all ISIs (i1,
Equation 2) recorded within the accepted time range (Ttrue)
after each intensity change (section 2.2.1). Hence, the individual
stimulus periods contribute different amounts of data points,
depending on the respective spike rates they triggered. The
colors in each of the distributions and scatter plots indicate the
different sub-types of intensity in- and decreases. They show that
positive sound intensity steps leading to IFBs (red) and DBBs
(green) occurred more often in the data set than gaps leading to
DFBs and IBBs (gray), as well as stimulus on- and offsets (black).

Moreover, the adjusting ISI of the end of the respective
accepted time ranges was added to the displayed data, which
is crucial for the detection of reduced neuronal activity during
intensity decreases. A pause in the spiking activity as a response to
an intensity decrease lasted usually longer than the accepted time
range (Figure 1). Hence, this long ISI needs to be considered at
the end of the accepted time range to prevent it from being falsely
assigned to the succeeding baseline stimulation.

3.1.1. Intensity Increases
ISIs (Figures 3A–C1) and ISI-Ratios (Figures 3A–C3) tended to
be smaller for the intensity increases compared to the other two
conditions, even though the distributions overlap. However, for
the definition of strong responses only the shortest ISI occurring
during the stimulation had to be lower than the threshold of
6.5ms (typical values were 2.5–4ms) and the smallest ISI-Ratio
had to be smaller than 0.2. According to this definition, strong
responses occurred in∼70% of the intensity increases. They were
elicited by most of the IFBs (red in Figure 3) and onsets (black)
as well as by a quarter of the IBBs (gray). In 12% of the intensity
increases (mainly IBBs) no increase of the neuronal activity was
measurable (ratio > 1 in all time bins) and the corresponding
minimum ISI was quite long (> 40ms).

In addition to the percentages of strong responses, the
latency between an intensity increase and the occurrence of the

minimum ISI differed between the intensity increase types. On
average, the minimum ISI was found earlier for IFBs than for
onsets and IBBs. For half of the intensity increases, the spike time
with the minimum ISI-Ratio coincided with the spike time of the
minimum ISI. In the other cases, mainly for IFBs, the minimum
ISI occurred one spike later than the minimum ISI-Ratio.

3.1.2. Intensity Decreases
In contrast to the intensity increases, far fewer spikes occurred
after intensity decreases. This is illustrated by the size of the
histograms of the actual ISI and ISI-Ratio in Figures 3B1,B3.
For most intensity decreases, the ISI-Ratio was between 2 and 6,
clearly indicating decreased neuronal activity. Only in 4% of all
intensity decreases no decrease of the neuronal activity (ISI-Ratio
< 1 in all time bins) was measurable. For DFBs the ISIs tended to
be even longer. But the ratios within the time range were smaller
than for the other intensity decrease types.

Since the detection of intensity decreases relies on the
maximum adjusting ISI and ISI-Ratio, detection performance
depends critically on the definition of the accepted range.
For the standard experiments (16 kHz stimulation, intracellular
recording), the typical range found for the maximum ISI was
between 38 and 51ms. The fact that 55–75% of the maximum
ISI and ISI-Ratio were found at the end of the accepted interval
of 15–55ms indicates that the response lasted longer than 55ms.
Hence, the choice of a longer accepted time range would result in
higher ISIs and ISI-Ratios, but would not be appropriate for the
given stimulation protocol (refer to the Supplementary Material

for the definition of the accepted time range).

3.2. Comparison of CP Detection Methods
In this section, the four CP detection methods Moving-Average,
Pure-ISI, ISI-Ratio, and classification are compared based on the
standard data set, intracellular recordings of responses to 16 kHz
stimulation. The overall comparison of detection performances
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FIGURE 5 | Influence of the additional parameters on the AUC-values for the Moving-Average (A1,A2), ISI-Ratio (B1,B2) and classification method (C1,C2).

(A1,B1,C1) For the nine intracellular recordings of responses to 16 kHz stimulation, the AUC-values are illustrated separately with the red line representing the

performance of the example data set in Figures 1–3. (A2,B2,C2) The performances obtained for the 43 extracellular recordings are summarized by means (circles)

and standard deviations (error bars) over experiments. For the Moving-Average method (A1,A2), the influence of the moving average window size on the AUC-value is

shown. For the ISI-Ratio (B1,B2) and (C1,C2) classification, the weight of the two previous ISIs was varied to analyze their influence on the AUC-value. 17 weights

between 0 and 1 were tested for calculating the previous ISI (Ipre(t,ω), Equation 4). A weight of 0 indicates no influence of the second last ISI, whereas the last ISI had

no influence if the weight was equal to 1. For the corresponding analysis performed on the responses to 3 kHz stimulation, please refer to Figure S1.

for intensity in- and decreases is illustrated in Figure 4, before
analyzing the effects of parameter variations for the four methods
individually (Figure 5). The AUC-values shown in the boxplots
in Figure 4 result from the combined performances of the
different types of in- and decreases. For the intensity increases
all methods yielded similarly good results. For the standard
experiments, the widely used Moving-Average achieved AUC-
values between 0.75 and 0.85 (Figure 4A, green). The simpler
methods Pure-ISI (black) and ISI-Ratio (blue), which rely only
on one or two ISIs for stimulus change detection, performed
similarly well or even slightly better than the Moving-Average
method. The classification method with a median AUC-value
of 0.9 was very successful in detecting increases in stimulus

intensity. Altogether all methods were suitable for detecting
stimulus intensity increases in the standard experiments.

For detecting intensity decreases, greater performance
differences were found between the methods. The
Moving-Average method was less successful than for detecting
intensity increases. The AUC-values were on average 0.12
lower, resulting in AUC-values between 0.6 and 0.77 for
the standard experiments. The ISI-Ratio and classification
methods also achieved lower AUC-values for the detection of
intensity decreases, but the differences in performance were less
pronounced than for the Moving-Average method. The Pure-ISI
method showed a drastically lower performance. For many
experiments this method failed to identify intensity decreases
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which lead to very low AUC-values (median 0.54). Hence, the
ISI-Ratio method and the classification method were suitable to
detect stimulus intensity decreases, whereas the Moving-Average
achieved mixed results and the Pure-ISI method failed for this
detection task.

3.2.1. Moving-Average Method
Our main findings for the Moving-Average method (section
2.3.1) were that it was suitable to detect intensity increases,
especially when they caused strong responses, but it had some
difficulties in detecting intensity decreases. The performance
strongly depended on a stable activity in a long reference period.

Figures 2A1–A3 shows the results of the Moving-Average
method for the example experiment. The dark dotted line in
Figure 2A2 displays the Moving-Average of the ISR calculated
with a window size of 70ms. The gray area marks the mean
plus/minus a multiple of the standard deviation. A CP was
detected when the ISR exceeded or fell below the gray area.

3.2.1.1. Intensity increases
The Moving-Average method was found to be well-suited for
the detection of intensity increases (Figures 4, 5A1,A2). The
size of the moving average window had a strong influence
on the CP detection performance (Figures 5A1,A2), With
increasing window size, the reliability of detection rose and AUC
values increased visibly up to a saturation value at ∼80ms.
For the comparison of methods’ performances in Figure 4,
the window size was restricted to 100ms. Longer windows
for averaging would not be biologically plausible and could
cause a strong influence of previous stimulus changes on the
reference activity. Under this restriction, the optimal window
size was found to be between 80 and 100ms for most of
the experiments. If this restriction was abolished, AUC values
increased with window sizes of up to 200ms for many of the
experiments (Figures 5A1,A2).

The Moving-Average method is generally suitable to detect
intensity increases. Good performances were obtained in
particular for strong responses. Medium responses (shortest ISIs
7–40ms and smallest ISI-Ratio 0.2–0.5) still lead to acceptable
performances, while the method mostly failed in detecting weak
responses. The example experiment shown in Figure 2 yielded
a good AUC-value of 0.87. The corresponding ROC-curve in
Figure 2A3 (green line) illustrates the dependency of the TP-
Rate on the FP-Rate. The strong responses elicited by onsets
and IFBs led to high detection rates (90% for a FP-Rate of 0.05,
Figure 2A2). Also half of the IBBs were detected in this example.
However, there was some variability between the data sets. For
some recordings, the Moving-Average method could detect only
half of the IFBs when the FP-Rate was fixed to 0.05.

3.2.1.2. Intensity decreases
For detecting intensity decreases, the window size had an even
more severe impact on the performance (Figures 5A1,A2),
because the Moving-Average method requires stable reference
data. The AUC-values increased up to a window size of 50–70ms
and then decreased again. The reason for this optimum window
size was the design of the stimulus protocol, in which the duration

between an IFB and the following DBB was 50ms. Adding
the corresponding response latency, we obtained a relatively
stable interval of 50–70ms. For DFBs longer reference windows
were better suited because the last intensity change was more
than 200ms ago (section 2.1, Figure 1). Hence, long constant
reference activity improved the performance.

Even with optimized window sizes the Moving-Average
method had problems to detect intensity decreases occurring
after a strong response to an intensity increase (mostly DBBs).
This is reflected in low TP-Rates of around 0.3 (median) with
a fixed FP-Rate of 0.15. For example, in the example recording
shown in Figure 2A3 42% of all DBBs were detected. The
resulting AUC-value of 0.68 indicates the low performance for
detecting decreases. Hence, the Moving-Average method was not
a good choice for the given data set, containing low spike rates
and short periods of stable activity due to the specific stimulus
time course.

3.2.2. Pure-ISI Method
The Pure-ISI method (section 2.3.2) is the simplest of the
methods tested in this study, because it relies exclusively on
one adjusting ISI. The main results obtained for this method
are that it could reliably detect strong responses, but had
problems detecting responses with longer ISI, in particular for
IBBs. Intensity decreases were only rarely found within the
accepted time range, particularly for decreases after a strong
response (offsets and DBB). For given FP-Rates, the thresholds
for detection of activity in- and decrease depended on the average
spike rates.

Figure 2B2 shows an example application of the Pure-ISI
method, in which a putative CP was detected, when an ISI was
shorter than θin = 9.8ms (detection of intensity increases)
or longer than θde = 57ms (detection of intensity decreases).
These thresholds (also marked in the ISI distributions in
Figures 3A–C1) correspond to FP-Rates of 0.05 for stimulus
increases and 0.15 for decreases.

We varied the two thresholds systematically to calculate the
TP- and FP-Rates for the ROC curve. The thresholds leading
to given FP-Rates (0.05 for stimulus increases and 0.15 for
decreases) depended on the neuronal activity. The thresholds
for intensity increases (θin) and intensity decreases θin correlated
with the average ISI following intensity changes (correlation
coefficient of 0.7 for increases and 0.75 for decreases). The
threshold ISI for intensity increases (θin) was ∼1–2ms shorter
and for intensity decreases (θde) ∼20ms longer than the average
ISI, both of which were significant differences (paired Wilcoxon-
rank-sum-test, p < 0.05).

3.2.2.1. Intensity increases
The successful application of the Pure-ISI method for detecting
strong responses to stimulus intensity increases can be observed
for the example data set in Figure 2B. The reliable detection
of strong responses resulted in a high TP-Rate for onsets and
the most frequently occurring IFBs. However, this method had
problems to detect medium and weak responses to intensity
increases. Only 30% of the less frequently occurring IBBs were
detected in the example of Figure 2B, still leading in total to a
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high AUC-value of 0.9, which is in the upper range of the AUC-
values obtained for the detection of stimulus increases with this
method (Figure 4A).

3.2.2.2. Intensity decreases
Considerably lower performance values were obtained for
detecting intensity decreases compared to increases. Since the
adjusting ISI after a DFBwas generally longer than the ISIs during
constant stimulation, these CPs could be detected by the Pure-ISI
method. In contrast, the adjusting ISIs within the accepted range
after a DBB or offset were often shorter than ISIs during constant
stimulation, which lead to a low detection performance. For the
example in Figure 2B2, none of the DBBs and 40% DFBs were
detected, causing a low AUC-value of 0.6. The detected responses
had long adjusting ISIs (> 57ms).

The poor performances for detecting DBBs and offsets were
reflected in the AUC-values (Figure 4A). Some data sets even
yielded AUC-values below 0.5, which is worse than flipping a
coin. If the first ISI after an intensity decrease was short, false
positives (indicating putative stimulus increase) were detected
before true positives (indicating stimulus decrease) could be
found. This problem concerned the Pure-ISI method and the
classification more strongly than the ISI-Ratio and Moving-
Average, in which relative activity changes rather than crossings
of absolute ISI values were used for detection.

3.2.3. ISI-Ratio Method
The ISI-Ratio method (section 2.3.3) was found to be a very
good choice for detecting both intensity in- and decreases. For
decreases the performance was improved by taking the second
last ISI into consideration for the ratio.

The ISI-Ratio method assumes that changes in the stimulus
are represented in the weighted ratio of the adjusting and the
previous ISI (e.g., Figures 2C1,C2). The method subdivides the
distribution of ratios into three parts by applying one threshold
for increases and another for decreases (Figures 3A–C3) with
example thresholds θin = 0.48, θde = 1.84). The same thresholds
were also applied in Figure 2C2, which shows an example of the
ISI-Ratio method with a weight of ω = 0 in detecting increases
with a FP-Rate of 0.05 and decreases with a FP-Rate of 0.15.

3.2.3.1. Intensity increases
In Figures 5B1,B2, the effect of the weight ω ∈ [0, 1] (Equation
4) on the AUC-values is analyzed with higher weights referring
to a stronger influence of the second last ISI on the ratio. The
curves of the example recording (red line) and other experiments
in Figure 5B1 indicate that the weight ω did not affect the
AUC-value for intensity increases. Hence, considering the second
last ISI neither deteriorated nor improved the performance
compared to using only the last ISI for CP detection.

Stimulus intensity increases triggering very short ISIs also
caused a low ISI-Ratio (< 0.2) for the first ISI after stimulus
transition. These strong responses were reliably detected by the
ISI-Ratio method (Figure 2C2). Since the method also showed
acceptable performances for medium responses, good total AUC-
values were obtained for intensity increases (Figure 4).

3.2.3.2. Intensity decreases
In contrast to the intensity increases, the weight ω had a
noticeable effect on the AUC-value for intensity decreases
(Figures 5B1,B2). Best AUC-values were obtained for weights
between 0.25 and 0.75, which correspond to an approximately
equal influence of both previous ISIs. Maximum AUC-values
were reached for weights close to 0.5 with a median improvement
of 0.055 units compared to the AUC-value obtained when the
second previous ISI was not taken into account. Especially the
detection of DBBs, which occurred after a strong response to
IFBs, benefited from taking the second last ISI into consideration.

Additionally, the ISI weight influenced the threshold level,
which in turn effected the detection times. When the FP-Rate
was fixed to 0.15, weights between 0.25 and 0.75 offsets and DBBs
were detected 1–2ms and DFBs even 8ms earlier than when only
the last ISI was used for CP detection.

When optimizing the weight relative to the AUC-values
for direct comparison of the four methods (Figure 4), ω was
restricted to the interval between 0 and 0.5, because a stronger
effect of the second last compared to the last ISI would be
biologically implausible. The ISI-Ratio method showed good
detection performance for responses with a ISI-Ratio greater than
1.5, which mostly occurred for DBBs after a strong response
to IFB. For the standard experiments (Figure 2C2) almost all
offsets and DBBs and 25% of the DFBs could be detected
corresponding to a total median TP-Rate of 65%. In total,
all intracellular recordings stimulated with 16 KHz yielded
a median performance of 0.8 for the detection of intensity
decreases (Figure 4).

3.2.4. Classification Method
The classification (section 2.3.4) considering combinations of
ISI distributions (Figures 3A–C4) is the most complex method
tested in this study. As expected, it yielded a high detection rate
for stimulus intensity in- and decreases (Figure 4).

The different distributions triggered by the three different
conditions suggest that they could be used as the basis for the
discrimination of stimulus changes from constant stimulation.
However, the still substantial overlap in the distributions caused
a problem for applying the classification method to our data
set. Some stimulus changes did not trigger strong changes in
activity. Since these responses were part of the training data, the
classificationmethod learned that constant activity could indicate
a stimulus change. This “false” training was mainly visible for
detecting stimulus intensity decreases. It lead to a large fraction
of false positives, because putative CPs were detected shortly
after or even before the stimulus changed. On the other hand,
the “false” training also lead to the correct detection of stimulus
changes in some cases, in which spikes were suppressed by
stimulus decreases.

In Figures 2D1–D3, classification of the example experiment
was performed with equally strong influence of both previous
ISI (ω = 0.5). Figure 2D2 illustrates the estimated probabilities
for intensity in- and decreases based on the training data
set (consisting of the other 9 trials of this experiment) and
on a specific parameter combination. The training of increase
detection was based on the interval (Ttrue = [10, 40]ms)
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after each stimulus intensity increase. In contrast, the interval
to learn the statistics of responses to stimulus decreases was
shifted to a later starting point ([20,65]ms) to reduce the
effect of “false” training, which nevertheless occurred to some
extent. For this example, the resulting probability thresholds
determined by the training were 0.45 for intensity increases
and 0.2 for decreases (Equation 21), reflecting the broadly
overlapping distributions obtained for intensity decreases and
constant stimulation (Figures 3B–C4).

3.2.4.1. Intensity increases
When varying the weight of the two previous ISIs, no general
effect on the AUC-value could be observed for the detection
of intensity increases (Figures 5C1,C2). The second last ISI did
not influence the performance in most of the experiments, in
some experiments it even had a slightly negative effect. Like for
the ISI-Ratio method, the weight was optimized relative to the
AUC-values and restricted to the range between 0 and 0.5 for the
sake of biological plausibility in methods comparison (Figure 4).
Generally, the classificationmethod achieved a very goodmedian
AUC-value of 0.9. Similar to the othermethods, good results were
generally obtained for the detection of strong responses, while
the performance for medium responses was slightly reduced. In
contrast to the other approaches, the classification method also
detected many weak responses. However, these true positives
were the result of the “false” training effect as becomes evident
from the detection times.While neuronal responses usually occur
the earlier the stronger they are, the classification method often
identified the absence of a neuronal response as indication of a
putative CP very shortly after the stimulus changed.

This effect is also visible for the example experiment
(Figures 2D1–D3), which achieved a high total AUC-value of
0.95. In addition to the detection of all onsets and IFBs, which
caused strong responses, also 80% of the IBBs were detected. Due
to the “false” training, the median detection time of the weak
or missing responses to IBBs was with 18ms even shorter than
the median detection time of 20ms for the vigorous responses
to IFBs.

3.2.4.2. Intensity decreases
In contrast to the finding for intensity increases, the weight of the
previous ISI effected the AUC-value obtained for the detection
of intensity decreases more clearly (Figure 5C1). Similarly to the
ISI-Ratio method, best results were obtained for weights around
ω = 0.5. Here, the reason for this effect was a better separation of
the dots within the logarithmically spaced categories for weights
between 0.25 and 0.625. Therefore, more intensity decreases
could be detected with a lower FP-Rate.

The classification method yielded a total median AUC-value
of ∼0.8 for stimulus intensity decreases. Examining the different
stimulus types, this method was well-suited to detect stimulus
intensity decreases after a period of strong neuronal response
(DBBs). Intensity decreases from baseline (DFBs) were not
detected as well.

For the example experiment (Figure 2D2), 78% of all
decreases could be identified. This number resulted from the
classificationmethod detecting all offsets andDBBs, but only 15%

of DFBs. The scatter plot in Figure 3B4 indicates the substantial
overlap with the values found during constant stimulation
(Figure 3C4), leading to false negatives. Still, the classification
method gained for this example a total AUC-value of 0.8.

3.3. Additional Data Sets
3.3.1. 3 kHz Intracellular Experiments
Compared to the standard experiments, the 3 kHz intracellular
experiments showed much more variability in the response
behavior to stimulus intensity changes. Only 45% of the
intensity increases triggered a strong response (shortest ISI <

6.5ms). In particular, onsets and IBBs elicited lower numbers
of strong responses than were observed for 16 kHz stimulation.
Nevertheless, the percentage of stimulus intensity increases that
failed to induce a neuronal activity increase (ISI-Ratio > 1, ISI >

40ms) was approximately the same for stimulation with 16 kHz
and with 3 kHz.

When applied to intensity increases, all methods achieved
similar or slightly lower AUC-values for responses to 3 kHz
stimulation than for the standard experiments (Figure 4).
Moreover, the same trends were visible for the influence
of the additional parameter on the AUC-values (Figure 5
and Figure S1).

For the detection of intensity decreases, the comparison of
3 and 16 kHz lead to different results depending on the applied
method. Similar performances were observed for intracellular
experiments stimulated with both frequencies when applying
the ISI-Ratio or the classification method. The Moving -Average
method yielded AUC-values that were about 0.1 units higher for
3 kHz than for 16 kHz stimulation, because the lower number of
strong responses to IFBs caused more stable reference activity
and allowed the Moving-Average method to detect more DBBs.
The AUC-values obtained for the detection of 3 kHz stimulus
intensity decreases with the Pure-ISI method varied even more
than for 16 kHz stimulation. While the method showed good
performance values (AUC > 0.7) in some experiments, it failed
for others.

3.3.2. Extracellular Experiments
In comparison to the intracellularly recorded data, the
extracellular recordings showed in general more variability
between preparations. Nevertheless, for the 16 kHz experiments
in principle the same response behavior was observed with both
recording techniques. Consequently, also similar AUC mean
values were obtained, with extracellular recordings yielding a
higher variability (Figure 5A).

In contrast, the recording technique had more drastic
consequences for the data obtained in response to 3 kHz
stimulation. There, fewer spikes were detected in extracellularly
than in intracellularly recorded data. In particular, more stimulus
intensity increases (especially onsets and IBBs) failed to increase
the neuronal activity (ISI-Ratio > 1) and were associated with
long ISIs (ISI > 40ms). The reason for this observed difference
is the spike-sorting procedure. When recording extracellularly
from AN2, also spikes from the adjacent interneuron AN1 are
registered. Since this interneuron is tuned to low frequencies,
3 kHz stimulation causes a mix of spikes from both types
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TABLE 1 | Overview of the change point detection methods including technical aspects, performances, and applications.

Moving-Average Pure-ISI ISI-Ratio Classification

M
e
th
o
d

Distribution Symmetric No assumption No assumption No assumption

Reference data ISIs in a preceding

interval

None Weighted previous ISI Training data, weighted

previous ISI

Reference window Fixed None Flexible Flexible

Number of parameters 3 2 3 3 & Training data set

Average computation time for

one parameter combination

0.0413 s 0.101 s 0.125 s 0.051 s

P
e
rf
o
rm

a
n
c
e

Intensity increases + + + +

from baseline + ++ ++ ++

back to baseline o − + o

Intensity decreases o − + +

back to baseline o −− + ++

from baseline + + o o

A
p
p
li
c
a
ti
o
n

Extracellular rec. o o o +

increases + + + ++

decreases o − − +

Burst detection

Burst onset + ++ ++ ++

Burst offset o −− + ++

Pause detection

Pause onset + + o o

Pause offset o − + o

Biophysical plausibility Not plausible Plausible Plausible Not plausible

of neurons. Hence, stricter spike sorting criteria were needed
to exclude AN1 spikes, which probably also omitted some
AN2 spikes.

Since the data obtained in 3 kHz extracellular recordings
were in general more noisy, the robustness to noisy data
can be compared based on this data set. The Moving-
Average, Pure-ISI and ISI-Ratio methods showed for the
3 kHz stimulation a clear performance drop in extracellularly
compared to intracellularly conducted experiments. Only the
classification method was robust against the increased noise
level of extracellular recordings, yielding consistently good
performances for all types of experiments.

4. DISCUSSION

In this study four different online methods were compared for
the detection of sound intensity changes based on single spike
trains recorded in the auditory interneuron AN2 of a cricket.
The main result of this study is that the simple ISI-Ratio method
provides stimulus change detection performance that is higher
than obtained the standard Moving-Average method, and almost
as high as for the complex classification method (Table 1). In
contrast, the even simpler Pure-ISI method is not suitable for the
detection of intensity decreases.

4.1. Comparison of Methods
It should be noted that the data set used in this study was not
optimized for any of the tested methods, but represents a realistic

example of available electrophysiological recordings of stimulus-
triggered neuronal activity. When comparing the detection of
stimulus intensity increases, all methods including the Pure-ISI
method could reliably detect strong responses, usually triggered
by increases from baseline stimulus intensity. One possible
explanation for the success of the Pure-ISI method could be the
adaptive rescaling of the auditory system (Brenner et al., 2000;
Dean et al., 2005; Marsat and Pollack, 2006; Wimmer et al., 2008;
Hildebrandt et al., 2011; Clemens et al., 2018), that causes activity
regulation relative to mean and standard deviation of the signal
statistics. Medium responses were detected best by the Moving-
Average and ISI-Ratio methods. Judging by the AUC-values, the
classification method outperformed all other methods, because
it detected also weak responses. However, these detections were
often caused by the “false” training effect, which included the
stimulus autocorrelation for CP prediction. This resulted in good
performances even for noisy extracellular recordings, where little
information was available from the spike trains directly.

Analyzing the detection times of the putative CPs between
the methods, we found that most of the changes were detected
at the same spike time for all four methods. In some cases, the
ISI-Ratio method detected the CPs one spike earlier than the
other methods, because in strong responses the minimum ISI-
Ratio occurred often one spike earlier than the minimum ISI. In
some cases, the “false” training effect of the classification method
resulted in a shorter detection time for weak responses.

Intensity decreases were generally more difficult to detect
than intensity increases. Only the ISI-Ratio and the classification
method yielded good, reliable performances for the detection of
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intensity decreases back to baseline in intracellular experiments.
The Moving-Average method had sometimes problems to
identify decreases after a strong response to an intensity increase,
probably because of the high variation of the neuronal activity
within the reference window. The Pure-ISI method failed for
most of the intensity decreases, except when a particularly long
ISI occurred, in particular because the accepted time range was
often too short for this method.

In contrast to the intensity increases, the detection times
of decreases differed systematically between the methods.
Compared to the ISI-Ratio and classification methods, the
Moving-Average identified decreases back to baseline 5–10ms
faster and the Pure-ISI method needed typically 5–20ms longer
for all stimulus changes. The classification method displayed
more variable detection times then the ISI-Ratio, due to the
“false” training effect. If the estimated probability for an intensity
decrease was enhanced within the accepted time range, but
before the neuron actually responded to the intensity change, the
classification method yielded a shorter detection time than the
other methods. On the other hand, if a putative CP was detected
before the accepted time range, a false positive was generated and
often followed by a late true positive after resetting the algorithm.

The change point detection problem is closely related to the
detection of bursts and pauses in spike trains, for which several
offline algorithms were published (Legéndy and Salcman, 1985;
Cocatre-Zilgien and Delcomyn, 1992; Xu et al., 1999; Pauluis and
Baker, 2000; Gourévitch and Eggermont, 2007; Pasquale et al.,
2010; Tokdar et al., 2010; Kapucu et al., 2012; Ko et al., 2012). For
estimating the applicability of our four methods for burst/pause
detection, identifying responses to positive intensity steps can be
construed as burst detection: burst onset (intensity increase from
baseline) and burst offset (intensity decrease back to baseline).
Finding negative intensity steps based on the neuronal responses
can be interpreted as pause detection: pause onset (intensity
decrease from baseline) and pause offset (intensity increase back
to baseline; Table 1).

4.1.1. Moving-Average Method
The Moving-Average method calculates the mean and standard
deviation of the instantaneous spike rate in a moving interval.
Consequently this method implicitly assumes that the underlying
instantaneous spike rate distributions in the moving intervals are
at least symmetrical and continuous. This assumption poses a
potential theoretical flaw, because the instantaneous spike rate
can never reach negative values.

Additionally, thismethod requires stable activities in reference
windows of fixed size to detect changes reliably (Koepcke et al.,
2016). Consequently, the optimal window size depends strongly
on the spacing between the intensity changes. For the data
set used in this study all positive intensity steps lasted 50ms,
resulting in short periods of stable activity and consequently low
performance for the detection of DBBs. Moreover, the stimuli
used in this study were separated by a fixed period. Depending
on the stimulus protocols, the fixed window length assumed
by this method could lead to problems for some data sets, in
particular since stimulus changes occur at unpredictable times in
a natural environment.

The Moving-Average method is not used as a typical
burst/pause detection method, because it requires a continuous
time series rather than discrete spike times. In this study, the
Moving-Average was shown to be suitable for detecting the onsets
of bursts and pauses, but not the offsets.

4.1.2. Pure-ISI Method
The Pure-ISI method (section 2.3.2, Figures 2A1–A3) compares
the adjusting ISI with a given threshold. It is comparable to
the method of Ratnam et al. (2003), where a given threshold is
applied continuously to a PSTH to detect weak sensory signals.

Response to intensity increases could be detected earlier
than for intensity decreases and the response latencies had
narrower distributions. This finding agrees with faster onset than
offset responses found in many systems (Di Lollo et al., 2000;
Phillips et al., 2002; Humphreys et al., 2006; Scholl et al., 2010;
Ramamurthy and Recanzone, 2017).

AN2 responses to strong intensity increases typically trigger
ISIs in a range of 2.5–4ms. According to (Marsat and
Pollack, 2006), ISIs shorter than 6.5ms correspond to bursting
behavior, which they showed to be suitable for feature
detection of ultrasound stimulation of the AN2 neuron in
Teleogryllus oceanicus.

The Pure-ISI method is similar to published burst onset
detecting algorithms (Legéndy and Salcman, 1985; Cocatre-
Zilgien and Delcomyn, 1992; Kepecs and Lisman, 2004;
Marsat and Pollack, 2006) in comparing the ISI with a fixed
threshold. However, the studies differed considerably in their
methods analyzing the ISI distribution for obtaining a suitable
threshold (Legéndy and Salcman, 1985; Ramakers et al., 1990;
Cocatre-Zilgien and Delcomyn, 1992; Marsat and Pollack, 2006;
Gourévitch and Eggermont, 2007; Pasquale et al., 2010; Ko
et al., 2012). As expected, the Pure-ISI method very successfully
detected burst onsets and also was suitable to detect pause onsets.

4.1.3. ISI-Ratio Method
The ISI-Ratio method introduced in this study assumes that the
intensity changes are reflected in the ratio of the actual and the
previous activity. Several possible modifications of the ISI-Ratio
method are described in the Supplementary Material. Analyzing
a (likelihood) ratio to detect and estimate CPs is an established
approach (Gombay, 2000; Kawahara and Sugiyama, 2012; Zhou
et al., 2014), which is applied e.g., in the CUSUM method. The
advantage of this approach is that it is easier to estimate the ratio
than both distributions (Kawahara and Sugiyama, 2012).

In our proposed method, the weighted previous ISI is used
for calculating the ratio. Extending the reference ISI to the
second last ISI ensured a better estimation of preceding neuronal
activity for medium or high neuronal activities. However, if
the activity was low, the second last ISI could not reflect the
directly preceding activity of the neuron. The weight only shows
a noticeable effect for detecting intensity decreases (Figure 3).
The main reason is that AN2 neurons adapt to sound intensities
(Wimmer et al., 2008), resulting in longer ISIs. Directly after an
intensity decrease the second last ISI could be shorter than the
previous ISI. Therefore, the ratio can be higher when the second
last ISI is included, resulting in improved detection rate and time.
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In contrast, the weight has no strong impact on the performance
of intensity increases, because of the bursting behavior of the
neuron. Bursts cause short ISIs and small ISI-Ratios. Hence, the
exact estimation of the preceding activity is far more important
for intensity decreases than increases.

The ISI-Ratio method is similar to burst detection methods,
even though published methods are rather based on the
distribution of absolute ISI values than the ISI-Ratio (Cocatre-
Zilgien and Delcomyn, 1992; Kepecs and Lisman, 2004; Pasquale
et al., 2010; Ko et al., 2012). In our study, the ISI-Ratio method
was good at detecting burst onsets and offsets, as well as pause
offsets (Table 1). A combination of ISI-Ratio and actual ISI
could be a good approach for detecting bursts and pauses in a
spike train.

4.1.4. Classification Method
The classification method learns to interpret a simplified
combination of the adjusting ISI and the weighted previous ISI. It
requires the same reference ISI as the ISI-Ratio method, leading
to the same considerations as discussed before. Additionally, a
training data set is required to learn the neuronal responses to
different stimulus conditions. A clear advantage of this learning
is that this method is more robust toward misclassified spikes
in extracellular recording. However, falsely detected or missing
spikes could lead to uncommon class combinations, which are
not recognized as possible stimulus changes.

For our data set, good performances were achieved when
applying between 8 and 15 categories. If more than 15 categories
were used, the performance dropped in many experiments due
to overfitting. We restricted the number of categories to 10 to
account for our relatively small amount of data.

Since ISIs directly after increases from baseline and onsets are
often very short, the borders of the categories were chosen to be
logarithmically spaced (Figure 3). Linearly spaced class borders
would assign all short ISIs (e.g., < 6.5ms) to the same category.
Logarithmically spaced borders require prior knowledge about
minimum and maximum ISI. Alternatively, the class borders
could be chosen based on the quantiles of the ISI distribution in
the training data set. Applying this modification enhanced the
detection of low responses to in- and decreases.

As it is typical for unsupervised learning algorithms, the
classification method sometimes falsely identified a spike pattern
as the neuronal response to a stimulus change. “False” training
happened if a certain neuronal activity pattern repeatedly
appeared before a response to a stimulus change started. Since
by definition stimulus intensity decreases back to baseline
following a positive intensity step 350ms earlier, the classification
algorithm learned to identify the response to this increase, rather
than the reduced activity following the stimulus decrease. This
would not happen for a more irregular stimulus protocol. The
false learning could be reduced by shifting the training interval
for the decreased intensity to 20–65ms instead of 10–55ms after
each change, but assuming a longer response latency on the
other hand can lead to missing the onset of strong responses to
stimulus changes. Another possible approach that might reduce
the problem of false training would be to use relative rather than
absolute ISI changes for training.

In principle, the classification method could be used for the
purpose of burst and gap detection. Here, the classification
method was found to be very well-suited for detecting burst
onsets and offsets. Medium performances were achieved for the
detection of pause onsets and offsets.

4.2. Biological Plausibility

“All models are wrong, but some are useful.”

-(George E. P. Box, 1979)

While in this study the main focus was on the analysis of
neuronal responses from the perspective of a data analyzer,
the complementary question is how a nervous system could
detect CPs. Unfortunately, it is difficult to address this question
experimentally. That would require the synchronous recording of
several neuronal responses and their postsynaptic effects, ideally
complemented by measurements of the behavioral reactions to
stimulus changes. Here, we will shortly comment on the question,
if the four CP detection methods of this study could in principle
be implemented by biological nervous systems.

It is unrealistic that a simple nervous system as the cricket
auditory system could perform the tasks which are essential
for the Moving-Average method and the classification method.
Otherwise the nervous system would have to calculate and
remember the variation of the previous neuronal activities. In
contrast, change detection based on single ISIs like in the Pure-
ISI and ISI-Ratio method is conceivable. It is known that many
synapses are unreliable in transferring single presynaptic spikes
to the postsynaptic neuron (Lisman, 1997). Fast successive spikes,
especially bursts, ensure that the information transfer is more
reliable. For the Pure-ISI method, detection of stimulus onsets
or increases resulting in short ISIs could be implemented by a
postsynaptic neuron that needs two overlapping EPSPs to reach
the spike threshold. The threshold of the Pure-ISI method would
refer to the maximum time between two EPSPs that would
still trigger a postsynaptic spike. If the refractory period in the
postsynaptic neurons is longer than in the presynaptic neuron,
subsequent presynaptic spikes could be suppressed, leading to a
single spike indicating a stimulus increase.

Compared to the Pure-ISI method, the ISI-Ratio method
requires a more flexible maximum time between two EPSPs
that elicit a postsynaptic spike. The interaction between the fast
postsynaptic integration time constant and a slower process,
e.g., of sodium channel deactivation may result in a relative
threshold for the ISI. Hence, the more time past since the
previous postsynaptic spikes, the easier it is for a pair of EPSPs
to elicit a postsynaptic spike, allowing longer ISIs as cues for
change detection.

The detection of stimulus offsets or decreases based on
the principles of the Pure-ISI and ISI-Ratio method would
require postsynaptic processing in a separate pathway. Intensity
decreases could be detected by a spontaneously active neuron
that is inhibited by the presynaptic neuron. Frequent presynaptic
spiking could suppress spontaneous postsynaptic activity. A
reduced presynatic spiking activity could release postsynaptic
spiking. The principles of the ISI-Ratio method can be conveyed
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to the effect of rebound spikes (Schulz and Reynolds, 2013).
The stronger the postsynaptic membrane is hyperpolarized,
the higher is the probability of rebound spikes after the
hyperpolarization ends. Hence, assuming different pathways
for the detection of stimulus in- and decreases, the core idea
of the Pure-ISI and ISI-Ratio method could be implemented
already by a minimal system of one presynaptic and two
postsynaptic neurons.

4.3. When to Use Which Method?
Although, it can widely be found in the literature, the Moving-
Average method is the method which is least probable to be
implemented by biological nervous systems, since it requires long
periods of stable neuronal activity. Hence, it is vulnerable to spike
sorting errors and can only be applied successfully to responses
to stimulus changes, which are separated by a rather long time, as
could be seen in this study from the low performance of detecting
activity decreases after rapid changes.

If only bursts or similarly strong responses to stimulus changes
need to be detected, the Pure-ISI method can be interpreted in
terms of the biophysics of spike generation and is easiest to apply.
Alternatively, one of the other published burst detectionmethods
could be used for data analysis (e.g., Legéndy and Salcman, 1985;
Ramakers et al., 1990; Cocatre-Zilgien and Delcomyn, 1992;
Gourévitch and Eggermont, 2007; Pasquale et al., 2010; Ko et al.,
2012). However, the Pure-ISI method is not a proper choice for
identifying small activity increases and/or activity decreases.

The ISI-Ratio method performs for recordings with a high
signal-to-noise ratio and a medium to high mean spike rate
at least as well as the other methods, including the much
more complex classification method. This method provides a
biologically realistic, yet simple strategy for CP detection based
on relative activity changes rather than absolute values. The
principle of the ISI-Ratio method could not only be applied
successfully by data analysts, but might resemble the biophysical
processes underlying CP detection in the actual nervous system
of the cricket.

The classification method is a powerful tool to employ
statistical differences between different stimulus situations,
yielding high performances for the detection of most stimulus
changes. Classification can be the data analysis method of choice,
in particular for extracellular recordings with potential spike
sorting errors. However, it also is the method requiring training
data in addition to three parameters, and being most vulnerable
to overfitting and false training effects, leading to false positive

detections. From a biological perspective, the classification
method can be compared to evolutionary processes, optimizing
neuronal response to common stimulus contexts, but does not
refer to biophysical processes occurring in a single neuron.

Finding the optimal data analysis method for a specific
research question depends strongly on the stimulation time
course and the neuronal response type under study. Simple
nervous systems like the cricket’s might employ quite simple
biophysical mechanisms for fundamentally important tasks like
stimulus change detection. Hence, applying biologically more
realistic data analysis approaches, like the ISI-Ratio method
introduced in this study, might be an alternative to the commonly
used data analysis techniques.
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