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People living with schizophrenia (SCZ) experience severe brain network deterioration.

The brain is constantly fizzling with non-linear causal activities measured by

electroencephalogram (EEG) and despite the variety of effective connectivity methods,

only few approaches can quantify the direct non-linear causal interactions. To circumvent

this problem, we are motivated to quantitatively measure the effective connectivity by

multivariate transfer entropy (MTE) which has been demonstrated to be able to capture

both linear and non-linear causal relationships effectively. In this work, we propose

to construct the EEG effective network by MTE and further compare its performance

with the Granger causal analysis (GCA) and Bivariate transfer entropy (BVTE). The

simulation results quantitatively show that MTE outperformed GCA and BVTE under

varied signal-to-noise conditions, edges recovered, sensitivity, and specificity. Moreover,

its applications to the P300 task EEG of healthy controls (HC) and SCZ patients further

clearly show the deteriorated network interactions of SCZ, compared to that of the HC.

The MTE provides a novel tool to potentially deepen our knowledge of the brain network

deterioration of the SCZ.

Keywords: network deterioration, schizophrenia, non-linear causal interaction, multivariate transfer entropy,

granger causality, bivariate transfer entropy

INTRODUCTION

The brain usually fizzles with the non-linear causal activity of electroencephalogram (EEG) at a
microscopic level (Gourévitch et al., 2006; Sabesan et al., 2010; Mehta and Kliewer, 2018). The
complex nature of the brain makes its non-linear causal dynamics unknown, and how the brain
matches its rhythm as well as its metabolic processes and a causal relationship is still under
investigation. The brainmight be attackedwithmany psychosomatic diseases such as schizophrenia
(SCZ), leading to deteriorated brain network, which eventually affects its cognitive functions
(Shovon et al., 2017; Li et al., 2018). Researchers have explored the EEG non-linearity in multiple
psychiatric disorders, for example, in epileptic patients probably due to low dimensional chaos
during a seizure (Lee et al., 2001; Henderson et al., 2011; Liu et al., 2017). Thus, the behavioral and
psychological attitudes of people with psychiatric disorders call for the need to effectively investigate
the transient information exchange in the brain (Zhang et al., 2011; Mehta and Kliewer, 2016).
Multiple techniques or measures for linear and non-linear brain connectivity such as structural,
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functional, and effective connectivity are in use for this purpose
(Selskii et al., 2017; Hristopulos et al., 2019). Exploring the
linear and non-linear interactions, more importantly when the
system structure is unknown, holds promise for deepening the
knowledge of the causal mechanism in the brain for the SCZ
(Pereda et al., 2005; Zhao et al., 2013).

SCZ is the most prevalent functional psychotic disorder, and
people living with the disorder can present with a variety of
symptoms and manifestations that can be seen in their behaviors.
The disease is a chronic psychotic disorder that disrupts the
patient’s thoughts and affect their total well-being (Patel et al.,
2014; Ure et al., 2018). Previous studies have demonstrated
a coherent or uniform reduction in the brain regions of the
SCZ patients, including the insula, superior temporal gyrus,
amygdala, parahippocampus, inferior and medial frontal gyri,
hippocampus, and anterior cingulate cortex (ACC) (Ehrlich et al.,
2014; Alonso-Solís et al., 2015; Domínguez-Iturza et al., 2018). In
neurophysiological research, it is more interesting to explore the
specific performance of the SCZ under certain task like oddball
paradigm involving the P300 (Alvarado-González et al., 2016), as
the P300 serves as the reliable biomarker to identify the SCZ from
healthy control (HC) (Somani and Shukla, 2012). For example,
during working memory, the P300 amplitude decreases with
increasing the load for HC but remains low in all conditions for
the SCZ (Gaspar et al., 2011). Besides the P300 amplitude, the
occurrence of the SCZ is also accompanied by the abnormal task
brain network (Krusienski et al., 2006; Pérez-Vidal et al., 2018).
For example, we have previously found a crucial role of the ACC
in regulating the P300 (Li et al., 2018), especially a compensatory
pathway from the dorsolateral prefrontal cortex to intraparietal
sulcus for the SCZ.

Effective connectivity in the brain brings in the element of
causal interactions or causation. Consequently, a signal activation
in one area of the brain directly causes a change or signal,
activation or depression, in another area (Mastrovito et al.,
2018; Zhu et al., 2018). Effective connectivity in a domain
of data-driven approaches such as Granger causality analysis
(GCA) which performs poorly in non-linear context rely on its
past to formulate linear causal interactions in the EEG signal
(Venkatesh and Grover, 2016; Li et al., 2017). The GCA is
initially formulated for linear models and later extended to non-
linear systems by applying to local linear models. Despite its
success in detecting the direction of interactions in the brain, it
either makes assumptions about the structure of the interacting
systems or the nature of their interactions and as such, it may
suffer from the shortcomings of modeling systems/signals of
unknown structure (Lainscsek et al., 2013; Sohrabpour et al.,
2016; Bonmati, 2018). Even though much has been achieved
with the GCA, a different data-driven approach which involves
information theoretic measures like Transfer entropy (TE) may
play a critical role in elucidating the effective connectivity of
non-linear complex systems that the GCA may fail to unearth
(Schreiber, 2006; Madulara et al., 2012; Dejman et al., 2017).
Mathematically, the TE uses its entropy to quantitatively infer
the coupling strength between two variables (Liu and Aviyente,
2012; Shovon et al., 2017) and has the potential for capturing
both the linear and non-linear causal interactions effectively.

Thus, TE works in bivariate fashion where information transfer
is quantified between all source-target pairs but bivariate analysis
has spurious, redundant and synergistic interaction problems
(James et al., 2016; Wollstadt et al., 2019).

To quantify the effective connectivity and exploring the
corresponding network aberration in the SCZ, the reliable
estimation of the brain network seems to be of great urgency. In
this work, we used the TE in a multivariate fashion (Lainscsek
et al., 2013; Alonso-Solís et al., 2015; Bonmati, 2018), i.e.,
multiple TE (MTE) (Montalto et al., 2014; Novelli et al.,
2019; Wollstadt et al., 2019). The MTE has great ability to
handle problems that the GCA and the BVTE cannot, such
as spurious or redundant interactions, where multiple sources
provide the same information about the target, the MTE also
cannot miss synergistic interactions between multiple relevant
sources and the target, where these multiple sources jointly
transfer more information into the target than what could be
detected from examining source contributions individually. The
MTE is designed to remove redundancies and capture synergistic
interactions and account for all relevant sources of a target,
unearth both the linear and non-linear dynamics in the brain;
thus making it a powerful tool over GCA and BVTE (Stokes et al.,
2018;Wollstadt et al., 2019). Herein, we first proposed to infer the
linear and non-linear simulations of the GCA, BVTE, and MTE
under various conditions, including varied signal-to-noise(SNR)
conditions, edges recovered, sensitivity, and specificity, to explore
their performances; thereafter, we also applied both methods
to P300 task EEG of the SCZ and HC to investigate the brain
network deterioration for the SCZ.

TRANSFER ENTROPY

If a signal X directly interacts with signal Y, then the past
information of X should possess ample information that can
help predict Y beyond the information possessed in the history
of Y only. That is, there is a Granger-causal interaction from
X to Y (Sørensen and Causality, 2005). The GCA paves a
way for the examination of the directed interaction between
variables. In essence, GCA is designed to measure the linear

FIGURE 1 | Estimation of MTE into a target node Y. Blue arrows show the

estimation of MTE into a target node.
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coupling among time series, which determines that the GCA
can only capture the linear causality well, and may not work
for the non-linear cases (Bose et al., 2017). In addition, the
neural coupling in the brain is far from the linearity, and the
conventional GCA may not capture this hidden coupling in
the brain.

To capture the non-linear interactions in the brain,
we alternatively used the TE to measure the directed
information exchange.

Let X = {x1, x2..., xT} and Y =
{

y1, y2, ..., yT
}

denote the
time series of two brain areas with T observations, we define
an entropy rate which is the amount of additional information
required to represent the value of the next observation of X as:

h1 = −
∑

xn+1,xn ,yn

p(xn + 1, xn, yn)log2p(xn + 1|xn, yn) (1)

Also, we define another entropy rate assuming that xn + 1 as:

h2 = −
∑

xn+1,xn ,yn

p(xn + 1, xn, yn)log2p(xn + 1|xn) (2)

Therefore, the TE from Y to X is given by h2 − h1, and this
corresponds to information transfer from Y to X:

TEY→X = h2 − h1,

=
∑

xn+1,xn ,yn

p(xn + 1, xn, yn)log2

(

p(xn + 1|xn, yn)

p(xn + 1|xn)

)

(3)

Similarly, we can define the transfer entropy from X to Y as:

TEX→Y =
∑

yn+1,xn ,yn

p(yn + 1, xn, yn)log2

(

p(yn + 1|xn, yn)

p(yn + 1|yn)

)

(4)

Then, we compute the TE by writing (3) and (4) using conditional
probabilities as:

TEY→X =
∑

xn+1,xn ,yn

p(xn + 1, xn, yn)log2

(

p(xn + 1, xn, yn)p(xn)

p(xn, yn)p(xn + 1, xn)

)

(5)

FIGURE 2 | Original or predefined 8 nodes simulated network and estimated linear networks by GCA, MTE, and BVTE with Y = A× B.
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TEX→Y =
∑

yn+1,xn ,yn

p(yn + 1, xn, yn)log2

(

p(yn + 1, xn, yn)P(yn)

p(xn, yn)p(yn + 1, yn)

)

(6)

Where xn, and yn, are the stochastic variables obtained by
sampling the processes at the present time n (Gilmour et al., 2012;
Wollstadt et al., 2014; Shao et al., 2015).

TE estimator can detect both linear and non-linear causality.
However, because of the bivariate nature of TE, its outcome
may infer spurious or redundant causality and may also miss
synergistic interactions between multiple relevant sources and
the target (Wollstadt et al., 2019). Hence, we need to have a
tool or method that can accommodate these challenges. MTE
has proven to be a better option to measure both the linear and
inherent non-linear brain signals and their causal relationships
effectively. Importantly, theMTE is an extension of the TE, which
is a direct measure of information transfer between a source and
a target process in a dynamic or composite system. Unlike TE,
however, MTE does not give spurious, redundant information
and also may not miss synergistic interactions (Montalto et al.,
2014; James et al., 2016; Wollstadt et al., 2019).

Let at a given instance the dynamic system be composed of a
source system X, a destination system Y and remaining systems

Z =
{

Zk
}

k=1,....M−2
. Here, we are interested in evaluating the

information flow from a source system X to a destination system
Y. Then, MTE models the information flow from the source
system to the destination system in the presence of the remaining
systems, as shown in Equation (7).

TEX→Y|Z

=
∑

p(y1 : n,x1 : n−1,z1 : n−1) log
p(yn|x1 : n−1,y1 : n−1,z1 : n−1)

p(yn|y1 : n−1,z1 : n−1)

(7)

Where x, y, and z are the state visited by the systems X, Y, and Z
over time. Let xn, yn, and zn be the stochastic variables obtained
by sampling the processes at the present time n. Furthermore, we
denote xtn as the vector variable describing all the states visited
by X from time t up to n (assuming n as the present time and
setting the origin of time at t = 1, x1 : n−1 represents the whole
past history of the process x).

In our case, the dynamic system is composed of the brain
regions, Frontal (F), Parietal (P), Temporal (T), and Occipital (O)
lobes. In other words, the source system X and the destination
system Y are the brain regions involved in a given information
flow, e.g., it could be F and P or T and O. The information flow
between any two brain regions is also affected by the states of
remaining brain regions, which are not part of the information
flow (Wang et al., 2011; Adhikari and Agrawal, 2013; Anil et al.,
2015). Hence, MTE is a good estimator to measure the linear and
non-linear directed information flow in the brain.

For an illustration, let’s demonstrate MTE brain network
algorithm analysis as shown in Figure 1. Here the nodes
or channels represent (stochastic) processes and the arrows

represent causal connections or interactions between processes.
It has target of interest and relevant sources.

Thus if Y is the current target of interest, then nodes
highlighted in red represent the set of relevant sources
Z =

{

X1,X3,X4

}

, i.e., the sources that contribute to the
target’s current value Yn. In order to estimate the MTE
into the target Y, it requires inferring the set Z containing
the relevant sources (or parents) of Y. Once Z is inferred,
we compute the MTE from a single process into the
target as a conditional transfer entropy, which accounts
for the potential effects of the remaining relevant sources.
Formally, the MTE from a single source (e.g., X3) into Y
is defined as the TE from X3 to Y, conditioned on Z
and excluding X3: TE(X3 → Y|Z\X3) as shown in Figure 1

(Srivastava, 2002; Flecker et al., 2011; Wollstadt et al., 2019).

VALIDATION ANALYSIS

Simulation Study
Simulated Network
We generated and simulated a random time series with 7 and 8
nodes/process and 500 observations (Figures 2, 5). A network
structure with unidirectional and bidirectional couplings and
nodes with input and output degrees or domain were considered.
Two network structures were simulated, i.e., linear and non-
linear. Out of the linear equation, we modeled the non-linear
networks by adding five different types of non-linear functions
to the linear equation (Khadem and Hossein-Zadeh, 2014;
Dong et al., 2015; Li et al., 2017). When estimating the MTE
and the BVTE, we used the toolbox IDTx (Wollstadt et al.,
2019) and GCCA-toolbox for GCA, to estimate the parameters
of the MVAR models and the Akaike Information Criterion
(AIC) for model order selection (Sohrabpour et al., 2016). We
applied the conventional multivariate Granger Analysis for our
computation and analysis for GCA. The performance of the
GCA, BVTE, and MTE are statistically tested under multiple
strategies including the effective connectivity, edges recovered,
sensitivity, and specificity on the 8 nodes time series.

To see which method performs better by suppressing the
turbulent noise condition, we added Gaussian noise (Ozaki,
2012) with a varying SNR in a range of −10, −5, 5, and 10 dB
to the generated time series. With different realizations of the

TABLE 1 | Causal interactions parameters and explanation.

Parameter Description of parameter

TN TN denotes the number of direct interactions that were not

available and were truly marked as non-existent.

TP TP describes causal interactions that were available and truly

labeled as existent.

FN FN denotes the number of causal interactions that were incorrectly

marked as not existing.

FP FP denotes the number of directed interactions that were

incorrectly marked as existing or indicates the number of pairs that

were identified to have false causal relationships.
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FIGURE 3 | Original or predefined 8 nodes simulated network and estimated non-linear networks by GCA, MTE, and BVTE with (r = f (x), r = (2.40×9x)
1+exp(−4x)

).

driving noises, each of the network simulations was repeated 200
times for each linear and non-linear equations.

To know the percentage of available causal connections
that are correctly detected as existent and the percentage of
unavailable causal connections that are really detected as non-
existent, the sensitivity and specificity analysis were calculated,
respectively. Confusion matrix function is used for the sensitivity
and specificity calculations. It is made up of a target matrix
and the actual matrix. The confusion matrix compares the
relationship between the target matrix and the actual matrix by
comparing the rows of the target matrix with that of the actual
matrix and returns four parameters (Table 1) including True
Negative (TN), True Positive (TP), False Negative (FN), and False
Positive (FP).

Sensitivity (%) = 100× TP/(TP + FN) (8)

Specificity (%) = 100× TN/(TN + FP) (9)

The adjacency matrix linkage bias and network patterns are
estimated using the GCA, BVTE, and MTE under various SNR
conditions. Based on the simulated networks, we also compute
the edges recovered and the adjacency matrix linkage bias.

Adjacency matrix linkage bias can be defined as follows:

1Y =
‖ Yc − Yb ‖

‖ Yc ‖
(10)

where Yc is the adjacency matrix linkage estimated without
any added noise effect, and Yb is the corresponding parameter
subjected to noise condition.

We also evaluated the strength of the networks produced
by GCA, BVTE, and MTE by considering the total number of
edges in the network. The 8 nodes network comprises 56 causal
linkages, those edges with directed causal consistent with the
originally defined edges are described as correct linkages.

Simulation Performance
As displayed in Figures 2, 5, under the linear condition, under
most cases, the GCA, MTE, and BVTE could correctly estimate
the network structures (Figures 2, 5), respectively just the same
with the original or predefined ones. Unfortunately, under the
various non-linear conditions of varied SNRs, the GCA failed to
capture the predefined network structure (Figures 3, 4, 6, 7). In
contrast, the MTE outperformed the GCA and BTE. Figures 3,
4, 6, 7 depict two of the non-linear simulation conditions(r =

f (x),r =
(2.40×9x)

1+exp(−4x) ), r = S (x),r = 1
(1+exp(−x))

, estimated by

GCA, MTE and BVTE, respectively. These figures are similar
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FIGURE 4 | Original or predefined 8 nodes simulated network and estimated non-linear networks by GCA, MTE, and BVTE with r = S (x), r = 1
(1+exp(−x))

.

to the other three non-linear simulation conditions. All the
simulated figures have the similar structure, which includes
original, GCA, MTE, and BVTE results. Besides, the results
from left to right are under the SNR of −10, −5, 5, and
10 dB, by row, respectively. In each figure, the green arrows
show unidirectional causal interactions and the red lines depict
bidirectional connections.

To further demonstrate the advantages of MTE on the
network edges recovery over GCA and BVTE, we added few
more networks to the already demonstrated figures in Figures 2–
4 by simulating additional 7 nodes with networks of structures
different from that in Figures 2–4. This is shown in Figures 5–7.
It could be noticed from the figures again that MTE was able to
recover the network edges better than GCA and BVTE both in
linear and non-linear states.

Thereafter,Tables 2, 3 quantitatively display the performances
of the average results from 200 runs with parameters of adjacency
matrix linkage bias, edges recovered, sensitivity, and specificity
under varied SNRs on the 8 nodes simulation. The values
highlighted depict the estimator or method which had the least
adjacency matrix linkage bias, the highest consistent linkage
edges or recovery edges, and also the highest sensitivity and
specificity. Out of the six simulations, the MTE outperformed the

GCA and BVTE in both linear and non-linear conditions, which
is validated by the independent paired t-test with a significance
level of 0.05.

Real P300 EEG
Participants
This experiment included 48 right-handed (self-reported)
participants, which consisted of 23 SCZ patients (10 females, age
28.87 ± 7.68) and 25 HCs (11 females, age 29.44 ± 5.75). All
participants had the normal or corrected-to-normal vision. None
of them had used anymedication, and there had been no personal
or family history of psychiatric or neurological disease. The
Ethics Committee of Peking University Sixth Hospital approved
this study. Before experiments, all participants gave the written
informed consent with their names signed on it.

Experimental Protocol
Before the commencement of the experiment, all participants
were instructed to be seated comfortably, stay relaxed and were
also asked to control their eye blinks and body movements in
the experiments. A square with a thin cross in the center and
a circle with a thin cross in the center were defined as the
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FIGURE 5 | Original or predefined 7 nodes simulated network and estimated linear networks by GCA, MTE, and BVTE with Y = A× B.

standard and target stimulus, respectively. We included a 5-
min, eye-closed resting-state session and four runs of P300 tasks
during the experiments. In each P300 run, a total of 100 stimuli,
80 standards, and 20 targets, were randomly presented on the
computer screen. Figure 8 depicts the timeline of a given P300
trial. In detail, a bold-cross cue was first presented and lasted
750ms to warn participants to focus their attention and to inform
them that a standard (or target) stimulus would appear very soon.
Either a standard or target stimulus then appeared on the screen
for 150ms. Participants were asked to press the “1” key on a
standard keyboard when they noticed a target stimulus appeared
at the same time. A 1,000-ms break was given after and the next
trial began.

EEG Recording
We recorded the EEG datasets with the Symtop amplifier
(Symtop Instrument, Beijing, China) and a 16-channel Ag/AgCl
(i.e., Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4,
T5, and T6) electrode cap (BrainMaster, Inc., Shenzhen, China).
We positioned all the electrodes used in accordance with the
10–20 international electrode placement system and digitized
with a sampling rate of 1,000Hz and online bandpass filtered at
0.05–100Hz. Electrode AFz was used as the reference and was

grounded during online recording. The total impedance during
the whole task of all electrodes was kept below 5 KΩ , during
the recording.

Effective Network
Since, we aimed to investigate the brain network deterioration of
the SCZ in the oddball task, in this study, only the EEG datasets
of the four runs of P300 tasks were included in the following
analyses. To construct an effective network, we used multiple
standard procedures to preprocess the task datasets. The multiple
procedures comprise [0.5Hz, 30Hz] offline bandpass filtering, 1-
s length data segment (ranging from 200ms before and 800ms
after targets onset [−200ms, 800ms]), [−200ms, 0ms] baseline
correction, artifact-trial removal using a threshold of ±100 µv,
and Reference Electrode Standardization Technique (REST).
Thereafter, based on the EEG time series we generated, the
GCA, MTE, and BVTE were used to construct the corresponding
weighted effective network for the HC and SCZ.

The effective network is a square asymmetric adjacencymatrix
where the number of rows and columns is equal to the number
of electrodes. The GCA, MTE, and BVTE are then applied
to estimate the adjacency matrix per task trial per subject.
Thereafter, the final weighted rest (also task), a 16× 16 adjacency
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FIGURE 6 | Original or predefined 7 nodes simulated network and estimated non-linear networks by GCA, MTE, and BVTE with (r = f (x), r = (2.40×9x)
1+exp(−4x)

).

matrix, directed brain network for each subject was acquired
by averaging matrices across all artifact-free segments (also
task trials), and eventually, we conducted independent t-test to
unearth the potential difference (p < 0.05) in the brain networks
of HC and SCZ for both methods.

Topological Differences in HC and SCZ
Figure 9, visually demonstrates differential network topology
between HC and SCZ (P < 0.05, FDR corrected) estimated
by the methods-GCA and MTE. As displayed in Figure 9, the
GCA (Figures 9A,B) and MTE (Figures 9C,D) showed much
denser connectivity for the HC, compared to that of the SCZ,
which extended on the frontal and parietal lobes. In specific,
the corresponding stronger and denser causal connectivity can
be found to flow from prefrontal/frontal to parietal lobes. In
addition, compared to the GCA, the MTE gives more causal
linkages, shows the dense edges in the frontal lobe.

Statistical Comparison for the Topographical

Difference Between HCs and SCZ Patients
We conducted further analysis on Figure 9 to prove our method
MTE over the GCA using out degree in Figure 10. The node out-
degree can be defined as the number of edges pointing out or

going out of the node. The number of edges connecting the node
with any or all other nodes is termed Node degree. If the nodes
are more connected, it means they have greater degree and vice
versa (Fornito et al., 2016). The degree of a node could be in-
degree or out-degree. For example1 in directed network, if we
have an edge with a path from node i to node j, then Node i’s
out-degree is

∑

jgij .

This has important influence on the brain network. This
information flow can influence the properties of dynamical
systems that evolve on the brain network, such as the
synchronization of networked oscillators. Moreover, different
nodes play or serve distinct topological roles in the brain
network, with highly connected nodes exerting a particularly
important influence over network function (Fornito et al., 2016).
Thus, in our study after the construction of the differential
network topology, we based our analysis on the information flow
out of the node to further explain Figure 9.

After the out degree analysis, our proposed method-MTE
still proved to be better than the conventional method GCA. In
Figure 10, our method proved better because it could help locate

1Network/Graph Theory Graph-based representations Protein-Protein

Interaction.
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FIGURE 7 | Original or predefined 7 nodes simulated network and estimated non-linear networks by GCA, MTE, and BVTE with r = S (x), r = 1
(1+exp(−x))

.

the network channels well which the GCA method couldn’t.
There are significant differences between the HCs and SCZ for
all the methods. However, MTE showed more outgoing degrees
compared to GCA. The out degree for MTE could help locate the
brain regions or channels better than the GCA and with this we
could see the nodes which are highly connected and those with
less or no connections. In Figure 10, MTE has more variation
of information between all the channels compared to GCA. The
colors correspond to a variation of information between the
regions or channels (Van Den Heuvel and Fornito, 2014; Yang
et al., 2017). GCA has the following results for its out degrees for
HCs and SCZ patients, respectively:

Channels (Fp1 of HC and Fp1 of SCZ, Fp2 and Fp2, F3 and
F3, F3 and F3, F4 and F4), have no difference in their channels.
Meanwhile, the channels (F7 and F7, F8 and F8, C4 and C4, T3
and T3, T4 and T4, T5 and T5, T6 and T6, P3 and P3, P4 and
P4, O1 and O1, O2 and O2) had a difference between them. The
highest out degree for HCs is 2 for the channels- C2, C4, P3, and
O1. SCZ patients had 1 as the highest out degree.

For MTE, only the channels (F8 and F8, C4 and C4) had no
difference in between them. The channels (Fp1 and Fp1, Fp2 and
Fp2, F7 and F7, F3 and F3, F4 and F4, T3 and T3, T4 and T4,
C3 and C3, P3 and P3, P4 and P4, T5 and T5, T6 and T6, O1

and O1, O2 and O2) had a difference between their channels. In
all, channels F3, P3 T3 and T5 had the highest out degrees for
HCs whiles channel T4 also had the highest out degree for SCZ
patients (Rubinov and Bullmore, 2013; van Straaten and Stam,
2013). The analysis above clearly show that our methodMTE still
had the best performance in the out degree condition. It hadmore
information flow from out of the nodes and also more channel
influence than the GCA method.

DISCUSSION

Non-linearity characterizes our daily activities. Biological
systems, such as EEG, is linear and inherently non-linear.
Although linear methods are important and have obtained
satisfying findings in EEG analysis, they compromise the
underlying non-linearity characteristics or non-linear causal
dynamics. The applications of non-linear methods in EEG
analysis will, therefore, pave a way for logical steps that can
be used to enhance the characterization of these signals. The
GCA has the problem of model dependency, statistical and
conceptual problems, and it ignores the system dynamics (Stokes
et al., 2018). BVTE analysis also lead to spurious and redundant
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TABLE 2 | A consistent number of edges recovered by GCA, BVTE, and MTE methods.

Causal relationship

function and

description

Linear/Non-

linear

Gaussian noise

SNR (dB)

GCA BVTE MTE

Bias Edges recovered BVTE bias Edges recovered Bias Edges recovered

Y = A× B Linear −10 0.98 ± 0.09 48.01 ± 1.08 0.99 ± 0.08 47.86 ± 1.09 0.61 ± 0.13 53.37 ± 0.79

−5 0.95 ± 0.07 48.81 ± 1.04 0.97 ± 0.05 48.74 ± 1.06 0.59 ± 0.12 53.39 ± 0.78

5 0.75 ± 0.05 51.22 ± 1.01 0.76 ± 0.04 50.65 ± 1.03 0.48 ± 0.11 53.58 ± 0.67

10 0.62 ± 0.02 53.36 ± 0.78 0.65 ± 0.02 52.78 ± 0.80 0.36 ± 0.09 54.12 ± 0.41

r = C (x)

r = cos (x) + sin (x)

Non-linear −10 0.99 ± 0.08 38.81 ± 3.23 0.98 ± 0.05 42.95 ± 3.15 0.64 ± 0.08 44.58 ± 0.10

−5 0.97 ± 0.06 38.91 ± 3.03 0.82 ± 0.03 45.97 ± 3.01 0.60 ± 0.07 47.99 ± 0.07

5 0.78 ± 0.04 39.98 ± 3.01 0.73 ± 0.03 48.99 ± 2.47 0.52 ± 0.04 50.18 ± 0.04

10 0.72 ± 0.01 42.28 ± 2.88 0.64 ± 0.02 50.13 ± 2.70 0.51 ± 0.02 51.30 ± 0.01

r = f (x)

r = (2.40×9x)
1+exp(−4x)

Non-linear −10 0.98 ± 0.08 42.58 ± 2.55 0.78 ± 0.08 44.89 ± 2.43 0.58 ± 0.09 47.99 ± 0.12

−5 0.95 ± 0.07 45.69 ± 2.48 0.65 ± 0.05 47.67 ± 2.22 0.55 ± 0.07 49.68 ± 0.10

5 0.69 ± 0.03 47.82 ± 2.58 0.58 ± 0.02 49.32 ± 2.14 0.53 ± 0.04 51.04 ± 0.08

10 0.63 ± 0.02 49.21 ± 2.45 0.54 ± 0.01 51.16 ± 1.25 0.52 ± 0.02 52.06 ± 0.05

r = cos inusoidal (x)

r = cos (2πx)

Non-linear −10 0.99 ± 0.05 38.78 ± 3.33 0.73 ± 0.08 46.18 ± 3.29 0.67 ± 0.14 48.96 ± 0.25

−5 0.89 ± 0.04 43.71 ± 2.25 0.67 ± 0.03 47.71 ± 2.55 0.65 ± 0.13 48.99 ± 0.24

5 0.71 ± 0.02 45.01 ± 2.20 0.59 ± 0.02 48.01 ± 2.10 0.62 ± 0.11 49.70 ± 2.03

10 0.68 ± 0.01 46.86 ± 2.17 0.56 ± 0.01 50.86 ± 1.13 0.59 ± 0.07 51.42 ± 0.01

r = H (x)

r = exp (sin (2πx))

Non-linear −10 0.99 ± 0.08 44.79 ± 1.79 0.68 ± 0.06 46.99 ± 0.32 0.69 ± 0.15 48.97 ± 0.29

−5 0.98 ± 0.03 44.99 ± 0.99 0.67 ± 0.04 47.87 ± 0.11 0.68 ± 0.14 48.99 ± 0.09

5 0.70 ± 0.02 46.28 ± 0.89 0.64 ± 0.02 48.23 ± 0.72 0.61 ± 0.10 50.02 ± 0.05

10 0.59 ± 0.01 46.99 ± 0.61 0.59 ± 0.10 49.89 ± 0.45 0.58 ± 0.07 51.88 ± 0.02

r = S (x)

r = 1
(1+exp(−x))

Non-linear −10 0.97 ± 0.09 47.55 ± 1.14 0.63 ± 0.07 47.67 ± 0.38 0.66 ± 0.11 48.98 ± 0.74

−5 0.95 ± 0.07 48.32 ± 1.12 0.61 ± 0.03 49.42 ± 0.15 0.60 ± 0.09 50.12 ± 0.68

5 0.79 ± 0.05 49.34 ± 1.08 0.58 ± 0.09 49.78 ± 0.60 0.54 ± 0.07 51.03 ± 0.20

10 0.56 ± 0.02 49.99 ± 0.06 0.55 ± 0.07 51.88 ± 0.23 0.52 ± 0.04 52.45 ± 0.18

interactions and may miss synergistic interactions between
multiple relevant sources and the target (Wollstadt et al., 2019).
In the current study, we thus proposed to apply the MTE to the
task EEGs of the SCZ and HC, to investigate the mechanism
explaining the cognitive deficits in the SZ, from the perspective
of effective connectivity.

GCA computation or estimation encounter many problems.
It can either be severely biased or have high variance and these
shortcomings lead to spurious, redundant, etc. results. GCA
estimation or computation alone are not interpretable without
examining the component behaviors of the system model even if
these estimations are done correctly and also ignoring the critical
components system’s dynamics. On the basis of these analysis,
the idea or notion of causality quantified is not compatible
with the objectives of many neuroscience research investigations
and this has led to highly counterintuitive and potentially
misleading results with GCA (Stokes et al., 2018). GCA in time
domain cannot correctly determine how strongly one time series
influences the other especially when there is directional causality
between two time series. In other words a larger GCA value does
not necessarily mean higher real causality, or vice versa (Hu et
al., 2016). Moreover, many connectivity measures like GCA that
are based on the autoregressive model do not always reflect true
neuronal connectivity (Schindler, 2011). TE was also formulated
for the bivariate case; that is between a single source and a single
target. However, in a multivariate setting, bivariate analysis may

lead to false positive or false negative results inferring spurious or
redundant causality or interactions and also missing synergistic
interactions between important sources and the target. Usually,
these many sources together send more information into the
target than what could be detected from examining source
contributions individually (Tanaka et al., 2013; James et al., 2016;
Wollstadt et al., 2019). These findings are confirmed by our study
in Tables 2, 3 and Figures 2–7, 9, 10, especially the networks
revealed by the methods on the real data.

The MTE could detect both linear and non-linear signals
better than the GCA and the BVTE and is able to account for all
relevant sources of a target. By predefining the simulated network
structure as well as the corresponding time courses, we applied
the GCA, BVTE, and MTE methods to estimate the defined
flow matrix and the directed networks under the influence of
Gaussian noise in order of −10, −5, 5, and 10 dB, and evaluated
the performance of the GCA, BVTE, and MTE under adjacency
matrix linkage bias, edges recovered, sensitivity, and specificity.
Figures 2, 5 demonstrate that the GCA,MTE, and BVTE have the
potential for effectively estimating the originally defined network
patterns under the linear condition of varied SNRs, respectively.
However, as displayed in Figures 3, 4, 6, 7 corresponding to
two of the various non-linear conditions, the GCA was not able
to recover the original defined network patterns and produced
many false linkages. Even though, BVTE was able to recover the
predefined network but in contrast, the MTE outperforms the
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TABLE 3 | Sensitivity and specificity analysis by GCA, BVTE, and MTE methods.

Causal relationship

function and

description

Linear/Non-

linear

Gaussian noise

SNR(dB)

GCA BVTE MTE

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Y = A× B Linear −10 89.59 ± 9.61 87.33 ± 2.62 85.53 ± 9.74 86.92 ± 2.62 91.92 ± 7.12 88.57 ± 5.69

−5 92.64 ± 4.56 89.45 ± 5.66 89.74 ± 7.66 87.67 ± 5.71 93.98 ± 4.34 90.75 ± 3.32

5 94.72 ± 7.70 92.57 ± 6.72 93.83 ± 6.50 91.71 ± 7.43 95.88 ± 4.20 93.79 ± 5.51

10 95.98 ± 3.56 94.81 ± 5.52 94.87 ± 4.64 93.63 ± 7.33 97.99 ± 2.33 96.49 ± 3.61

r = C (x)

r = cos (x) + sin (x)

Non-linear −10 68.34 ± 14.59 74.58 ± 5.34 85.34 ± 4.31 84.87 ± 5.56 88.54 ± 1.14 88.21 ± 2.42

−5 75.52 ± 7.31 76.88 ± 6.43 87.43 ± 6.23 88.12 ± 4.40 91.49 ± 1.07 91.98 ± 2.32

5 83.74 ± 5.17 84.89 ± 3.26 90.61 ± 7.30 91.77 ± 4.17 93.91 ± 1.50 94.67 ± 3.12

10 91.07 ± 2.48 92.33 ± 1.16 93.11 ± 3.50 94.04 ± 1.82 96.01 ± 0.15 96.99 ± 1.04

r = f (x)

r = (2.40×9x)
1+exp(−4x)

Non-linear −10 48.84 ± 2.41 72.68 ± 5.72 76.94 ± 3.54 82.87 ± 4.78 79.51 ± 3.86 85.96 ± 3.68

−5 51.92 ± 1.39 78.96 ± 3.47 83.96 ± 2.87 87.31 ± 4.60 86.78 ± 2.91 89.10 ± 5.71

5 69.98 ± 2.89 87.88 ± 4.87 89.93 ± 1.78 87.72 ± 5.13 93.78 ± 0.98 91.09 ± 3.77

10 74.69 ± 2.76 91.21 ± 1.87 93.91 ± 2.19 90.88 ± 1.40 95.04 ± 1.58 93.16 ± 0.83

r = cos inusoidal (x)

r = cos (2πx)

Non-linear −10 40.22 ± 21.25 82.40 ± 4.48 47.69 ± 2.71 83.54 ± 3.63 52.83 ± 1.28 87.67 ± 3.56

−5 48.78 ± 2.96 89.31 ± 5.69 64.35 ± 1.50 90.09 ± 0.14 66.14 ± 0.89 92.18 ± 1.16

5 67.09 ± 4.58 93.17 ± 0.97 85.95 ± 5.66 91.08 ± 0.30 88.29 ± 4.09 93.99 ± 2.21

10 74.42 ± 2.84 94.98 ± 1.78 90.87 ± 1.11 92.20 ± 0.61 93.14 ± 0.89 94.58 ± 5.10

r = H (x)

r = exp (sin (2πx))

Non-linear −10 49.71 ± 17.20 69.36 ± 4.66 69.88 ± 2.54 86.12 ± 0.41 72.26 ± 1.42 87.85 ± 1.28

−5 57.12 ± 6.53 71.06 ± 1.77 84.63 ± 2.20 86.92 ± 0.13 86.07 ± 1.50 88.96 ± 0.88

5 68.09 ± 3.36 74.91 ± 0.82 86.12 ± 4.14 88.98 ± 0.94 89.81 ± 0.23 91.74 ± 1.65

10 77.82 ± 5.63 79.99 ± 0.74 91.90 ± 1.72 93.87 ± 2.19 94.51 ± 1.11 95.83 ± 1.32

r = S (x)

r = 1
(1+exp(−x))

Non-linear −10 34.85 ± 7.86 66.87 ± 2.85 70.91 ± 3.13 83.73 ± 1.77 73.18 ± 2.63 86.98 ± 2.84

−5 42.74 ± 5.83 71.93 ± 4.59 76.89 ± 1.25 86.42 ± 3.87 79.99 ± 0.82 88.79 ± 4.63

5 53.42 ± 6.73 76.89 ± 2.96 85.33 ± 0.84 87.75 ± 4.44 87.78 ± 1.14 90.03 ± 3.50

10 74.38 ± 7.42 79.61 ± 1.13 88.15 ± 2.37 89.56 ± 1.41 91.27 ± 1.08 92.11 ± 0.24

GCA and the BVTE under same conditions (Figures 3, 4, 6, 7).
The MTE is able to suppress the turbulent noise contaminated
and efficiently estimated most of the original or predefined
network linkages, which is unlike the GCA affected by the noise
and thus performed badly. Specifically, the strength of edges
recovered and the reduction of edges strength with bias errors,
sensitivity, and specificity are shown in Tables 2, 3 which reveals
clearly how these three methods are influenced by noise in linear
and non-linear conditions. With consistency, MTE always held
a good performance in all the functional indexes with less or
lowest bias errors to GCA and BVTE in a mean of 200 runs.
That is, in the linear and five non-linear simulations under all
the SNR conditions, the MTE could recover highest linkages
closed to the predefined network structure, compared to the
GCA and BVTE, as well as the highest sensitivity and specificity.
As illustrated previously, the MTE is capable of overcoming
spurious or redundant interactions and is also able to reveal
synergistic interactions between multiple relevant sources that
the GCA and BVTE lack. The topological differences between the
three methods indeed show clearly that the MTE method could
estimate the networks better than the GCA and BVTE both in the
simulation and the real task EEG computation.

A research by Bassett and Bullmore (2009) reported
that the causal interactions between the components of the
prefrontal-limbic system determines the global trajectories
of the individual’s brain activation, with the strengths and

modulations of these causal interactions being potentially key
components determining or underlying the differences between
HC individuals and those with SCZ. Research also has it that
SCZ patients have significant reduction in strength of functional
connectivity and increased diversity of functional linkages.
Meanwhile topologically, functional brain network has a
reduction on clustering and small-worldness, probability of high-
degree hubs, but increased robustness in the SCZ group. The
medial parietal, premotor and cingulate, and right orbitofrontal
cortical nodes of functional networks in SCZ also locally saw a
reduction in degree and clustering (Lynall et al., 2010). A research
conducted in Jalili and Knyazeva (2011) and Ray et al. (2017)
indicated that many higher deficits in cognition in SCZ may be
as a result of dysfunction of cognitive control deficits in SCZ. In
a comparative analysis between SCZ and HCs, SCZ individuals
demonstrated a reduced activation in the dorsolateral prefrontal
cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), dorsal
anterior cingulate cortex (ACC), pre-SMA, ventral premotor
cortex, posterior areas in the temporal and parietal cortex, and
sub-cortical areas. Further meta-analysis also revealed disrupted
and decreased resting-state functional connectivity (rsFC) within
the self-referential network and default mode network which play
roles in the malfunction of information processing in SCZ, while
the core network might act as a dysfunctional hub of regulation
(Li S. et al., 2019). These meta-analysis results are consistent with
our present studies in Figures 9, 10.
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FIGURE 8 | The timeline of a given P300 trial. In each P300 trail, a 750-ms

cue, 150-ms stimulus, and 1,000-ms break were added. The squares and

circles with a thin cross in the center represent the standard and target stimuli

in that order.

FIGURE 9 | Statistical analysis for the differential network topology between

the HC and SCZ estimated by the GCA (A,B) and MTE (C,D). The first column

depicts that the connectivity of HC is stronger than that of SCZ, whereas the

second column depicts that the connectivity of SCZ is lesser or weaker than

that of HC. In each subfigure, the red and green lines depict bidirectional and

unidirectional connectivity, respectively.

Based on our analysis and other findings, SCZ patients
most often find it difficult to retain their attention during
tasks unlike the HC. Usually the altered brain regions affect
the information processing in the SCZ and these disruptions
give rise to P300 malfunctions, which eventually disturbs the
brain at rest in terms of abnormalities (Li F. et al., 2019). As
a result of the malfunctioning of neurotransmitters, the ability
of the SCZ patients to perceive reality is dumped (Karlsgodt

FIGURE 10 | Statistical comparison for the topographical difference between

HCs and SCZ using out degree, estimated by the GCA (A,B) and MTE (C,D).

The first column depicts the connectivity of HC is stronger than that of SCZ,

whereas the second column depicts the connectivity of SCZ is weaker than

that of HC.

et al., 2010; Alonso-Solís et al., 2015). In fact, people living
with psychiatry or mental problems have severe brain network
deterioration (Fogelson et al., 2014). The disruption of large-
scale brain regions can largely account for the dysfunction of
brain function in people living with the SCZ, and this disruption
of the interregional connection may give rise to failure of the
functional integration in the SCZ, thus paving a way for proper
explanation of the abnormal behavior and cognitive impairment
in patients with the SCZ (McKiernan et al., 2014; Zhang et al.,
2019). Our findings in Figures 9, 10 indeed show the differential
network topology and its comparison which show clearly the
complete disruption of the multiple brain regions of the SCZ in
relation to the HC agreeing with these studies. In specific, the
HC showed the denser connectivity compared to that of the SCZ
and these connections are extended on the frontal and parietal
lobes. In essence, an alteration in causal connectivity between
parts of the prefrontal cortex and the limbic system is found in
Menon (2011), Qiu et al. (2014). The prefrontal cortex, the basal
ganglia, and limbic system, etc. are interconnected and hence an
attack of infection on one region will eventually affect the others.
These above considerations drive us to conclude that the directed
causal connectivity from prefrontal/frontal to parietal lobes is
deteriorated, which then leads to the deficits in the P300, e.g.,
decreased P300 amplitudes.

Specifically, Figures 2–7, 9, 10 again show clearly that the
MTE method could estimate the networks better than the GCA
and BVTE not only in the simulation (Figures 2–7, Tables 2, 3),
but also in the real EEG application with GCA in Figures 9, 10.
It holds its superiority over the GCA and BVTE in simulation
and with GCA in real EEG analyses by giving a more satisfying
performance. Our study and other studies (Gourévitch et al.,
2006; Liu and Aviyente, 2012) have found that the GCA is not
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robust enough in detecting non-linear linkages but it seems to be
effective in detecting linear linkages. Also though BVTE could
detect the non-linear causality better than GCA, in contrast,
the MTE can address this problem. The MTE is able to handle
spurious or redundant interactions and also unearth synergistic
interactions between multiple relevant sources (Stokes et al.,
2018; Wollstadt et al., 2019). Thus, when exploring the brain
network deterioration in the SCZ patients, the MTE indeed
outperforms the GCA and BVTE and seems to be a good choice.

CONCLUSION

In summary, we testified to the fact that non-linear dynamics
can give clearer information for better understanding of
the causal dynamic issues surrounding EEG signals when
it comes to its inherent non-linearity. Compared to the
GCA and BVTE, the MTE was remarkably helpful in
marking the causality either in a linear or non-linear
system, which uncovered the brain dysfunction in effective
connectivity for the SCZ that is deteriorated at the frontal and
parietal lobes.
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