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Neurobiological systems rely on hierarchical and modular architectures to carry out

intricate computations using minimal resources. A prerequisite for such systems to

operate adequately is the capability to reliably and efficiently transfer information

across multiple modules. Here, we study the features enabling a robust transfer of

stimulus representations in modular networks of spiking neurons, tuned to operate

in a balanced regime. To capitalize on the complex, transient dynamics that such

networks exhibit during active processing, we apply reservoir computing principles

and probe the systems’ computational efficacy with specific tasks. Focusing on the

comparison of random feed-forward connectivity and biologically inspired topographic

maps, we find that, in a sequential set-up, structured projections between the modules

are strictly necessary for information to propagate accurately to deeper modules. Such

mappings not only improve computational performance and efficiency, they also reduce

response variability, increase robustness against interference effects, and boost memory

capacity. We further investigate how information from two separate input streams

is integrated and demonstrate that it is more advantageous to perform non-linear

computations on the input locally, within a given module, and subsequently transfer

the result downstream, rather than transferring intermediate information and performing

the computation downstream. Depending on how information is integrated early on in

the system, the networks achieve similar task-performance using different strategies,

indicating that the dimensionality of the neural responses does not necessarily correlate

with nonlinear integration, as predicted by previous studies. These findings highlight a key

role of topographic maps in supporting fast, robust, and accurate neural communication

over longer distances. Given the prevalence of such structural feature, particularly in the

sensory systems, elucidating their functional purpose remains an important challenge

toward which this work provides relevant, new insights. At the same time, these

results shed new light on important requirements for designing functional hierarchical

spiking networks.
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1. INTRODUCTION

Cortical information processing relies on a distributed functional
architecture comprising multiple, specialized modules arranged
in complex, but stereotyped networks (see, e.g., Felleman andVan
Essen, 1991;Markov and Kennedy, 2013; Park and Friston, 2013).
Structural organizational principles are noticeable at different
scales and impose strong constraints on the systems’ functionality
(Duarte et al., 2017), while simultaneously suggest a certain
degree of uniformity and a close relation between structure and
function (Mountcastle, 1978, 1997).

On the lower levels of cortical processing, peripheral signals
conveying sensory information need to be adequately routed,
their content represented and integrated with internal, ongoing
processes (Duarte, 2015) (based on both local and long-range
interactions) as well as non-sensory signals such as attention
(Macaluso et al., 2000), expectation (Keller et al., 2012), or
reward (Shuler and Bear, 2006). A prerequisite for processing
across such large distributed systems is therefore the ability to
suitably represent relevant stimulus features, and transfer these
representations in a reliable and efficient manner through various
processing modules. Additionally, cortical areas are arranged in a
functional hierarchy (Markov and Kennedy, 2013; Murray et al.,
2014; Miller, 2016), whereby higher, more anterior, regions show
sensitivity to increasingly complex and abstract features.

The computational benefits of such hierarchical feature
aggregation and modular specialization have been consistently
demonstrated in the domain of artificial neural networks (LeCun
et al., 2015), with a primary focus on spatial and/or spectral
features. However, given that, to a first approximation, cortical

systems are recurrent networks of spiking neurons, temporal

dynamics, and the ability to continuously represent and process
spatio-temporal information are fundamental aspects of neural

computation. The majority of previous studies on spatio-
temporal processing with spiking neural networks have either

focused on local information processing without considering the
role of, or mechanisms for, modular specialization (e.g., Maass
et al. 2004), or on the properties of signal transmission within
one or across multiple neuronal populations regardless of their
functional context (Diesmann et al. 1999; van Rossum et al.
2002; Kumar et al. 2008, 2010; Shadlen and Newsome 1998;
Joglekar et al. 2018, but see, e.g., Vogels and Abbott 2005, 2009
for counter-examples).

In order to quantify transmission accuracy and, implicitly,
information content, these studies generally look either at the
stable propagation of synchronous spiking activity (Diesmann
et al., 1999) or asynchronous firing rates (van Rossum
et al., 2002). The former involves the temporally precise
transmission of pulse packets (or spike volleys) aided by
increasingly synchronous responses in multi-layered feed-
forward networks (so-called “synfire chains”); the later refers
to the propagation of asynchronous activity and assumes
that information is contained and forwarded in the fidelity
of the firing rates of individual neurons or certain sub-
populations. An alternative approach was recently taken by
Joglekar et al. (2018), in which signal propagation was analyzed
in a large-scale cortical model and elevated firing rates across

areas were considered a signature of successful information
transmission. However, no transformations on the input signals
were carried out. Thus, a systematic analysis that considers
both computation within a module and the transmission
of computational results to downstream modules remains
to be established.

In this study, we hypothesize that biophysically-based
architectural features (modularity and topography) impose
critical functional constraints on the reliability of information
transmission, aggregation, and processing. To address some
of the issues and limitations highlighted above, we consider
a system composed of multiple interconnected modules, each
of which is realized as a recurrently coupled network of
spiking neurons, acting as a state-dependent processing reservoir
whose high-dimensional transient dynamics supports online
computation with fading memory, allowing simple readouts
such as linear classifiers to learn a large set of input-output
relations (Maass et al., 2002). Through the effect of the nonlinear
nodes and their recurrent interactions, each module projects
its inputs to a high dimensional feature space retaining time
course information in the transient network responses. By
connecting such spiking neural network modules, we uncover
the architectural constraints necessary to enable a reliable
transfer of stimulus representations from one module to
the next. Using such a reservoir computing (RC) approach
(Lukoševičius and Jaeger, 2009), the transmitted signals are
conferred functional meaning and the circuits’ information
processing capabilities can be probed in various computational
contexts. Preliminary results from this approach have been
presented in a conference proceedings (Zajzon et al., 2018)
and a preprint version of this manuscript has been released at
Zajzon et al. (2019).

Our results demonstrate that the connectivity structure
between the modules strongly affects the transmission efficacy.
We contrast random projections with biologically-inspired
topographic maps, which are particularly prominent in sensory
systems (Kaas, 1997) and have been associated with a variety
of important functional roles, ranging from information
segregation and transmission along sensory pathways (Silver
et al., 2005; Harris and Shepherd, 2015) to spatio-temporal
feature aggregation (Hagler and Sereno, 2006). Additionally,
conserved topography was shown to support the development
of stable one-to-one mappings between abstract cognitive
representations in higher cortical regions (Thivierge andMarcus,
2007). We show that incorporating such structured projections
between the modules facilitates the reliable transmission of
information, improving the overall computational performance.
Such ordered mappings lead to lower-dimensional neural
responses, allowing a more stable and efficient propagation of the
input throughout the modules while enabling a computationally
favorable dynamic regime. These results suggest that, while
random connectivity can be applied for local processing
within a module or between a few populations, accurate
and robust information transmission over longer distances
benefits from spatially segregated pathways and thus offers a
potential functional interpretation for the existence of conserved
topographic maps patterning cortical mesoscopic connectivity.
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2. MATERIALS AND METHODS

2.1. Network Architecture
We model systems composed of multiple sub-networks
(modules). Each module is a balanced random network (see,
e.g., Brunel 2000), i.e., a sparsely and randomly connected
recurrent network containing N = 10, 000 leaky integrate-and-
fire neurons (described below), sub-divided into NE = 0.8N
excitatory and NI = 0.2N inhibitory populations. Neurons
make random recurrent connections within a module with a
fixed probability common for all modules, ǫ = 0.1, such that
on average each neuron in every module receives recurrent
input from KE = ǫNE excitatory and KI = ǫNI inhibitory
local synapses.

For simplicity, all projections between the modules are
considered to be purely feed-forward and excitatory. Specifically,
population Ei inmoduleMi connects, with probability pff, to both
populations Ei+1 and Ii+1 in subsequent moduleMi+1. This way,
every neuron in Mi+1 receives an additional source of excitatory
input, mediated via KMi+1 = pffN

E synapses (see Figure 1).
To place the system in a responsive regime, all neurons in each

module further receive stochastic external input (background
noise) from Kx = pxN

x synapses. We set Nx = NE, as it
is commonly assumed that the number of background input
synapses modeling local and distant cortical input is in the same
range as the number of recurrent excitatory connections (Brunel,
2000; Kumar et al., 2008; Kremkow et al., 2010).

In order to preserve the operating point of the different sub-
networks, we scale the total input from sources external to each
module to ensure that all neurons (regardless of their position
in the setup) receive, on average, the same amount of excitatory
drive. Whereas, px = ǫ holds in the first (input) module,
M0, the connection densities for deeper modules are chosen
such that pff + px = ǫ, with pff = 0.75ǫ and px = 0.25ǫ,
yielding a ratio of 3:1 between the number of feed-forward and
background synapses.

For a complete, tabular description of the models and model
parameters used throughout this study (see Tables S1, S2).

2.2. Structured Feed-Forward Connectivity
We explore the functional role of long-range connectivity
profiles by investigating and comparing networks with random
(Figure 1A) and topographically structured feed-forward
projections (Figure 1B).

To build systems with topographic projections in a principled,
but simple, manner, a network with random recurrent and feed-
forward connectivity (as described in the previous section) is
modified by systematically assigning sub-groups of stimulus-
specific neurons in eachmodule. Each of these then connects only
to the corresponding sub-group across the different modules.
More specifically, each stimulus Sk projects onto a randomly
chosen subset of 800 excitatory and 200 inhibitory neurons inM0

(input module), denoted Ek0 and Ik0 . The connections from Ek0 to

moduleM1 are then rewired such that neurons in E
k
0 project, with

probability pff, exclusively to similarly chosen stimulus-specific
neurons Ek1 and Ik1 . These sub-populations in M1 thus extend
the topographic map associated with stimulus Sk. By repeating

these steps throughout the system, we ensure that each stimulus
is propagated through a specific pathway while inter-module
projections from neurons not belonging to any topographic
map remain unchanged (random). This connectivity scheme is
illustrated for stimulus S1 in Figure 1B.

It is worth noting that, as the stimulus-specific sub-
populations are randomly chosen, overlaps occur (depending on
the total number of stimuli). By allowing multiple feed-forward
synaptic connections between neurons that are part of different
clusters, the effective connection density along the topographic
maps (pff) is slightly increased compared with the random case
(from 0.075 to 0.081). Any given neuron belongs to at most
three different maps, ensuring that information transmission
is not heavily biased by only a few strong connections. The
average overlap between maps, measured as the mean fraction of
neurons shared between any twomaps, was 0.61. These values are
representative for all sequential setups, unless stated otherwise.

2.3. Neuron and Synapse Model
The networks are composed of leaky integrate-and-fire (LIF)
neurons, with fixed voltage threshold and conductance-based,
static synapses. The dynamics of the membrane potential Vi for
neuron i follows:

Cm
dVi

dt
= gleak(Vrest − Vi(t))+ IEi (t)+ IIi (t)+ Ixi (t) (1)

where the leak-conductance is given by gleak, and IEi and IIi
represent the total excitatory and inhibitory synaptic input
currents, respectively.We assume the external background input,
denoted by Ixi , to be excitatory (all parameters equal to recurrent
excitatory synapses), unspecific and stochastic, modeled as a
homogeneous Poisson process with constant intensity νx =

5 Hz. Spike-triggered synaptic conductances are modeled as
exponential functions, with fixed and equal conduction delays for
all synapse types. The equations of the model dynamics, along
with the numerical values for all parameters are summarized in
Tables S1, S2.

Following Duarte and Morrison (2014), the peak
conductances were chosen such that the populations operate in
a balanced, low-rate asynchronous irregular regime when driven
solely by background input. For this purpose, we set ḡE = 1 nS
and ḡI = 16 nS, giving rise to average firing rates of ∼3 Hz,
CVISI ∈ [1.0, 1.5] and CC ≤ 0.01 in the first two modules of the
networks, as described in the previous sections.

2.4. Stimulus Input and Computational
Tasks
We evaluate the information processing capabilities of the
different networks on simple linear and nonlinear computational
tasks. For this purpose, the systems are presented with a sequence
of stimuli {S1, S2, ...} ∈ S, of finite total length T and comprising
|S| different stimuli.

Each stimulus consists of a set of 800 Poisson processes at
a fixed rate νstim = λ ∗ νx and fixed duration of 200 ms,
mimicking sparse input from an external population of size
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FIGURE 1 | Schematic overview of the sequential setup and input stimuli. Networks are composed of four modules with identical internal structure, with random (A)

or topographically structured (B) feed-forward projections. Structured stimuli drive specific, randomly selected sub-populations in M0. For stimulus S1, the

topographic projections (B, orange arrows) between the modules are represented explicitly in addition to the corresponding stimulus-specific sub-populations (orange

ellipses), whereas for S2 only the sub-populations are depicted (blue ellipses). The black feed-forward arrows depict the remaining sparse random connections from

neurons that are not part of any stimulus-specific cluster. (C) Illustrative example of the input encoding scheme: a symbolic input sequence of length T (3 in this

example), containing |S| different, randomly ordered stimuli (S = {S1,S2}), is encoded into a binary matrix of dimensions |S| × T. Each stimulus is then converted into

a set of 800 Poissonian spike trains of fixed duration (200 ms) and rate νstim and delivered to a subset of ǫNE excitatory and ǫNI inhibitory neurons.

NE (Figure 1C). These input neurons are mapped to randomly
chosen, but stimulus-specific sub-populations of ǫNE excitatory
and ǫNI inhibitory neurons in the first module M0, which we

denote the input module. Unless otherwise stated, we set λ = 3,
resulting in mean firing rates ranging between 2 and 8 spikes/s
across the modules.
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To sample the population responses for each stimulus in the
sequence, we collect the responses of the excitatory population
in each module Mi at fixed time points t∗, relative to stimulus
onset (with t∗ = 200 ms, unless otherwise stated). These activity

vectors are then gathered in a state matrix XMi ∈ R
NE×T . In

some cases, the measured responses are quantified using the low-
pass filtered spike trains of the individual neurons, obtained by
convolving them with an exponential kernel with τ = 20 ms and
temporal resolution equal to the simulation resolution, 0.1 ms.
However, for most of the analyses, we consider the membrane
potential Vm as the primary state variable, as it is parameter-free
and constitutes a more natural choice (van den Broek et al., 2017;
Duarte et al., 2018).

Unless otherwise stated, all results are averaged over multiple
trials. Each trial consists of a single simulation of a particular
network realization, driven by the relevant input stream(s).
For each trial, the input-driven network responses are used
to evaluate performance on a given task. In the case of the
classification and XOR tasks described below, the performances
within a single trial are always averaged over all stimuli.

2.4.1. Classification of Stimulus Identity
In the simplest task, the population responses are used to decode
the identity of the input stimuli. The classification accuracy
is determined by the capacity to linearly combine the input-
driven population responses to approximate a target output
(Lukoševičius and Jaeger, 2009):

Ŷ = W
⊺

outX (2)

where Ŷ ∈ R
r×T and X ∈ R

NE×T are the collection of all
readout outputs and corresponding states over all time steps T,
respectively, and Wout is the NE × r matrix of output weights
from the excitatory populations in eachmodule to their dedicated
readout units. We use 80% of the input data for training a set
of r linear readouts to correctly classify the sequence of stimulus
patterns in each module, where r = |S| is the number of different
stimuli to be classified. Training is performed using ridge
regression (L2 regularization), with the regularization parameter
chosen by leave-one-out cross-validation on the training dataset.
In the test phase, we obtain the predicted stimulus labels for the
remaining 20% of the input sequence by applying the winner-
takes-all (WTA) operation on the readout outputs Ŷ . Average
classification performance is then measured as the fraction of
correctly classified patterns.

2.4.2. Non-linear Exclusive-or (XOR)
We also investigate the more complex XOR task, involving
two parallel stimulus sources S and S′ injected into either the
same or two separate input modules. Given stimulus sets S =

{S0, S1} and S′ = {S′0, S
′
1}, the task is to compute the XOR

on the stimulus labels, i.e., the target output is 1 for input
combinations {S0, S

′
1} and {S1, S

′
0}, and 0 otherwise. In this case,

computational performance is quantified using the point-biserial
correlation coefficient (PBCC), which is suitable for determining
the correlation between a binary and a continuous variable
(Haeusler andMaass, 2007; Klampfl andMaass, 2013; Duarte and

Morrison, 2014). The coefficient is computed between the binary
target variable and the analog (raw) readout output Ŷ(t), taking
values in the [−1, 1] interval, with any significantly positive value
reflecting a performance above chance.

2.5. State Space Analysis
For a compact visualization and interpretation of the geometric
arrangement of the population response vectors in the network’s
state-space, we analyze the characteristics of a low-dimensional
projection of the population state vectors (membrane potentials)
obtained through principal component analysis (PCA). More
specifically, each NE-dimensional state vector xi ∈ XMi is first
mapped onto the sub-space spanned by the first three principal
components (PCs), yielding a cloud of data points i which we
label by their corresponding stimulus id.

In this lower-dimensional representation of the neuronal
activity, we then evaluate how similar each data point in one
stimulus-specific cluster is to its own cluster compared to
neighboring clusters. This is done by assigning a silhouette
coefficient s(i) (Rousseeuw, 1987) to each sample i, computed
during a single trial as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
. (3)

a(i) represents the average distance between i and all other
data points in the same cluster (same stimulus label), while b(i)
is mean distance of i to all points in the nearest cluster, i.e.,
corresponding to a different stimulus label. The coefficients s(i)
take values between [−1, 1], with a value close to 1 indicating
that the data point lies well within its assigned cluster (correct
stimulus label), whereas values close to −1 imply an incorrect
cluster assignment and therefore indicate overlapping stimulus
representations in the network activity.

To get a single value that is representative of the overall
clustering quality in one specific trial, we computed the silhouette
score by averaging over all the silhouette coefficients s(i). Note
that for the results presented in Figure 4B, the silhouette scores
were computed using projections onto the first 10 PCs, and were
further averaged across ten different trials.

In addition to the cluster separation, we also quantify the
dimensionality of the subspace where the neuronal activity
predominantly lies, using the method introduced in Abbott et al.
(2009) and Mazzucato et al. (2016). After performing a standard
Principal Component Analysis on the firing rate vectors (average
neuronal activity during a single stimulus presentation), we
calculated the effective dimensionality as:

d =

(
N∑

i=1

λ̃i
2

)−1

, (4)

where N is the real dimensionality of the network’s state-
space, i.e., the total number of neurons, and λ̃i represents the
fraction of the variance explained by the corresponding principal
component, i.e., the normalized eigenvalues of the covariance
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FIGURE 2 | Stimulus classification in sequentially connected modular networks. (A,B) Mean classification accuracy over |S| = 10 stimuli and corresponding mean

squared error in each of the four modules in the random (plain bars) and topographic (hatched bars) conditions. (C,D) Mean classification accuracy and
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density within the topographic projections. All panels show the mean and standard deviations obtained from ten simulations per condition.

matrix of the firing rates. For the analysis in Figures 4C,D, 8, the
number of PCs considered was limited to 500.

2.6. Numerical Simulations and Analysis
All numerical simulations were conducted using the Neural
Microcircuit Simulation and Analysis Toolkit (NMSAT) v0.2
(Duarte et al., 2017), a high-level Python framework for
creating, simulating and evaluating complex, spiking neural
microcircuits in a modular fashion. It builds on the PyNEST
interface for NEST (Gewaltig and Diesmann, 2007), which
provides the core simulation engine. To ensure the reproduction
of all the numerical experiments and figures presented in
this study, and abide by the recommendations proposed in
Pauli et al. (2018), we provide a complete code package that
implements project-specific functionality within NMSAT (see
Supplementary Materials) using a modified version of NEST
2.12.0 (Kunkel et al., 2017).

3. RESULTS

Distributed information processing across multiple neural
circuits requires, in a first instance, an accurate representation
of the stimulus identity and a reliable propagation of this
information throughout the different modules. In the following
section, we assess these capabilities using a linear classification
task in a sequential setup (illustrated in Figure 1), and analyze the
characteristics of population responses in the different modules.

Subsequently, we look at how different network setups handle
information from two concurrent input streams by examining
their ability to perform nonlinear transformations on the inputs.

3.1. Sequential Transmission of Stimulus
Representation
In networks with fully random projections (Figure 1A), stimulus
information can be accurately decoded up to a maximum depth
of 3, i.e., the first three modules in the sequential setup contain
sufficient information to classify (significantly beyond chance
level) which of the ten stimuli had been presented to the input
module (see section 2 for details of the stimulus generation
and classification assessment). Whereas, the first two modules,
M0 and M1, achieve maximum classification performance with
virtually no variance across trials (Figure 2A, plain bars), the
accuracy of ≈ 0.55 observed in M2 indicates that the stimulus
representations have become degraded. These results suggest
that while random connectivity between the modules allows
the input signal to reach M2, the population responses at this
depth are already insufficiently discernible to propagate further
downstream, with M3 entirely unable to distinctly represent the
different stimuli.

Including structured projections in the system (Figure 1B)
counteracts these effects, allowing stimulus information to
be accurately transferred to the deeper modules (Figure 2A,
hatched bars). This indicates that stimulus-specific topographic
maps, whereby the neurons receiving direct stimulation at Mi
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connect exclusively to another set of stimulus-specific neurons
in the subsequent module (see section 2), play a critical
role in the successful propagation of signals across multiple
interacting sub-networks.

As computing the accuracy scores involves a nonlinear post-
processing step (winner-takes-all, see section 2), we additionally
verify whether this operation significantly biases the results by
evaluating the mean squared error (MSE) between the raw
readout outputs Ŷ and the binary targets Y . These MSE values,
depicted in Figure 2B, are consistent: performance decays with
depth for both network setups, with topography leading to
significant computational benefits for all modules beyond the
input module. In the following two sections, we investigate
the factors influencing stimulus propagation and uncover the
relationships between the underlying population dynamics and
the system’s task performance.

3.1.1. Modulating Stimulus Propagation
Since random networks provide no clearly structured feed-
forward pathways to facilitate signal propagation, it is unclear
how stimulus information can be read out as far as M2

(Figure 2A), considering the nonlinear transformations at each
processing stage. However, by construction, some neurons in
M0 that receive input stimulus directly also project (randomly)
to M1. To assess the importance of these directed projections
for information transmission, we gradually remove them and

measure the impact on the performance in M1 (Figures 2C,D).
The system shows substantial robustness with respect to the loss
of such direct feed-forward projections, as the onset of the decline
in performance only occurs after removing half of the direct
synapses. Furthermore, this decay is observed almost exclusively
in the low-pass filtered responses, while the accuracy of state
representations at the level of membrane potentials remains
maximal. This suggests that the populations in the input module
are not only able to create internal representations of the stimuli
through their recurrent connections, but also transfer these to the
next module in an suitable manner. The different results obtained
when considering spiking activity and sub-threshold dynamics
indicate that the functional impact of recurrence is much more
evident in the population membrane potentials.

It is reasonable to assume that the transmission quality in the
two networks, as presented above, is susceptible to variations
in the input intensity. For random networks, one might expect
that increasing the stimulus intensity would enable its decoding
in all four modules. Although stronger input does improve the
classification performance in M2 (Figure 2E), this improvement
is not visible in the last module. When varying the input rates
between 5 and 25 spk/s, the accuracy increases linearly with the
stimulus intensity inM2. However, the signal does not propagate
to the last module in a decipherable manner (results remain
at chance level), regardless of the input rate and, surprisingly,
regardless of the representational accuracy inM2.
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FIGURE 4 | Spatial arrangement and cluster analysis of stimulus-specific state vectors. (A) Distribution of silhouette coefficients for the stimulus-specific clusters in

modules M1 and M2, computed in the space spanned by the first three principal components (PCs) of the state vectors (membrane potentials). Here each stimulus

was presented ∼50 times, resulting in clusters containing 50 data points and associated coefficients, color-coded, and sorted in descending order for each of the 10

stimuli used. The vertical lines in red represent the mean over all coefficients (silhouette score) in a single trial. (B) Trial-averaged silhouette score calculated using the

first ten PCs. (C) Cumulative variance explained by the first ten PCs for random (top) and topographic (bottom) projections. (D) Effective dimensionality of the state

matrix computed on the firing rates (bin size 200 ms). All results are averaged over 10 trials, each lasting 100 s (500 samples).

Previous studies have shown that, when structured feed-
forward connections are introduced, the spiking activity
propagation generally depends on both the synaptic strength
and connection density along the structures, with higher values
increasing the transmission success (Vogels and Abbott, 2005;
Kumar et al., 2010). To evaluate this in our model without
altering the synaptic parameters, we increase the task difficulty
and test the ability of the last module, M3, to discriminate
50 different stimuli. The results, shown in Figure 2F, exhibit
a significantly lower performance for the initial topographic
density of (7.5%), from ≈ 1 for ten stimuli (Figure 2A) to
≈ 0.3. This drop can be likely attributed to overlapping
projections between the modules, since more stimulus-specific
pathways naturally lead to more overlap between these regions,
causing less discriminable responses. However, this seems to
be compensated for by increasing the projection density, with
stronger connectivity significantly improving the performance.

Thus, our simulations corroborate these previous experiments:
increasing the connection density within topographic maps
increases the network’s computational capacity.

3.1.2. Population Activity and State Separability
To ensure a perfect linear decoding of the input, population
responses elicited by different stimuli must flow along well
segregated, stimulus-specific regions in the network’s state-space
(separation property, see Maass et al., 2002). In this section,
we evaluate the quality of these input-state mappings as the
representations are transferred from module to module, and
identify population activity features that influence the networks’
computational capabilities in various scenarios.

When a random network is driven only by background noise,
the activity in the first twomodules is asynchronous and irregular,
but evolves into a more synchronous regime in M2 (see example
activity in Figure 3A left, and noise condition in Figure 3B). In
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the last module, the system enters a synchronous regime, which
has been previously shown to negatively impact information
processing by increasing redundancy in the population activity
(Duarte and Morrison, 2014). This excessive synchronization
explains the increased firing rates, reaching ≈ 10 spk/s in
M3 (Figure 3D). Previous works have shown that even weak
correlations within an input population can induce correlations
and fast oscillations in the network (Brunel, 2000). This
phenomenon arises in networks with sequentially connected
populations, and is primarily a consequence of an increase
in shared pre-synaptic inputs between successive populations
(Shadlen and Newsome, 1998; Tetzlaff et al., 2003; Kumar et al.,
2008). As the feed-forward projections gradually increase the
convergence of the inter-module connections, the corresponding
magnitude of post-synaptic responses also increase toward the
deeper modules. Effectively stronger synapses then shift the
network’s operating point away from the desired Poissonian
statistics. This effect accumulates from module to module
and gradually skews the population activity toward states of
increased synchrony.

Compared to baseline activity, the presence of a patterned
stimulus increases the irregularity in all modules except the
very first one. This is visualized in the example activity plots
in Figure 3A (center and right). Furthermore, active input
substantially reduces the synchrony in the last two modules,
allowing the system to globally maintain the asynchronous
irregular regime (see random and topographic conditions in
Figures 3B,C). Such alterations in the population response
statistics during active processing have also been confirmed
experimentally: in vivo recordings show that neuronal activity in
awake, behaving animals is characterized by weak correlations
and low firing rates in the presence of external stimuli (Vaadia
et al., 1995; Ecker et al., 2010).

Despite the beneficial influence of targeted stimulation,
it appears that random projections are not sufficient to
entirely overcome the effects of shared input and excessive
synchronization in the deeper modules (e.g., in M3, CC ≈

0.12, with a correspondingly high firing rate). The existence
of structured connectivity, through conserved topographic
maps, on the other hand, allows the system to retain an
asynchronous firing profile throughout the network. Whereas
the more synchronous activity in random networks, coupled
with a larger variability in the population responses (Figure 3E),
contributes to their inability to represent the input in the
deeper modules, topographic projections lead to more stable
and reliable neuronal responses that enable the maintenance of
distinguishable stimulus mappings, in line with the performance
results observed in Figure 2A.

Furthermore, networks with structured connectivity are also
more resource-efficient, achieving better performance with lower
overall activity (Figure 3D). This can be explained by the fact
that neurons receiving direct stimulus input in M0, firing at
higher rates, project only to a restricted sub-population in the
subsequent modules, thereby having a smaller impact on the
average population activity downstream.

The above observations are also reflected in the geometric
arrangement of the population response vectors, as visualized
by the silhouette coefficients of a low-dimensional projection

of their firing rates in Figure 4A (see Methods). As stimulus
responses become less distinguishable with network depth,
the coefficients decrease, indicating more overlapping
representations. This demonstrates a reduction in the
compactness of stimulus-dependent state vector clusters,
which, although not uniformly reflected for all stimuli, is
consistent across modules (only M1 and M2 shown). However,
these coefficients are computed using only the first three
principal components (PCs) of the firing rate vectors and
are trial-specific. We can obtain a more representative result
by repeating the analysis over multiple trials and taking into
account the first ten PCs (Figure 4B). The silhouette scores
computed in this way reveal a clear disparity between random
and topographic network for the spatial segregation of the
clusters, beginning withM1, in accordance with the classification
performances (Figure 2A).

We can further assess the effectiveness with which the
networks utilize their high-dimensional state-space by evaluating
how many PCs are required to capture the majority of the
variance in the data (Figure 4C). In the input module, where
the stimulus impact is strongest, the variance captured by
each subsequent PC is fairly constant (≈ 10%), reaching
around 75% by the ninth PC. This indicates that population
activity can represent the input in a very low-dimensional sub-
space through narrow, stimulus-specific trajectories. In random
networks, however, this trend is not reflected in the subsequent
modules, where the first ten PCs account for <10% of the
total variance.

There is thus a significant increase in the effective
dimensionality (see section 2) in the deeper modules
(Figure 4D), a pattern which is also exhibited, to a lesser
extent, in the topographic case. As the population activity
becomes less entrained by the input, the deeper modules explore
a larger region of the state-space. Whereas, this tendency is
consistent and more gradual for topographic networks, it is
considerably faster in networks with unstructured projections,
suggesting a quicker dispersion of the stimulus representations.
Since in these networks the stimulus does not effectively reach
the last module (Figure 2A), there is no de-correlation of the
responses, and the elevated synchrony (Figure 3B) leads to a
reduced effective dimensionality.

Overall, these results demonstrate that patterned stimuli push
the population activity toward an asynchronous-irregular regime
across the network, but purely random systems cannot sustain
this state in the deeper modules. Networks with structured
connectivity, on the other hand, display a more stable activity
profile throughout the system, allowing the stimuli to propagate
more efficiently and more accurately to all modules. Accordingly,
the state representations are more compact and distinguishable,
and these representations decay significantly slower with module
depth than in random networks, in line with the observed
classification results (Figure 2A).

3.2. Memory Capacity and Stimulus
Sensitivity
As demonstrated above, both random and topographic networks
are able to create unique representations of single stimuli in their
internal dynamics and transfer these across multiple recurrent
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(A,B), normalized with respect to maximum performance.

modules. In order to better understand the nature of distributed
processing in these systems, it is critical to investigate how
they retain information over time and whether representations
of multiple, sequentially presented, stimuli can coexist in a
superimposed manner, a property exhibited by cortical circuits
as demonstrated by in vivo recordings (Nikolic et al., 2009).

To quantify these properties, we use the classification accuracy
to evaluate how, for consecutive stimuli, the first stimulus decays
and the second stimulus builds up (Figures 5A,B). For a given
network configuration, the degree of overlap between the two
curves indicates how long the system is able to retain useful
information about both the previous and the present stimuli
(Figure 5C). This analysis allows us to measure three important
properties of the system: how long stimulus information is
retained in each sub-network through reverberations of the
current state; how long the network requires to accumulate
sufficient evidence to classify the present input; and what
are the potential interference effects between multiple stimuli.
Note that the procedure used in the following experiments is
virtually identical to that in section 3.1, the only difference
being the time at which the network’s responses are sampled. In
Figure 5A, the readout is trained to classify the stimulus identity
at increasing time lags after its offset, whereas in Figure 5B, the
classification accuracy is evaluated at various time points after the
stimulus onset.

The decay in performance measured at increasing delays after
stimulus offset (Figure 5A) shows how input representations
gradually disappear over time (the fading memory property, see
Maass et al., 2004). For computational reasons, only the first
100 ms are plotted, but the decreasing trend in the accuracy
continues and invariably reaches chance level within the first
150 ms. This demonstrates that the networks have a rather
short memory capacity which is unable to span multiple input
elements, and that the ability to memorize stimulus information
decays with network depth. Adding to the functional benefits of
topographic maps, the memory curves reflect the higher overall
accuracy achieved by these networks.

We further observe that the networks require exposure
time to acquire discernible stimulus representations (Figure 5B).
The time for classification accuracy to reach its maximum

increases with depth, resulting in an unsurprising cumulative
delay. Notably, topography enables a faster information build-up
beginning withM2.

To determine the stimulus sensitivity of a population, we
consider the extent of time where useful non-interfering
representations are retained in each sub-network. This can be
calculated as the area below the intersection of its memory and
build-up curves. Following a similar trend to performance and
memory, sensitivity to stimulus decreases with network depth
and the existence of structured propagation pathways leads to
clear benefits, particularly pronounced in the deeper modules
(Figure 5C).

Overall, modules located deeper in the network forget faster
and take longer (than the inter-module delays) to build up
stimulus representations. No population is able to represent
two sequential stimuli accurately for a significant amount of
time (longer than 100 ms), although topographic maps improve
memory capacity and stimulus sensitivity.

3.3. Integrating Multiple Input Streams
The previous section focuses on a single input stream, injected
into a network with sequentially connected modules. Here, we
examine the microcircuit’s capability to integrate information
from two different input streams, in two different scenarios with
respect to the location of the integration. The set-up and results
are illustrated in Figure 6.

In a first step, the set-up from Figure 1A is extended with
an additional input stream S′, without further alterations at
population or connectivity level. The two stimulus sets, S and
S′, are in principle identical, each containing the same number
of unique stimuli and connected to specific sub-populations in
the networks. Since the inputs are combined locally in the first
module and the mixed information transferred downstream, we
refer to this setup, visualized in Figure 6A, as local integration.
In a second scenario (Figure 6B), each input stream is injected
into a separate sub-module (M0 and M′

0), jointly forming the
input module of the system. Here, computation on the combined
input happens downstream from the first module, with the aim
of simulating the integration of information that originated from
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chance level.

more distant areas and had already been processed by two
independent microcircuits.

Adding a second input stream significantly affects the
network activity and the stimulus representations therein, which
now must produce distinguishable responses for two stimuli
concurrently. Compared to the same setup with a single input
source (Figure 2A), the performance degrades in both random
and topographic networks starting with M2 (Figures 6C,D).
This suggests that the mixture of two stimuli results in less
separable responses as the two representations interfere with each
other, with structured connectivity again proving to be markedly
beneficial. These benefits become clearer in the deeper modules,
as demonstrated in Figure 6D where the effects of topography
can lead to an eight-fold gain in task accuracy inM3.

As the spatio-temporal structure of the stimuli from both
sources are essentially identical, it is to be expected that the
mixed responses contain the same amount of information about
both inputs. This is indeed the case, as reflected by comparable
performance results when decoding from the second input
stream (Figure S1).

Interestingly, the location of the integration appears to play no
major role for random networks. In networks with topographic
maps, however, local integration improves the classification
accuracy by around 25% in the last module compared to the
downstream case. In the next section we investigate whether this
phenomenon is set-up and task specific, or reflects a more generic
computational principle.

3.3.1. Local Integration Improves Non-linear

Computation
In addition to the linear classification task discussed above,
we analyze the ability of the circuit to extract and combine
information from the two concurrent streams in amore complex,
nonlinear fashion. For this, we trained the readouts on the
commonly used non-linear XOR task described in section 2.

We observe that the networks’ computational capacity is
considerably reduced compared to the simpler classification task,
most noticeably in the deeper modules (Figure 7A). Although
information about multiple stimuli from two input streams could
be reasonably represented and transferred across the network, as
shown in Figure 6C, it is substantially more difficult to perform
complex transformations on even a small number of stimuli. This
is best illustrated in the last module of topographic networks,
where the stimulus identity can still be decoded with an accuracy
of 70% (Figure 6C), but the XOR operation yields performance
values close to chance level (PBCC of 0).

In contrast to the identity recognition, for XOR it is
clearly more advantageous to fuse the two input streams in
the first module (locally), rather than integrating only in M1

(Figures 7A,B). The differences in performance are statistically
significant (two-sided Kolmogorov–Smirnov (KS) test 1.0, p <

0.01 for M1 and M2, and KS-test 0.9 with p < 0.01 for M3

in topographic networks) and consistent in every scenario and
all modules from M1 onwards, with the exception of M3 in
random networks.
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One can gain a more intuitive understanding of the
networks’ internal dynamics by looking at the state-
space partitioning (Figures 7C–F), which reveals four
discernible clusters corresponding to the four possible label
combinations. These low-dimensional projections illustrate
two key computational aspects: the narrower spread of
the clusters in topographic networks (Figures 7D,F) is an
indication of their greater representational precision, while
the significance of the integration location is reflected
in the collapse along the third PC in the downstream
scenario (Figure 7F). To a lesser extent, these differences
are also visible for random networks (Figures 7C,E). A
more compact representation of the clustering quality
using silhouette scores, consistent with these observations,
is depicted in Figure S2.

Altogether, these results suggest that it is computationally
beneficial to perform non-linear transformations locally, as
close to the input source as possible, and then propagate the
result of the computation downstream instead of the other
way around. The results were qualitatively similar for both
the low-pass filtered spike trains and the membrane potential
(see Figure S3). To rule out any possible bias arising from re-
scaling the feed-forward projections to M1 in the downstream
scenario, we also ensured that these results still hold when
each of the input sub-modules M0 and M′

0 projected to
M1 with the same unscaled probability pff as in Figure 1B

(see Figure S4).

3.3.2. Effective Dimensionality Depends on the

Architecture of Stimulus Integration
Previous studies have suggested that non-linear integration
of multiple input streams is associated with high response
dimensionality compared to areas in which little or only linear
interactions occur (Barak et al., 2013; Rigotti and Fusi, 2016).
To assess whether these predictions hold in our model, we
consider different stimulus integration schemes and investigate
whether the effective response dimensionality correlates with
XOR accuracy, which is used to quantify the non-linear
transformations performed by the system.

For simplicity, we focus only on random networks. To
allow a better comparison between the integration schemes
introduced in Figure 6, we explore two approaches to
gradually interpolate the downstream scenario toward the
local one in an attempt to approximate its properties.
First, we distribute each input stream across the two
segregated input sub-modules M0 and M′

0, referred to as
mixed input (Figure 8A). Second, we maintain the input
stream separation but progressively merge the two sub-
modules into a single larger one by redistributing the
recurrent connections (Figure 8B). We call this scenario
mixed connectivity.

Relating these two scenarios is the mixing factor (m), which
controls the input mapping or the connectivity between the sub-
modules, respectively. A factor of 0 represents separated input
sources and disconnected sub-modules as in Figure 6B; a value
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of m = 1 indicates that the input modules mix contributions
from both sources equally (for mixed input), or that intra and
inter-module connectivity forM0 andM

′
0 are identical (for mixed

connectivity). In both cases, care was taken to keep the overall

input to the network unchanged, as well as the average in- and
out-degree of the neurons.

Combining information from both input streams already in
the first sub-modules (m > 0), either via mixed input or
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mixed connectivity, significantly increases the task performance
after convergence in the deeper modules. This is illustrated in
Figures 8C,F, with m > 0.5 yielding similar values. Despite
comparable gains in the nonlinear computational performance,
the underlying mechanisms appear to differ in the two mixing
approaches, as detailed in the following.

In M0 and M′
0, the effective dimensionality of the neural

responses increases monotonically with the amount of
information shared between the two modules (Figures 8D,G).
This is expected, since the sub-modules are completely
independent initially (m = 0) and can therefore use more
compact state representations for single stimuli. However,
diverging patterns emerge after convergence in M1. While
the dimensionality does increase with the coefficient m in
the mixed connectivity scenario (Figure 8H), it remains
fairly constant in the mixed input case (Figure 8E), despite
comparable task performance. Thus, complex non-linear
transformations do not necessarily involve the exploration of
larger regions of state-space, but can also be achieved through
more efficient representations.

These results also demonstrate the difficulty in defining a clear
relation between the ability of the system to perform nonlinear
transformations on the input and its response dimensionality.
Particularly in the case of larger networks involving transmission
across multiple modules, the effective dimensionality can depend
on the system’s architecture, such as the input mapping and
connectivity structure in the initial stages.

4. DISCUSSION

Real-time interactions between a dynamic environment
and a modular, hierarchical system like the mammalian
neocortex strictly requires efficient and reliable mechanisms
supporting the acquisition and propagation of adequate
internal representations. Stable and reliable representations
of relevant stimulus features must permeate the system
in order to allow it to perform both local and distributed
computations online. Throughout this study, we have analyzed
the characteristics of state representations in modular spiking
networks and the architectural and dynamical constraints that
influence the system’s ability to retain, transfer, and integrate
stimulus information.

We have considered models of local microcircuits as
state-dependent processing reservoirs whose computations are
performed by the systems’ high-dimensional transient dynamics
(Mante et al., 2013; Sussillo, 2014), acting as a temporal
expansion operator, and investigated how the features of long-
range connectivity in a modular architecture influence the
system’s overall computational properties. By considering the
network as a large modular reservoir, composed of multiple sub-
systems, we have explored the role played by biologically-inspired
connectivity features (conserved topographic projections) in the
reliable information propagation across the modules, as well
as the underlying dynamics that support the development and
maintenance of such internal representations.

In addition to examining the temporal dynamics of the
information transferred between sequentially connected
modules, we have explored how different network characteristics
enable information integration from two independent sources
in a computationally useful manner. In these experiments,
structural differences in the network were proven to greatly
influence the dynamics and the downstream computation
when combining inputs from two independent sources. In
addition to the inter-module connectivity, the ability of the
downstream modules to non-linearly combine the inputs was
shown to depend on the location where the input converges,
as well as on the extent to which the different input streams
are mixed in the initial modules. We therefore anticipate that
degree of mixed selectivity in early sensory stages is predictive
of the computational outcome in deeper levels, particularly
for non-linear processing tasks, as we describe in greater
detail below.

4.1. Representation Transfer in Sequential
Hierarchies
The proficiency of randomly coupled spiking networks (see
e.g., Maass et al., 2002; Duarte and Morrison, 2014; Sussillo,
2014) demonstrates that random connectivity can be sufficient
for local information processing. Successful signal propagation
over multiple modules, however, appears to require some form
of structured pathways for accurate and reliable transmission.
Our results suggest that these requirements can be achieved by
embedding simple topographic projections in the connectivity
between the modules. Such mechanisms might be employed
across the brain for fast and robust communication, particularly
(but not exclusively) in the early sensory systems, where real-time
computation is crucial and where the existence of topographic
maps is well supported by anatomical studies (Kaas, 1997; Bednar
and Wilson, 2016).

Purely random feed-forward connectivity allowed stimulus
information to be decoded only up to the third module,
whereas incorporating topographic projections ensured almost
perfect accuracy in all modules (Figures 2A,B). These differences
could be attributed to a decrease in the specificity of stimulus
tuning with network depth, which is much more prominent for
random networks (Figure 4). This result suggests that accurate
information transmission over longer distances is not possible
without topographic precision, thus uncovering an important
functional role of this common anatomical feature.

Moreover, topography was shown to counteract the shared-
input effect which leads to the development of synchronous
regimes in the deeper modules. By doing so, stimulus
information is allowed to propagate not only more robustly, but
also more efficiently with respect to resources, in that the average
spike emission is much lower (Figures 3D,E). Nevertheless, as
the stimulus intensity invariably fades with network depth,
the deeper modules capture fewer spatio-temporal features of
the input and their response dimensionality increases. This
process is clearer in random networks (Figures 4C,D), a further
indication that topography enforces more stereotypical, lower-
dimensional and stimulus-specific response trajectories. The
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input-state mappings are also retained longer and built up more
rapidly in topographic networks (Figure 5).

4.2. Network Architecture and Input
Integration
In biological microcircuits, local connections are complemented
by long range projections which either stem from other
cortical regions (cortico-cortical), or from different sub-cortical
nuclei (e.g., thalamo-cortical). These different projections carry
different information content and thus require the processing
circuits to integrate multiple input streams during online
processing. The ability of local modules to process information
from multiple sources simultaneously and effectively is thus a
fundamental building block of cortical processing.

Including a second input source into our sequential networks
leads to less discriminable responses, as reflected in a decreased
classification performance (Figure 6C). Integrating information
from the two sources as early as possible in the system (i.e.,
in the modules closest to the input) was found to be clearly
more advantageous for non-linear computations (Figure 6C)
and, to a lesser extent, also to linear computations. For
both tasks, however, topographic networks achieved better
overall performance.

One of our main results thus suggests that computing
locally, within a module, and transmitting the outcome of such
computation (local integration scenario) is more effective than
transmitting partial information and computing downstream.
Accordingly, even a single step of non-linear transformation on
individual inputs (downstream integration scenario) hinders the
ability of subsequent modules to exploit non-trivial dependencies
and features in the data. Therefore, it might be more efficient
to integrate information and extract relevant features within
local microcircuits that can act as individual computational
units (e.g., cortical columns Mountcastle, 1997). By combining
the inputs locally, the population can create more stable
representations which can then be robustly transferred across
multiple modules. We speculate that in hierarchical cortical
microcircuits, contextual information (simply modeled as a
second input stream here) must be present in the early processing
stages to enable more accurate computations in the deeper
modules. This could, in part, explain the role of feedback
connections from higher to lower processing centers.

4.3. Degree of Mixed Selectivity Predicts
Computational Performance
We have further shown that the effective dimensionality of
the neural responses does not correlate with the non-linear
computational capabilities, except in the very first modules
(Figure 8). These insights are in agreement with previous studies
(Barak et al., 2013; Rigotti and Fusi, 2016), based on fMRI data
that predict a high response dimensionality in areas involved
in nonlinear multi-stream integration, and lower in areas where
inputs from independent sources do not interact at all or solely
overlap linearly. These studies considered single circuits driven
by input from two independent sources, focusing on the role of
mixed selectivity neurons in the convergent population. Mixed

selectivity refers to neurons being tuned to mixtures of multiple
task-related aspects (Warden and Miller, 2010; Rigotti et al.,
2013), which we approximated as a differential driving of the
neurons with a variable degree of input from both sources.

Although we did not specifically examine mixed selectivity at
a single neuron level, one can consider both the mixed input
and mixed connectivity scenarios (Figures 8A,B, respectively)
to approximate this behavior at a population level. This is
particularly the case for the input sub-modulesM0 andM

′
0, where

the network’s response dimensionality, as expected, increases
with the mixing ratio (Figures 8D,G). However, the different
results we obtained for the deeper modules (Figures 8E,H),
suggest that the effective dimensionality measured at the
neuronal level is not a reliable evidence for non-linear processing
in downstream convergence areas (despite similar performance),
but instead depends on how information is mixed in the early
stages of the system. Further research in this direction, possibly
resorting to multimodal imaging data, is needed to determine
a clear relation between functional performance, integration
schemes, and response dimensionality.

In our models, the task performance improved (and
plateaued) with increased mixing factors, suggesting no obvious
computational disadvantages for large factor values. While this
holds for the discrimination capability of the networks, we
did not address their ability to generalize. Since the sparsity
of mixed selectivity neurons has been previously shown to
control the discrimination-generalization trade-off, along with
the existence of an optimal sparsity for neural representations
(Barak et al., 2013), it would be interesting to analyze the
effect of this parameter more thoroughly in the context of
hierarchical processing.

Based on the presented findings, we expect that the degree
of mixed selectivity in early sensory stages can predict the
computational performance in the deeper levels, particularly for
non-linear processing tasks. This might be the case for some
components in the initial stages of visual processing, for instance
when multiple features are combined. Whereas, the retinotopic
maps are mostly conserved in the primary visual cortex (Girman
et al., 1999; Adams and Horton, 2003), these gradually overlap
(approximated in the mixed input scenario) in the subsequent
areas, giving rise to more complex receptive fields and tuning
properties (Hubel, 1988). Our results suggest that topographic
maps may play a vital role in balancing between accurate
transmission of state representations as well as controlling where
and how information is integrated.

Despite the limitations of our models, we have highlighted
the importance of biologically plausible structural patterning
for information processing in modular spiking networks. Even
simple forms of topography were shown to significantly enhance
computational performance in the deeper modules. Additionally,
architectural constraints have a considerable impact on the
effectiveness with which different inputs are integrated, with early
mixing being clearly advantageous and highlighting a possibly
relevant feature of hierarchical processing. Taken together, these
results provide useful constraints for building modular systems
composed of spiking balanced networks that enable accurate
information transmission.
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4.4. Limitations and Future Work
Our analysis consisted of a relatively simple implementation both
in terms of the microcircuit composition and the characteristics
of topographic maps. Even though abstractions are required in
any modeling study, it is important to highlight the inherent
limitations and drawbacks.

The network we referred to as random in this study
(Figure 1A) was considered to be themost appropriate to serve as
a baseline for the unstructured architecture, due to its simplicity.
However, there are many other classes of non-modular networks,
such as small-world or scale-free networks, which are likely to
display similar or even superior computational characteristics
than our baseline. Investigating the behavior and impact of such
alternative network structures could be an interesting topic for
future research, as they constitute intermediate steps between
fully random and modular architectures.

We have employed a simple process to embed topographic
maps in unstructured networks (see section 2), whereby the map
size (i.e., size of a population involved in a specific pathway)
was kept constant in all modules. Cortical maps, however,
exhibit more structured and complex spatial organization
(Bednar and Wilson, 2016), characterized by a decrease
in topographic specificity with hierarchical depth. This, in
turn, is likely a consequence of increasingly overlapping
projections and increasing map sizes and is considered to
have significant functional implications (see e.g., Rigotti
et al., 2013), which we did not explore in more detail here.
Nevertheless, our results (Figure 2F) suggest that, at least
for the relatively simple and low-dimensional (considering
the network size) tasks employed in this study, overlapping
projections have a detrimental effect on the network’s
discrimination ability. More complex tasks involving high-
dimensional mappings would therefore negatively impact the
performance of our modular networks. Assuming a one-to-one
mapping between input dimensions and stimulus-specific
neuronal clusters, a larger task dimensionality would require
either fewer neurons per cluster, or some compensation
mechanism (e.g., stronger or denser projections between
the clusters), possibly limiting the task complexity smaller
local circuits can handle. Alternatively, cortical circuits
might solve this dimensionality problem by combining
multiple modules dynamically, in a task-dependent manner
(Yang et al., 2019).

In addition, cortical systems also display an abundance of
feedback loops that exhibit, similarly to the feed-forward cortico-
cortical connections, a high degree of specificity and spatial
segregation (Markov and Kennedy, 2013; Markov et al., 2014).
Such feedback connections from more anterior cortical regions
(typically associated with more abstract or “higher” cognitive
functions) have been shown to play a central role in top-down
control and modulation of sensory processing by providing
contextual information and facilitating multisensory integration
(see e.g., Clavagnier et al., 2004; Markopoulos et al., 2012; Revina
et al., 2018). In addition, important theoretical frameworks of
cortical processing, known as predictive coding theories (Friston
and Kiebel, 2009; Bastos et al., 2012) place a fundamental
importance in the role of such top-down feedback as a pathway

through which internal predictions from higher cortical regions
are propagated downstream and used as an explicit error signal,
guiding, and structuring the nature of internal representation in
the hierarchically lower cortical modules.

Although their functional role is not entirely unambiguous
and depends on specific functional interpretations, a recent study
(Joglekar et al., 2018) found that these feedback projections
have a destabilizing effect on long-range signal propagation.
Failure to account for feedback projections will therefore limit
the scope and generalizability of our models. Nevertheless, these
limitations do not invalidate the main conclusions of this study
pertaining to the importance of structured projections in signal
propagation and integration in the context of feed-forward
network architectures.

An additional aspect of anatomical connectivity concerns
the presence of long-range projections, directly linking distant
cortical modules (commonly referred to as skip, or “jump”
connections Knösche and Tittgemeyer, 2011). Such projections
between non-adjacent areas were found to significantly improve
the short-termmemory capacity of a biologically realistic spiking
network model (Schomers et al., 2017), suggesting that a similar
effect could be expected in our model. Additionally, in the
domain of artificial neural networks, there is an entire class
of architectures that exploit this principle (residual networks,
ResNet), that demonstrate their functional significance as a way
to eliminate singularities during training and ameliorate the
problem of vanishing gradients (Orhan and Pitkow, 2017), as well
as improving performance in image standard recognition tasks
(He et al., 2016). Even though these aspects were not explicitly
explored in this study as they would greatly extend its scope, these
studies support the crucial role of network architecture and the
nature of inter-modular connections in determining the system’s
computational characteristics.

Ultimately, understanding the core principles of cortical
computation requires bridging neuro-anatomy and physiology
with cognitively relevant computations. The classification and
XOR problems we have employed here provided a convenient
method to investigate information transfer across multiple
spiking modules, and allowed us to shed light on the functional
implications of the wiring architecture. However, it is imperative
that future works tackle more complex, behaviorally relevant
tasks and possibly more detailed anatomical and physiological
observations to help disentangle the nature of cognitive
processing across cortical hierarchies.
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