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Insects can detect the presence of discrete objects in their visual fields based on a

range of differences in spatiotemporal characteristics between the images of object and

background. This includes but is not limited to relative motion. Evidence suggests that

edge detection is an integral part of this capability, and this study examines the ability of a

bio-inspired processingmodel to detect the presence of boundaries between two regions

of a one-dimensional visual field, based on general differences in image dynamics. The

model consists of two parts. The first is an early vision module inspired by insect visual

processing, which implements adaptive photoreception, ON and OFF channels with

transient and sustained characteristics, and delayed and undelayed signal paths. This

is replicated for a number of photoreceptors in a small linear array. It is followed by an

artificial neural network trained to discriminate the presence vs. absence of an edge

based on the array output signals. Input data are derived from natural imagery and feature

both static and moving edges between regions with moving texture, flickering texture,

and static patterns in all possible combinations. Themodel can discriminate the presence

of edges, stationary or moving, at rates far higher than chance. The resources required

(numbers of neurons and visual signals) are realistic relative to those available in the insect

second optic ganglion, where the bulk of such processing would be likely to take place.

Keywords: insect vision, visual processing, edge detection, object detection, figure detection, neural networks

INTRODUCTION

It is clear to even a casual observer that many types of insects can detect the presence of discrete
objects appearing in their visual fields. While anyone who has tried to swat a fly can attest to its
ability to detect and avoid a looming hand, a range of behavioral reactions to visual objects can be
found in the insects—which may vary from attractive (as occurs during pursuit of prey or mates, or
approach toward objects on which a flying insect intends to land) to avoidant (as with predators or
other objects that might collide with the animal). Researchers have studied behavioral reactions to
moving visual objects by flies, during both free and constrained flight, in experiments dating back
decades. It has often been assumed that the visual motion itself provides the primary cue that is used
to discriminate object from background (Götz, 1968; Reichardt and Poggio, 1979; Reichardt et al.,
1983, 1989; Egelhaaf, 1985) [While flies can detect moving objects in the presence of simultaneous
but differing motion of the visual background, experiments suggest that behavioral strategies, such
as head motion, may be used to stabilize the background for periods of time (Fox and Frye, 2014),
presumably because this makes object detection easier]. Interestingly, however, it has also long
been known that flies can react to stationary, flickering objects (Pick, 1974)—and it is also the case
that motion-blind flies can still react to moving visual figures (Bahl et al., 2013). While tracking
responses to moving objects are generally more robust than to stationary ones (M. Frye, personal
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communication), I assume for purposes of this study that this
represents an attentional effect, and that whatever computational
machinery allows insects to detect discrete objects is operative
whether those objects are stationary or moving in the animals’
field of view.

Recent work with fruit flies has shown that they are in fact
capable of performing object detection based on a variety of cues.
It has long been established that flying flies exhibit a centering or
tracking response to moving, vertically elongate visual features
(“bars”) (Reichardt and Wenking, 1969; Poggio and Reichardt,
1973; Reichardt, 1973; Virsik and Reichardt, 1974, 1976);—and
they do so whether the bar is analogous to an ordinary moving
object (with boundaries and internal visual texture moving with
the same direction and speed), or contains only flicker that
provides no coherent first-order motion cues—or even when
the internal texture moves in the direction opposite to motion
of the boundaries of the bar itself [a theta stimulus (Quenzer
and Zanker, 1991; Zanker, 1993)] (Theobald et al., 2008, 2010;
Aptekar and Frye, 2013). Fruit flies even display a tracking
reaction to stimuli in which a moving bar and the background
both flicker, but at different frequencies (M. Frye, personal
communication). However, the reactions to these various stimuli
are not identical. When the fly is tethered so that it cannot
actually center such stimuli, and a bar is moved back and forth
periodically in the visual field, then the yaw torque that the fly
exerts varies in amplitude and phase depending which class of
bar is displayed (Theobald et al., 2010; Aptekar et al., 2012).

Further work has suggested that there are two processing
streams in the visual system that contribute to these figure
reactions: one that responds to the velocity of the visual texture
associated with an object (including coherent motion of the
luminance step at its edges), but also a second one that is
primarily sensitive to the position of the object in the visual
field (Aptekar et al., 2012). Such localization could well be
implemented by place-coding in some portion of the visual
pathway that maintains retinotopy—but this presupposes that
the object can be detected as such by operations prior to or at
the level of this place-coding. In order to achieve such detection,
it seems clear from the various results just described that flies can
rely on a wide range of differences in spatiotemporal statistics to
discriminate between “object” and “background.” Furthermore,
evidence suggests that object detection is in fact cued by the
existence of edges or boundaries between visual regions with
differing spatiotemporal characteristics on the two sides (Aptekar
et al., 2017; Keleş and Frye, 2017).

Detection of luminance-defined edges has been an important
theme in vertebrate visual neurophysiology for many decades
(e.g., Hubel and Wiesel, 1962, 1968) as well as a focus of
modeling (e.g., Marr and Hildreth, 1980) – and has also received
some attention in the insects (Lehrer et al., 1990). However, to
the author’s knowledge, the current study represents the first
effort to model the detection of edges defined by differences in
spatiotemporal statistics in the imagery on opposite sides. In it, I
consider what sorts of visual signals and processing could support
this capability. Inspired by the results of physiological studies
(Arnett, 1972; Jansonius and van Hateren, 1991, 1993a,b; Osorio,
1991), I consider a suite of signals in the early visual pathway that

encompass ON and OFF responses, both sustained and transient
in character. Inspired by models for the detection of visual
motion (Hassenstein and Reichardt, 1956; Reichardt, 1961), I
model additional processing in the form of delay operators
applied to these signals, and “correlations” or products formed
pairwise between them. A set of these signals, derived from a
small number of neighboring photoreceptors, is used as input to
an “artificial neural network” model that is trained to perform
edge discrimination based on the values assumed by the signals.
A schematic overview of this model is shown in Figure 1. In a set
of simulations with dynamic, naturalistic image data, I address
the question of whether this model is capable of general edge
detection, and if so, howmany signals and “neurons” are required
for it to be done effectively.

MATERIALS AND METHODS

The Model
The early vision model consists of temporal filters and linear and
non-linear mathematical operations, and does not rely on neural
modeling per se. The artificial neural network that follows is of
a conventional “shallow” (two-layer) architecture and performs
a stationary input-output mapping (i.e., has no dynamics). All
signal representations are continuous-time in nature, although
sampled at discrete times for computational purposes.

Early Visual Processing
The early visual processing model was implemented to mimic
operations believed to reside in the insect retina and the first
two optic ganglia, with reference primarily to the dipterans (true
flies). These ganglia, the lamina and medulla, are retinotopically
organized, each having a distinct column or cartridge of cells
for every receptor (or more properly in the flies, each group
of receptors that view the same location in visual space),
which corresponds to a “visual processing unit” extending
through the two ganglia (Laughlin, 1980; Shaw, 1984; Strausfeld,
2008). Although these process visual signals originating in
their associated receptors, neurons that extend laterally through
multiple columns of cells also provide a mechanism for spatial
interactions between visual channels.

Operations akin to spatial high-pass filtering, mediated by
lateral inhibitory interactions, are thought to be present in the
lamina and the medulla (Zettler and Järvilehto, 1972; DeVoe and
Ockleford, 1976;Mimura, 1976). However, preliminarymodeling
that included such spatial interactions suggested that they had
little effect on edge discrimination performance, and so they
were omitted in the model used for the study. Following is a
description of the elements of this model, which are repeated
for each receptor of its simulated vision sensor. Continuous-time
representations in the form of differential equations are used to
specify temporal filters, but in forms that make clear how they
can be discretized in time for numerical integration.

Visual processing can be said to begin with the compound
eye optics, which blur the image that is formed on the retina
(Zettler and Järvilehto, 1972; Snyder, 1977; van Hateren, 1984)
and prevent spatial aliasing. In the model, this is mimicked by
spatial convolution of a high-resolution image with a modulation
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FIGURE 1 | Schematic diagram of the visual processing in an edge detection

model. The pathways in (A) show the derivation of early vision signals

assumed to originate in each visual column. The signal from a photoreceptor

(or set of photoreceptors that view the same location in visual space) is split

into ON and OFF channels, which are each processed in sustained and

transient pathways, and these in turn project via delayed and undelayed

pathways to the edge detection network. (B) Shows the central part of the

visual array, with the photoreceptors stimulated by a low-resolution version

(red) of a high-resolution, time-varying image (blue). The eight early vision

signals from each column project via weighted interconnections to a “hidden

layer” of neural analogs in the edge detection network. The weighted outputs

of these model neurons are in turn integrated by a single output neuron.

transfer function as the image is downsampled to form the
luminance inputs to a simulated photoreceptor array. A Gaussian
modulation transfer function is used:

MTF=K· exp (−r2/r20), (1)

where r represents distance (i.e., viewing angle) from the central
location being sampled, and the space constant r0 is set so that
the width of the Gaussian function at half-maximum is equal
to 1.4 times the inter-receptor viewing angle. In practice, this
function defined with finite support over a region of extent±2r0.
K is a normalizing constant (set such that the sum of MTF over
this region is unity). This spatial convolution and downsampling
occur at every time step of a dynamic simulation.

Much as in vertebrates, insect photoreceptors are non-linear
and adaptive in response to impinging light. Although in the flies,
multiple receptor cells view the same location in visual space,
I model these with a single receptor unit whose characteristics
can be described with an adaptive Lipetz (Lipetz, 1971) or Naka-
Rushton (Naka and Rushton, 1966) function:

U= Iλ/(Iλ+Iλ0 ), (2)

where U is output, representing modulation of post-synaptic
elements (ganglion cells) by the receptor unit; I is input
(luminance), the parameter λ = 0.7 is called the Lipetz exponent,
and I0 is an adaptive state corresponding to a temporally filtered
version of I (with a linear first-order low-pass filter):

dIo = (dt/τU) (I − I0) , (3)

where τU = 750ms is the time constant for photo-adaptation.
The receptors thought to be involved in motion vision have peak
sensitivity in the green (Srinivasan and Guy, 1990), and green
sensitivity was implemented in this model as well, by using only
the green color channel in the input imagery.

Light-sensitive neurons in the lamina, which follows the retina
in the visual pathway, show evidence of high-pass temporal in
addition to spatial filtering (Laughlin, 1976, 1984). The Lamina
Monopolar Cells (LMCs) respond transiently to changes in
luminance, and in addition they may play a role in subsequent
segregation of visual signals into ON and OFF channels: blocking
of one class of LMC (L1) results in a loss of responsiveness
of downstream motion-sensitive neurons to moving ON edges,
whereas blocking of a second class (L2) causes a loss of
responsiveness to OFF edges (Joesch et al., 2010). In the medulla,
cells are found with physiologically-identifiable responses to one
or the other polarity of luminance change (Strother et al., 2014).
Interestingly, extracellular recordings of fibers connecting the
lamina and medulla show the presence of highly transient, full-
wave-rectified responses to luminance changes (Arnett, 1972;
Osorio, 1991; Jansonius and van Hateren, 1993a; Wiederman
et al., 2008). Other fibers in the same tract show transient initial
phases that also have a sustained component in response to
luminance increases (Arnett, 1972; Jansonius and van Hateren,
1993b). In light of this evidence, I postulate that ON and OFF
channels with both transient and sustained response elements are
present in the medulla, and model them as follows.

Photoreceptor output signals are initially passed through a
linear, first-order temporal high-pass filter and this signal is half-
wave rectified for both positive and negative phases, with the
negative phase inverted, in order to form positive-going ON and
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OFF channel signals VON and VOFF :

dVf = dU−(dt/τR)Vf (4)

VON = 0.5(|Vf |+Vf )
VOFF = 0.5(|Vf |−Vf )

(5)

whereU is the photoreceptor output signal from Equation (2),Vf

is the filtered signal,VON andVOFF are respectively the on and off
channel signals, and τR = 200ms is the high-pass time constant.

Subsequent operations are repeated for each of the ON and
OFF signal channels, and the ON and OFF subscripts will
hereafter be omitted from the variable names (e.g., V will be used
to represent either VON or VOFF).

To form sustained outputs, the initial rectified signals are each
processed with a “relaxed” temporal high-pass filter that passes
40% dc, and then half-wave rectified for the positive phase:

dWf = dV +( dt/τS)(0.4V −Wf ) (6)

W= 0.5
(

|Wf |+Wf

)

, (7)

whereW is the sustained signal for the ON or OFF channel, and
τR = 50ms is the time constant for the relaxed high-pass filter.

Transient outputs are formed in parallel with sustained
outputs using the “Rectifying Transient Cell” model of
Wiederman et al. (2008). The ON andOFF signals from Equation
(5) each are passed through a first-order high-pass filter and
half-wave rectified:

dXf = dV−(dt/τA)Xf (8)

Xr = 0.5
(

|Xf |+Xf

)

, (9)

where τA = 40ms is the time constant for the high-pass filter.
“Adaptive states” are then computed from these signals using a
non-linear “fast depolarization, slow repolarization” filter (details
in Wiederman et al., 2008):

dXa = (dt/τAd) (Xr− Xa) if Xr − Xa≥ 0
dXa = (dt/τAr) (Xr− Xa) if Xr − Xa<0,

(10)

where Xa is the adaptive state, the “depolarization” time constant
τAd = 2ms, and the “repolarization” time constant τAr = 100ms.
The adaptive state is then subtracted from each signal, and the
results are half-wave rectified for the positive phases:

X= 0.5 (|Xr−Xa| +Xr−Xa) , (11)

where X represents the transient signal for either the ON or
OFF channel.

The output amplitudes of the sustained and transient signals
are then normalized so that their standard deviations during
positive excursions are each unity over the visual input dataset
described below.

Finally, a delay operator modeled as the phase delay of a first-
order temporal low-pass filter is also applied to the ON and
OFF, transient and sustained signals, to generate four additional
output signals:

dXd =
(

dt/τD
)

(X−Xd) (12)

dWd =
(

dt/τD
)

(W −Wd) , (13)

where Xd represents the delayed sustained signal and Wd the
delayed transient signal for either the ON or OFF channel, and
τD = 50ms is the delay time constant.

There are thus eight primitive early vision signals per visual
processing unit, which are used for purposes of edge detection.
These are replicated for multiple adjacent processing units, which
view adjacent bits of an input image.

For generality, I allow for the formation of products or
“correlations” between all pairwise combinations of these eight
signals for each processing unit, excluding simple square terms.
This results in 28 products for each receptor. In addition, I
allow spatial interactions in the form of products between all
possible combinations of signals between adjacent processing
units, for a total of 64 more products per pair. Naturally, any
information that is present in these correlations is also present
in the primitive signals from which they are derived, but the
motivation for including them is that certain of the products may
represent that information in a form that is better suited for edge
discrimination—for example, since such products have been used
to model visual motion detection.

Edge Detection Mechanism
Edge detection is performed by an “artificial neural network”
(ANN)-style model, in which selected outputs from early vision
project to a “hidden layer” of neural analogs, as depicted in
Figure 1. These outputs may include the eight early vision
signals, or the correlator signals, as described in section Early
Visual Processing above. The hidden layer nominally contains
32 units, and is fully connected, meaning that each neuron
receives weighted inputs from the entire set of vision signals.
The hidden layer neurons project their outputs via a second set
of weights to a single output neuron that codes for either the
presence or the absence of an edge in a scene by its activation
or lack thereof, respectively. Interconnection weights are allowed
to be either positive (to model excitatory synaptic input) or
negative (for inhibitory synaptic input) in sign, with magnitude
representative of synaptic efficacy. A constant offset term or
“bias,” corresponding to a soft activation threshold, is added to
the weighted sum that forms the input to each neuron, and this
quantity is passed through a logistic activation function to form
the neural output; i.e.,

Oi= 1/
[

1+exp
(

−
(

6jWijIj+bi
))]

(14)

where i and j are used to index neurons and their inputs,
respectively, Oi is the output of the i

th neuron, Ij is its j
th input,

Wij are the synaptic weights, and bi the bias.
The weights and biases in this network are the parameters that

determine how it classifies visual scenes. These are acquired by
a stochastic approximation learning procedure, implemented by
error back-propagation using a sum-squared-error loss function
(Rumelhart et al., 1986). If analogous interconnections are in
fact hard-wired in an insect brain, this training can be regarded
as mimicking the effect of millions of years of evolutionary
pressure on the acquisition of function in the relevant part of the
nervous system.
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Visual Array and Input Scenes
Experiments were performed using a one-dimensional model
array of either six or eight co-linear photoreceptors, with an inter-
receptor viewing angle of ∼1◦, and associated visual processing
units, followed by the edge detection network. An edge in this
context is defined as a boundary between two segments of the
one-dimensional visual field that have different image dynamics.
This study thus models the detection of edges of the minimum
possible lateral extent. Outputs from either the two, four, or
six most central of the visual units are passed as inputs to a
conformal ANN for detection of edges that are present between
the two center receptors (The corresponding total number of
primitive early visual signals for these three cases is 16, 24,
or 32, respectively, and of correlation signals is 120, 304, or
488, respectively). The edge discrimination ANN is trained with
imagery that either has an edge between the two center receptors,
or no edge within the visual field.

Simulation Methods
Simulations of Visual Edge Detection
Time-domain simulations were performed to compute the
response of the early vision model to visual stimuli. Stimuli
comprised either six or eight time-varying luminance signals,
which were passed through the opticsmodel, andwhich comprise
the inputs to the photoreceptor array. These were generated
according to various scenarios described in section Generation
of Visual Data, and stored for processing with the vision model.

Because this study focuses on edge detection based on
differences in spatiotemporal statistics, it was conducted
primarily with scenarios where the edges themselves are
stationary and placed at the center of the photoreceptor array
(This also facilitates computationally-tractable generation of
large volumes of data). However, a smaller volume of input
data with moving edges was generated as well. Input data for
scenarios without edges, corresponding to retinal imagery with
consistent dynamics across the entire array, were also generated.
Eight inputs to eight receptors were generated for the fixed-edge
scenarios (to allow for evaluation of lateral spatial inhibition
in the early phase of the effort), and six for the moving-
edge scenarios.

The response of the visual processing model to the
generated stimuli was computed by numerical integration
(simple quadrature) with a time step of 200 µs (i.e., one-tenth
the smallest time constant in the model). Output signals were
averaged over 10ms periods, and the resultant series of these
averages stored as outputs for each scenario simulated. For the
fixed-edge and no-edge scenes, the 10ms periods were successive
and outputs stored over the entire duration of a simulation. In the
moving-edge scenes, edges cross the entire input array but output
data were only stored while an edge was passing between the two
central detectors in the array. The 10ms averaging periods in
these cases were overlapped by 50% to increase the number of
available data.

The averaged vision system outputs were subsequently
recalled and passed one at a time through the edge detection
network, which produces a single output in response to each.

Generation of Visual Data
The classes of image dynamics that were used include internal
motion to the left or to the right at one of three different
speeds (corresponding to 25◦/s, 50◦/s, or 100◦/s in the input
images); flicker at one of three mean temporal frequencies; and
static luminance patterns (a static input to a photoreceptor
results in outputs of zero from its modeled visual processing
unit, so that discrimination of static subimages from time-
varying ones should be trivial—except for the fact that
there is some “spillover” of time-varying luminance from a
dynamic region to receptors viewing a static region, due to
optical blurring).

The data used to form these inputs were derived from
photographic imagery, obtained from six digital photographs of
predominantly natural scenes. As noted, only the green channel
(with 8 bits resolution per pixel) was used. During this process,
contiguous blocks of pixel data were extracted from images
selected at random, and from locations within an image also
selected at random. Blocks that had more than 15% of pixel
values at saturation (values of 0 or 255) were rejected. For static
stimuli, blocks consisted of a portion of a single row of pixels
in a photo. Moving and flickering imagery were generated by
animation, as illustrated in Figure 2. For moving stimuli, a long
one-dimensional image was formed by concatenation of many
blocks from single rows (although this introduces luminance
discontinuities, these are common in natural imagery), and
then animated horizontally so that it moved across a window
corresponding to the visual field or part thereof viewing the
stimulus. Flickering stimuli were implemented with motion
perpendicular to the axis of the receptor array, as follows.
Two-dimensional blocks of pixels were extracted from the
photographs and the visual receptive field or part thereof was
filled using columns of this data—i.e., the horizontal axis of the
image was oriented vertically with respect to the receptor array,
as depicted in Figure 2. Many such blocks were concatenated and
then animated in the vertical direction, at one of the three speeds
used for the moving image data. The corresponding receptor
signals do not have a cross-correlation peak at the receptor transit
time as is present when the motion is axial.

For stimuli with static edges, a window containing imagery
of a particular dynamic class corresponded to a fixed half
of the visual field. For stimuli with moving edges, the
windows themselves were animated. For a “Fourier” stimulus,
corresponding to an ordinary moving object, the window moved
in the same direction and at the same speed as the internal visual
texture. For a theta object, the texture moved in the opposite
direction but same speed as the window.

For all stimuli that contained dynamic images, the raw
imagery was upsampled with linear interpolation such that the
spacing between the higher-resolution pixels corresponded to
the distance traveled by the moving imagery in one integration
time step. All retinal imagery, including images with edges,
was assembled with this high-resolution data at each time step,
and then downsampled with blurring by convolution with the
(one-dimensional) MTF, in order to generate the receptor input
data. In this way, any edge present in an image was smoothed
as it would be by compound eye optics. The selection of this
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FIGURE 2 | Derivation of dynamic image data, for the case of a visual field with

a flickering image on one side and a moving image on the other. On the left, a

vertically-oriented image (the green channel in a color image, here rendered in

grayscale) is animated in the upward direction so it moves across a horizontal

window, shown in red, from which luminance data are sampled at each time

step. This yields a one-dimensional flickering subimage. At upper right, a

horizontally-oriented image is moved right to left across a horizontal window to

give a leftward-moving subimage (More than a single row of pixels are shown

for clarity). The two subimages are butted together to form a complete image

with a central edge. The graph at lower right depicts such an image sampled

at a particular time, with the original high-resolution data shown in blue, and

the blurred and downsampled data for the visual array in red. The ordinate

represents light intensity (in arbitrary units) and the abscissa space in this plot.

downsampling ratio with respect to the original photographs
yielded the inter-receptor viewing angle of around 1◦.

With this methodology, sequences of input data for scenarios
with fixed edges were created for every possible pairwise
combination of leftward motion, rightward motion, and flicker,
in each possible position (left or right half of the visual field),
for each of the three animation speeds. This yields 18 different
classes of edge scenarios. The medium animation speed (50◦/s)
was represented twice as often as the slow or fast speeds in these
data. In addition, inputs were created for all combinations of
static imagery with the three dynamic image classes, in each
possible position, and with animation of the dynamic hemi-field
at the medium speed, for six additional edge scenarios. These
were represented with frequency equal that for the medium-
speed scenarios with the dynamic image pairs. In addition, full-
field (no-edge) input data were also generated for each of the
three dynamic image classes, such that each class was represented
as frequently in these data as in the edge scenarios. Inputs
for the full-field static case were not generated from images
since the visual outputs in response to such scenarios are zero.
Sufficient input data were generated for the static-edge stimuli to
produce a total of 72,000 output data (for each of the raw and
correlator signal sets) from the visual processing model. These
were combined with an equal number of data from full-field
stimuli, to comprise a sample from a visual universe in which
the prior probability of viewing an edge is 50%. This corpus of
data corresponds to a total of 1440s of responses to the various
stimulus classes.

In the scenarios with moving edges, all edges moved left to
right at 50◦/s and all imagery was animated at the same speed.
Flickering and static imagery were represented along with theta
and Fourier objects, in every combination, and with imagery of
each type appearing with equal frequency on each side of the
moving edge. In a particular animated sequence, a succession of
edges between two different image classes moved continuously
across the receptive field, such that each class appeared alternately
to the left and to the right of the edge. A total of 20,000 output
data were produced for the moving-edge stimuli (all recorded
while edges were passing between the two central detectors in the
array), and paired with 20,000 outputs from the full complement
of full-field stimuli to yield a corpus of 40,000 data, in this case
for the raw vision signals only. Examples of two classes of edged
stimuli, one with a stationary edge and the second with a moving
edge, are shown in Supplementary Movies 1, 2.

Neural Network Implementation and Training
The ANNs were implemented each neuron according to
Equation (14), using table lookup for the activation function
and its derivative. Initial weight and bias values were chosen
at random according to a Gaussian distribution with standard
deviation σ = Is/(1.33 ·

√
N), where Is is the index into the

lookup tables corresponding to an argument of unity, in this case
assigned a value of 200, and N is the number of hidden neurons.
The weighted sums in Equation 1 were consequently rounded to
integer values when “neural” responses were computed, in order
to give indices into those tables.

Networks were trained with a target output of 1 if an edge
were present in an input datum, and 0 if not. Minimization
of the sum-square-error loss function with these target outputs
trains a network to estimate the posterior probability that an input
pattern belongs to the “edge” class (Shoemaker, 1991). Therefore,
in order to score its detection capability, the network was treated
as a Bayes classifier: an input pattern was assigned to the “edge”
class if the response of the output neuron was >1/2, and to the
“no-edge” class if not, and this assignment compared to the true
class membership. Scores were compiled over entire training or
test datasets to monitor overall performance. The expected score
for random class assignment is 50% correct, since the decision
is binary.

An example of an input-output mapping performed by this
model is illustrated in Figure 3. This figure shows a short series
of visual input patterns, with two dynamic hemifields and a fixed
edge between them, as well as the outputs they elicit from a
trained network at 10 ms intervals.

The input data for any regimen were divided with ¾ used
for training and ¼ held out to test performance. Learning
consisted of a conventional iterative process, conducted in epochs
during which the network parameters were adjusted according to
gradient descent for every input datum in a training set. These
data were chosen in random order by random permutation of
their indices before each epoch. The learning rate η (i.e., the
constant that multiplies the gradient of the objective function)
was reduced after each epoch according to a hyperbolic function
of the epoch number: η = η0/(1 + ηeke), where ke is the
epoch number and the parameters η0 and ηe assumed values
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FIGURE 3 | Model input/output relation illustrated. A time series of input

images is shown at left, and time-aligned network output values at right, with

time running from top to bottom. Each plot depicts a one-dimensional

high-resolution image (blue) and corresponding blurred, downsampled (red)

image presented to the network, as in Figure 2. In this stimulus sequence, the

left hemifield contains a flickering sub-image, and the right, a leftward-moving

subimage. The time interval between plotted output data is 10ms. The

network output remains above the Bayes decision threshold of ½ (vertical red

line) for this snippet of stimulus, and is therefore scored as correctly indicating

the presence of an edge throughout.

in the ranges of 0.75–2.0 and 0.005–0.01, respectively. When a
network was trained de novo, the process was typically initiated
with training from five different random parameter choices for
50 epochs each, and then continued for an additional 750–950

epochs with the best-performing of the five weight sets, for a total
of 800–1,000 epochs. During the development of this procedure,
multi-start optimization (training runs initiated from different
random initial conditions) and simulated annealing (by periodic
increases in the otherwise-decaying learning rate η) were used to
test for local minima in the loss function. In general, a sample
of five different networks was generated by training from five
different parameter initializations for each of the input datasets
and architectures described below.

Networks were trained for the fixed and the moving-edge
cases with the entire training data corpus for each described in the
prior section. Training was repeated for three different receptive
field sizes, with inputs drawn from the central two, four, or six
visual units. This was carried out for both raw vision signals and
product terms for the fixed-edge data, but only the raw signals in
the moving-edge case.

In some experiments, learning was also carried out
with subsets of the fixed-edge data encompassing pairwise
combinations of just two image classes. These used raw vision
outputs from the central four visual units only. The two image
classes were equally represented on either side of the edge,
and the three animation speeds present in the dynamic data
in the same proportion described above. The full-field data in
these experiments included all image classes, but in the same
total number as the edge data in order to maintain equal prior
probabilities. These networks were thus trained to distinguish
a single type of edge from any class of full-field stimulus. Their
training proceeded from an initial weight set determined by
learning with the full training set.

Finally, some networks were trained with both fixed-edge and
moving-edge data. In these experiments, the complete corpus of
moving-edge data was augmented with an equal-sized subset of
the fixed-edge data, one in which all possible edge scenarios were
represented. The full-field data were similarly doubled in number
in this training set. These experiments were repeated for all three
receptive field sizes, but used raw vision signals only.

In further experiments, fixed-edge networks were ‘pruned’,
i.e., the number of inputs or hidden-layer neurons systematically
reduced from their nominal values. During this process,
individual input components or hidden neurons in a trained
network are tested for significance by zeroing their signals out
one by one and evaluating the sum-square error loss function
over the entire training set. The input or neuron whose omission
results in the smallest increase in the loss function is removed
permanently, including any weight or bias parameters associated
with it. The network is then re-trained for 100–200 learning
epochs, and the process repeated until a single input or hidden
neuron remains.

Tools
The study was conducted using software written in MATLAB
(MathWorks, Natick, MA, USA).

RESULTS

The results of the study demonstrate the capabilities of the
model for edge discrimination, and the relative consistency with
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FIGURE 4 | Classification scores for networks trained to detect fixed edges,

as functions of the number of visual units from which inputs are drawn. Scores

are the fraction of input patterns correctly assigned. Red curves are for

networks operating on raw visual signals, and blue curves for networks

operating on “correlations” or product signals. Solid lines indicate performance

on the training set, and dashed lines on a holdout set. Error bars indicate ±
one standard deviation (over n = 5 independently-trained detection networks).

which function can be acquired by the stochastic gradient descent
learning method. Robust results are obtained with the training
procedures described in the previous section: classification score
histories appear to approach asymptotic values by the end of
training, and multi-start runs and simulated annealing did not
reveal the existence of local loss function minima with significant
differences in classification performance.

How Well Can the Model Detect Edges?
For the ANNs trained on the fixed-edge training data, networks
that operate on the raw vision signals or on the correlator outputs
from just the two central visual processing units can achieve
scores of around 90% correct. Accuracy improves modestly
when signals from nearest and next-nearest neighboring visual
units are included in the training inputs. Figure 4 depicts this
performance as a function of the number of visual units from
which inputs were drawn.

Classification performance on the sets of test inputs is also
shown in Figure 4, and these scores suggest that some degree
of overtraining occurs with the network architectures used, in
spite of the size of the training set. In particular, test scores for
the networks that operate on the correlator outputs, which have
an order of magnitude more parameters than those operating
on the raw vision signals, were some 3.5–6% lower than for the
training set (and marginally lower than networks operating on
the raw vision signals). The results also suggest that the products
do not present essential information in a way that facilitates edge
detection by this approach. As with the training set, there is a
modest increase in classification accuracy when inputs are drawn
from four visual units rather than two—but there is no advantage
to expanding this range to six units.

FIGURE 5 | Classification scores for networks trained to detect moving edges

(red curves), and both moving and fixed edges (green), as functions of the

number of visual units from which inputs are drawn. Scores are the fraction of

input patterns correctly assigned. Evaluations take place with the type of data

with which each network is trained (i.e., only moving-edge data are presented

to networks trained with moving edges, and edges of both types presented to

networks trained with both). Solid lines indicate performance on the training

sets, and dashed lines performance on holdout sets. Error bars indicate ± one

standard deviation (over n = 5 independently-trained detection networks in

each case).

As might be expected, when networks were trained with
single fixed-edge types, classification scores on those edge types
exceeded scores for the networks trained on the entire training
set. For edges between dynamic hemi-fields, the final scores
on the training data were in the range of 93.5–95%; for edges
between any dynamic image type and static images, the scores
were essentially 100%. The output neurons of these networks, if
taken as a group, would signal the presence of an edge by activity
in any one or more of them.

Networks trained with moving-edge data achieve somewhat
lower scores than the fixed-edge networks on both training
and test sets, although performance remains well above chance.
Results are depicted in Figure 5 with the red data points /
curves. Scores for networks drawing from all six visual units
averaged around 90% on the training set and 86% on the test
set. Discrimination performance falls off more sharply with
smaller receptive field size than for the networks trained with
stationary edges.

How well are networks trained with fixed edges able to
discriminate the presence of a moving edge, and vice-versa? To
answer this question, I evaluated the performance of networks
drawing from all six visual units (and trained with the full
corpus of training data) on the training set for the opposite
edge type. The networks trained with fixed-edge data achieve
an average score of only 60.4% correct on the moving-edge
data—around 10% better than chance, and some 30% below
scores on their own test set. Networks trained with moving-
edge data fare no better on the fixed-edge data, scoring
just 57.6% on average. Thus, generalization in both cases
is poor.
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FIGURE 6 | Results of experiments in which either input components or the

number of hidden units in edge detection networks are pruned away, in this

case from networks that draw inputs from four visual units and are initially

trained with 32 hidden units. The training and evaluation dataset is for the

fixed-edge case. Pruning and retraining is as described in the text. (A) Depicts

scores on the training set as a function of the number of input components

retained for networks that operate on raw visual signals. (B) Shows scores for

networks that operate on “correlations” or product signals (In this case, the

product terms corresponding to interaction between a given pair of signals are

removed for all four visual units at each stage of the pruning process). (C)

Shows scores as a function of the number of hidden units in the network, for

networks with each type of input as indicated.

Given these results, it is clearly of interest how well networks
trained with both types of edges are able to discriminate
the presence of either edge type. Results are also shown in
Figure 5, and demonstrate that the model can indeed to learn to
discriminate the presence of both types of edges at rates much
higher than chance —and roughly as well as networks trained
with moving edges only.

These networks detect either fixed or moving edges with
similar accuracy; for example the mean score on the fixed-edge
training data is 86.4% and on the moving-edge training data is
84.9% for the five networks that draw from all six inputs.

What Resources Are Needed for Effective
Discrimination by Image Dynamics?
The effect of the spatial extent of visual field sampled by the

edge detection networks on their classification performance was
addressed in the prior section. Here, I examine the question

of how many of the input components generated by those
visual processing units, and how many hidden neurons, are

required for effective edge detection, in networks trained with
fixed-edge data.

This was tested using the network pruning procedure, by

compiling classification scores evaluated as the individual input
components or neurons are removed. For the raw vision inputs,
this process was carried out for each of the 32 signals from the
central four visual units. For the correlator inputs, however, a

particular product term was tested and removed for all four of
the units—resulting in the deletion of four signals (for internal
correlations) or three signals (for inter-unit correlations) per
iteration of pruning.

The results of these experiments indicate that, relative to

the baseline numbers, appreciably fewer input components or
hidden units are required to achieve edge detection performance

well above chance. In either case a significant drop-off in
performance occurs only when either number falls below around
ten. Figure 6 depicts these results.

Which signals among either the raw vision outputs or
the correlations are the most useful for discriminating edges?
In order to address this question, I examine the 10 most

significant of those signals as determined by the final 10 steps

of the pruning process, and catalog those that remain at each

step, for each of the five initial network configurations that
generated the data in Figure 6. Significance is quantified as

follows: each input component is scored according to the final
pruning step in which it was present, counting from first to
the last (e.g., the final remaining component in a network
is assigned a score of ten), and these numbers are averaged
over the sample of five different networks. In this average,
components that are not present in all of the networks are ranked
zero for those in which they did not appear. The results are
summarized in Table 1.

One observation of interest with the pruned raw-vision-based
networks is that all ten most significant components in each of
the five of them are delayed signals. The eight delayed ON and
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TABLE 1 | Lists of the 10 most significant raw vision signals (left) and product terms (right) for edge discrimination in individual networks, compiled over five-network

samples.

Raw vision signals Products

Rank Score Output components Occurrences Rank Score Product terms Occurrences

1 8.6 SUS_ON_D-RightMid 5 1 9.6 SUS_ON_D-Left * SUS_ON_D-Right 5

2a 7.4 SUS_ON_D-LeftMid 4 2 9.4 SUS_OFF_D-Left * SUS_OFF_D-Right 5

2b 7.4 SUS_ON_D-Left 5 3 7.0 SUS_ON_D * SUS_ON_U 5

3 7.2 SUS_OFF_D-Right 5 4 6.4 SUS_OFF_D * SUS_OFF_U 5

4 6.6 SUS_OFF_D-LeftMid 5 5 5.8 SUS_OFF_D-Left * SUS_OFF_U-Right 5

5 6.2 SUS_OFF_D-RightMid 5 6 4.8 SUS_ON_D-Left* SUS_ON_U-Right 5

6 4.4 SUS_OFF_D-Left 5 7 4.0 SUS_ON_U-Left * SUS_ON_D-Right 5

7 3.6 SUS_ON_D-Right 5 8 2.2 SUS_OFF_U-Left * SUS_OFF_D-Right 4

8 1.8 TRN_OFF_D-RightMid 4 9 2.0 SUS_OFF_D * SUS_ON_D 3

9 1.0 TRN_OFF_D-LeftMid 4 10 0.8 SUS_ON_U-Left * SUS_OFF_D-Right 1

10 0.6 TRN_ON_D-RightMid 2 11a 0.6 SUS_OFF_D-Left * SUS_ON_U-Right 1

11 0.2 TRN_ON_D-LeftMid 1 11b 0.6 SUS_OFF_U-Left * SUS_OFF_U-Right 1

12a 0.4 SUS_OFF_D* SUS_ON_U 1

12b 0.4 SUS_OFF_D-Left * SUS_ON_D-Right 1

12c 0.4 SUS_ON_D-Left * SUS_OFF_D-Right 1

12d 0.4 TRN_OFF_D-Left* SUS_OFF_D-Right 1

13 0.2 SUS_OFF_D-Left* TRN_OFF_D-Right 1

Ranks and significance scores are computed as described in the text. “Occurrences” indicates the number of networks in the sample in which an input was among the ten most

significant. SUS designates sustained signals; TRN, transient signals; ON, ON pathway; OFF, OFF pathway; U, undelayed signals; D, delayed signals. For the raw vision signals, LeftMid

and RightMid designate the units adjacent to the center of the array, and Left and Right indicate the outermost two units. For the product terms, Left and Right designate factors drawn

from two neighboring pairs of units. When Left and/or Right do not appear, the factors are drawn from the same unit.

FIGURE 7 | Ideograms depicting the degree of left-right symmetry of the most

significant input components for edge detection, as identified in the pruning

experiments. Pairs of inputs related by left-right reflections are represented by

marker pairs placed symmetrically about the midline. The area of each marker

is proportional to the significance of its component, as given in Table 1; the

number adjacent to each is its rank, to allow its identification. (A) Depicts the

most significant raw vision signals. Red markers denote sustained signals and

blue, transient signals. The four compartments defined by the vertical lines in

the ideogram correspond to the four visual units from which the signals

originate, from left to right across the array. (B) Depicts the most significant

product signals. Red markers denote products between sustained signals and

violet, products between one sustained and one transient signal. The markers

placed on the centerline represent products that are identical to their own

reflections (for example, SUS_ON_D-Left*SUS_ON_D-Right). The markers

placed on the end lines represent products of signals from individual units,

which have no reflections (for example, SUS_ON_D*SUS_ON_U from any

single unit).

OFF sustained components comprise the eight most significant
components over the sample. Four delayed transient signals—
those for two central visual units—also appear among the inputs
these networks, with lower frequencies and significance than
any of the sustained signals. In the product-based networks, the
delayed signals also outnumber the undelayed signals as factors
in the ten most significant input components. In addition, these
factors are dominated by sustained signals: transient signals (both
delayed) appear in only two products, with minimal significance.

How close is ANN-base edge discrimination able to come
to an optimal solution of the general edge detection problem,
given the limits of the finite training sample and the learning
procedure? While classification scores measure performance,
the fact that they are <100% may simply reflect the fact that
edged and edgeless classes are not perfectly separable based on
the signals they induce in the visual model. Another way to
address this question is to evaluate the symmetry of the most
significant input components that are selected by pruning trained
networks. This is because a reflective symmetry prevails in the
data used to determine the weights: every class of input pattern
is represented equally with the class that corresponds to its
reflection about the center of the array (e.g., for every visual
datum generated by the edged image class [Flicker | Motion
Left], there is a datum generated by the [Motion Right | Flicker]
class). Consequently, any subset of input components selected
for optimal edge discrimination in trained networks would be
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expected to retain symmetry with respect to such left-right
interchange. The degree to which this is true in the pruned
networks of Table 1 can be assessed visually in Figure 7. The
ideograms in Figure 7 indicate the input components from the
ten final pruning stages in the five network sample, using an array
ofmarkers in which pairs of inputs related by left-right reflections
are represented by marker pairs placed symmetrically about the
midline. The area of each of the markers is proportional to the
significance of its component. Symmetry prevails approximately,
but not perfectly: a reflected input is present for every component
admitting a reflection, although the significance scores of the
two may differ. The sources of such asymmetry might include
both bias in the finite training set, and imperfect learning due to
incomplete convergence or convergence on suboptimal minima
of the loss function.

DISCUSSION AND CONCLUSIONS

The primary conclusion from this study is that it is entirely
plausible that neural networks operating on early vision signals
can discriminate the presence of edges in visual scenes, and can
do so based on relatively general differences in spatiotemporal
characteristics of the imagery on either side. Such edges are likely
to be the primitive features on which the detection of finite
(non-point)-sized objects are based (Aptekar et al., 2017; Keleş
and Frye, 2017). Although not based on detailed physiology,
the visual signals that were modeled are representative of
processing that is believed to occur in the early optic ganglia—
and as such have been implicated in other functions as well.
The discrimination network itself is a simplified analog of a
real neural network, consisting of minimalistic model neurons
of the kind used in “artificial neural network” models, but
which nonetheless captures some of the most basic features
of real neurons, such as the integration of excitatory and
inhibitory inputs and a compressive or limiting, non-linear
input-output relation.

The model is also primitive geometrically, consisting of a
single row of receptors with imagery in which edges are located
between the central pair. Eyes of course view two-dimensional
projections, in which edges may be oriented in arbitrary
directions on the retina. In order to detect edges with different
orientations, the corresponding neural machinery would have
to be replicated not just once per visual processing column,
but for multiple inter-receptor axes between columns. Edges in
natural images typically span multiple receptors, which could be
exploited to improve the reliability of detection by integrating
evidence from multiple sets of visual columns. However, edges
projected on a hexagonal ommatidial array may be misaligned
with respect to inter-receptor axes by up to 30◦, which might be
expected to negatively impact detection reliability.

Interestingly, networks trained to detect the presence of
fixed edges generalize poorly when the edges are animated—
and vice-versa. This suggests the cues based on image dynamics
that are used by the fixed-edge networks are significantly
disrupted when an edge moves, and conversely that networks
trained to detect moving edges rely strongly on cues induced

specifically by edge motion. When edges move, luminance
discontinuities across them naturally generate transient signals
in the neighboring receptors, and these are often quite large
compared to variations associated with the internal dynamics of
the subimages. Nevertheless, networks trained with both fixed
and moving edges can detect either type at rates far better than
chance, demonstrating that they are able to draw information
from both sorts of cues.

The study suggests that the resources—i.e., the number
of primitive signals and the number of neurons—needed to
achieve discrimination of edges are realistic, relative to the
known neuroanatomy of the insect medulla. The model contains
a “hidden layer” of neural analogs that operates on raw
signals produced by earlier visual processing, or alternatively on
“correlations” or products formed between them. With the fixed
edges used for the bulk of the study, pruning experiments showed
that on the order of a dozen signals drawn from two columns
on either side of an edge are sufficient to give discrimination far
above chance (although these signals must be capable of inducing
excitation or inhibition, requiring projections or interneurons
of each type). Similarly, the number of “hidden neurons” in the
model, corresponding to interneurons that extract features from
the dynamic signals, may be as few as a dozen or so. Conversely,
there are on the order of 50 medullar cell types and over 350
individual cells found within each column of the medulla in
Drosophila, with some being intrinsic, and some extending across
multiple columns (Takemura et al., 2013).

In examining the significance of the input signals to the
edge detection network, it is perhaps unsurprising that the
transient signals play a less significant role than the sustained
signals. The undelayed transient signals in particular are active
for very short periods of time, and during extended periods of
inactivity provide no information for discrimination. Thus, as
might be expected, only delayed transient signals appear among
the more significant inputs. However, it is of interest that all
the most significant sustained signals identified in the study
are also delayed: why should this be the case? Information for
distinguishing moving stimuli is implicit in the responses of
spatially-offset visual columns that view the motion, but when
both delayed and undelayed signals are present, this allows
temporal information to also be conveyed via phase delay. I
speculate that the significance of the delayed signals must have
to do with their modified time course or harmonic content. The
harmonic structure of the sustained signals tends to be quite rich,
whereas higher-frequency signal components are suppressed and
the signals are “smeared out” when delayed by the lowpass filter.
These observations raise the possibility that signal characteristics
in the biological system are more suited for edge discrimination
than the simplemodel signals in this study. For example, there are
no compressive non-linearities, no filtering effects that suppress
higher frequencies (beyond the delay filter), and no adaptation
(after the photoreceptors) in the early vision signal chain—
whereas these features are common in real neurons and neural
networks. The resultant differences in signal characteristicsmight
be expected to influence discrimination capability.

The computations performed by this model can be
divided into early vision operations with straightforward
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interpretations, and ANN operations that are a result of
stochastic approximation, and thus tend to be more cryptic
in nature. The computations that lead to edge discrimination
capability are distributed in the ANN, and even though presence
or absence of an edge is (arbitrarily) coded by a single “neuron”
in the basic network, the networks that were trained on single
edge classes had multiple output neurons and showed that a
distributed output representation is functionally just as practical.
Decades of study of artificial neural networks trained with
stochastic learning procedures have shown it is often difficult
to interpret their distributed computations and/or internal
representations in terms of ultimate network function—and
there seems to be little reason to believe that computational
neural networks resulting from evolutionary and developmental
processes would be any different in this regard. If so, this
presents a hurdle for efforts to interpret network function by
focusing on cellular-level responses, as revealed by techniques
such as electrophysiological recordings or calcium imaging.
Such difficulties are evident in efforts to interpret the responses
of candidate neurons for figure processing (e.g., Egelhaaf,
1985; Liang et al., 2012) and indeed, recent results obtained
from two-photon imaging of such neurons in Drosophila give
intriguing but difficult-to-interpret results in response to moving
object and moving edge stimuli (Keleş and Frye, 2017). A true
understanding of the computations that give rise to capabilities
such as general edge and object discrimination may well depend
on multi-unit experimental neurophysiological techniques that
allow the evaluation of network function.
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Supplementary Movie 1 | Example segment of dynamic image data, for a

scenario with a fixed edge that separates leftward motion in the left hemifield from

flicker in the right. The abscissa represents luminance and the ordinate, position in

the one-dimensional visual field. The blue trace shows the original high-resolution

image data, and the red shows the blurred and downsampled data, with markers

indicating the eight input data presented to the edge detection model.

Supplementary Movie 2 | Example segment of dynamic image data, for a

scenario with moving edges separating static regions and regions of theta motion

(motion of texture in the direction opposite to motion of the edges). The abscissa

represents luminance and the ordinate, position in the one-dimensional visual field.

The blue trace shows the original high-resolution image data, and the red trace

shows the blurred and downsampled data, with markers indicating the eight input

data presented to the edge detection model.
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