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Successive patterns of activation and deactivation in local areas of the brain indicate

the mechanisms of information processing in the brain. It is possible that this process

can be optimized by principles, such as the maximization of mutual information and the

minimization of energy consumption. In the present paper, I showed evidence for this

argument by demonstrating the correlation among mutual information, the energy of

the activation, and the activation patterns. Modeling the information processing based

on the functional connectome datasets of the human brain, I simulated information

transfer in this network structure. Evaluating the statistical quantities of the different

network states, I clarified the correlation between them. First, I showed that mutual

information and network energy have a close relationship, and that the values are

maximized and minimized around a same network state. This implies that there is an

optimal network state in the brain that is organized according to the principles regarding

mutual information and energy. On the other hand, the evaluation of the network structure

revealed that the characteristic network structure known as the criticality also emerges

around this state. These results imply that the characteristic features of the functional

network are also affected strongly by these principles. To assess the functional aspects

of this state, I investigated the output activation patterns in response to random input

stimuli. Measuring the redundancy of the responses in terms of the number of overlapping

activation patterns, the results indicate that there is a negative correlation betweenmutual

information and the redundancy in the patterns, suggesting that there is a trade-off

between communication efficiency and robustness due to redundancy, and the principles

of mutual information and network energy are important to network formation and its

function in the human brain.
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1. INTRODUCTION

Interactions of ∼100 billion neurons, which are a part of the
human brain, maintain its functions within a hierarchical and
modular network structure (Azevedo et al., 2009; Meunier et al.,
2010; Park and Friston, 2013). Empirical evidence demonstrate
that a stimulus for local excitatory neurons at a cellular level can
be etiologically associated with large-scale brain activity, which
may propagate through numerous neuronal interconnections
(Beggs and Plenz, 2003; Beggs, 2008; Lee et al., 2010; Fenno et al.,
2011; Tagliazucchi et al., 2012). Over the years, studying task
evoked brain activity via whole-brain imaging has been successful
in mapping specific cognitive functions onto distinct regions of
the human brain (e.g., Kanwisher et al., 1997).

Furthermore, several studies that have examined the brain’s
responses to more complex tasks, reported that various cognitive
functions arise from interactions between regions of the brain
rather than independent single activities in distinct regions of
the brain (Ghazanfar and Schroeder, 2006; Bressler and Menon,
2010). In the large-scale networks of the human brain, activation
signals from segregated and specialized regions are integrated in
information processing (Tononi et al., 1994; Hilgetag and Grant,
2000; Sporns, 2013). Thus, the brain can be conceptualized as
an information processing system, hereby successive patterns
of activation and deactivation in multiple distributed regions
constitute integrated information processing. Furthermore, the
brain must adapt to changing environments, so these processes
might be optimized to ensure rapid and flexible response (Bassett
et al., 2006; Kitzbichler et al., 2009; Clark, 2013; Park and Friston,
2013; Mnih et al., 2015). On the other hand, the brain is limited
by its energy requirements and by other biological realities
(Bullmore and Sporns, 2012). Thus, the need to maximize
efficiency of information processing and minimize total energy
consumption may regulate the mechanisms underlying the
structure and the function of the brain (Linsker, 1990; Friston,
2010; Bullmore and Sporns, 2012).

This argument is known as the energy efficiency hypothesis,
which covers a wide range of activities from the cellular level of
neurons to the global level observed at the scale of the whole
brain (Bullmore and Sporns, 2012; Yu and Yu, 2017). Evidence
for this hypothesis has shown that the energy constraints and
limitations may affect multiple aspects of the brain neurons
by inducing efficient activities (e.g., Niven and Laughlin, 2008;
Tomasi et al., 2013; Yu and Yu, 2017). The energy consumption
models of neurons have especially been studied in detail, and they
have revealed the requirements from energy efficiency effects on
neuronal activities or on those at the cortical level follow the
energy efficient principle (Wang et al., 2008, 2015, 2018; Wang
and Wang, 2014).

In the present paper, I present evidence that this pattern
is especially the case in the information integrating processes
in a large scale network, demonstrating that maximization
and minimization principles guide the network structure and
activation patterns of the human brain. Based on functional
connectome data acquired using resting-state functional MRI
(fMRI) (Sporns, 2002; Fox and Raichle, 2007; van den Heuvel
et al., 2008; Greicius et al., 2009; Biswal et al., 2010; Van Dijk

et al., 2010; Brown et al., 2012), I simulated information transfer
by applying randomly activated signals to a network represented
by brain connectivity matrices (Takagi, 2018). I measured mutual
information (Linsker, 1990) between random stimulus signals
and their responses and also quantified the network energy
associated with these activities (Hopfield, 1984; Hinton and
Salakhutdinov, 2006). By varying the functional connectivity
network between noisy and sparse states, I showed an explicit
correlation between these quantities. The results suggest that
there is an optimal intermediate between these states, whereby
mutual information is maximized and the network energy
is minimized.

On the other hand, evaluation of the network structure
around this optimal intermediate state revealed some features
that are characteristic of the functional connectome, such as
small-world and criticality (Watts and Strogatz, 1998; Achard
et al., 2006; Bassett and Bullmore, 2006; Hagmann et al.,
2008; van den Heuvel and Sporns, 2011; Takagi, 2017, 2018).
These characteristic attributes are thought to explain the
brain’s rapid adaptive responses to external stimuli and the
robustness of its internal communication (Kitzbichler et al.,
2009; Chialvo, 2010; Tagliazucchi et al., 2012). Experiments at
a cellular level demonstrated that neuronal firing successively
propagated similar to neuronal avalanches; however, their size
has no characteristic scale (Beggs and Plenz, 2003; Beggs,
2008). However, analyzing the fMRI dynamics revealed that
the dynamic and statistical properties which regulate activation
events on a scale of the whole brain were identical (Tagliazucchi
et al., 2012). This feature of the dynamics appeared across
multiscale from the cellular level to the brain macro scale
is explained by the feature of the criticality, the absence of
the characteristic scale (Beggs and Plenz, 2003; Beggs, 2008;
Tagliazucchi et al., 2012). Additionally, optogenetic methods
combined with fMRI facilitate direct visualization of the global
level activity caused by local neuronal excitation (Lee et al.,
2010; Fenno et al., 2011). Besides the absence of a characteristic
scale for these dynamical activation events, an identical feature
that is predicted from the criticality can be confirmed in
the functional network structure, which was constructed using
the spatio-temporal correlations between brain regions. To
illustrate, network node degree statistics exhibit the distribution
characteristic similar to the critical phenomenon (Achard et al.,
2006; Bassett and Bullmore, 2006; Hagmann et al., 2008; Takagi,
2017). Moreover, within these networks, strongly connected
pathways compose core structures with highly connected hub
regions that modulate information processing in the brain
(Hagmann et al., 2008; van den Heuvel and Sporns, 2011).
Processing in these regions may control multiple brain functions
(Rubinov and Sporns, 2011). The results show that, to ensure
optimal efficiency and energy use, the network structure
converges on this characteristic state exhibiting small-world
and criticality.

Further analyses of the simulation results of the information
transfer model revealed direct evidence that this characteristic
state regulates activation patterns (Takagi, 2018). In the
simulation, response patterns exhibited redundancy in that
they contained repeatedly co-activated regions with different
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stimulation signals. In the cerebral cortex, activation patterns
exhibit overlapping that can be measured as the proportion of
regions activated equally in the different patterns. This can in
turn be related to cognitive processes, such as memory retrieval
(Haxby et al., 2001; Kumaran et al., 2016). While functionally
overlapped regions may offer robustness in communication and
facilitate adaptation (Whitacre, 2010; Bassett et al., 2018), excess
overlapping causes interference. This can result in decoding
difficulties that can be costly in terms of metabolic consumption
(Kumaran et al., 2016). In the present study, the average of the
overlapping numbers depended on the mutual information and
the network energy. It showed the negative correlation to the
mutual information and the correlation to the network energy.
The results imply that the principles of mutual information and
network energy strongly affect the activation patterns and the
underlying structure of the functional network in the brain.

On the other hand, it is known that the functional connectivity
is flexible within certain dynamics; for example, alterations
in diseased brains, or the break-down from criticality in the
unconsciousness, have been reported (Tagliazucchi et al., 2016;
Song et al., 2019). As such, the robustness of the simulation
results in this paper are validated, in comparison to different
datasets, such as those with different sized matrices with different
sets of nodes and those that were constructed from the structural
connections based on diffusion tensor imaging (DTI) (Sporns
et al., 2005; Brown et al., 2012). They also indicate that the
relationships between the mutual information, the energy of the
activation, and the activation patterns that emerge are stable
within these networks as well.

2. MATERIALS AND METHODS

2.1. Connectome Datasets and Information
Transfer Model
2.1.1. Functional Connectome Datasets
I modeled information transfer in the large scale network of the
human brain using a functional connectivity matrix constructed
from fMRI observation (Takagi, 2018). As explained in the
introduction, a stimulus at the cellular level can trigger avalanche
events at a whole-brain scale due to the characteristic features
of the critical phenomenon. Whole-brain scale observation
through fMRI revealed that neighboring voxels overlapping in
their dynamics show similarities in time series data, because of
successive appearances of these events (Calhoun et al., 2009;
Smith et al., 2011; Smith, 2012; Tagliazucchi et al., 2012).
Therefore, it is possible that the information relevant to the
underlying brain activity is compressed (Tagliazucchi et al.,
2012). Furthermore, a relevant network model is constructed by
extracting nodes, through independent component analysis or
clustering voxels on the basis of the similarity (Calhoun et al.,
2009; Smith et al., 2011; Smith, 2012; Tagliazucchi et al., 2012).

To accurately analyze the network in the whole-brain scale,
hundreds of nodes are typically utilized to construct a network
from fMRI time series data (Smith, 2012; Finn et al., 2015).
The validity of the network construction is then indicated by
the robustness for different individual subjects (Smith, 2012;

Finn et al., 2015). Here, the validation of the pre-processed
network datasets was demonstrated by the results of my
previous study using the same dataset, which reported a stable
statistical significance regarding the network structure (Takagi,
2018). Additionally, the robustness of the current study and
the consistency with other studies will be discussed in the
final section.

For each combination of single regions in the brain, the
connectivity matrix was described as a matrix (wij), whereby (i, j)
represented the connection weight between regions denoted as i
or j. For the time series data of the fMRI image, the connectivity
was calculated as the Pearson correlation coefficient between
voxels corresponding to these regions. In the present study, I
used the preprocessed connectivity matrices, which are available
from http://umcd.humanconnectomeproject.org/: the website of
the USC Multimodal Connectivity Database (Brown et al.,
2012), which contains matrices constructed from the functional
connectome datasets of the “1,000 connectome project” (Biswal
et al., 2010). The original datasets in this project were obtained
using resting-state fMRI (R-fMRI), which records activation
patterns in brain regions during the resting state and is thought to
describe the common architecture of the human brain (van den
Heuvel et al., 2008; Greicius et al., 2009; Biswal et al., 2010;
Van Dijk et al., 2010; Brown et al., 2012). The matrices comprised
N × N elements with N = 177 brain regions and were assumed
to cover the entire brain. The details of the processing sequence
to construct these matrices are shown in the above website and,
in this analysis, I use 986 matrices for different individuals, which
are available from the same site (Brown et al., 2012).

Brain activity naturally fluctuates and the connectivity matrix
contains noise and artifacts (Eguiluz et al., 2005; Fox and Raichle,
2007; Brown et al., 2012). To construct the network structure
with significant elements, threshold was applied to the matrix
(wij) (Eguiluz et al., 2005; Brown et al., 2012; Zuo et al., 2012).
Because strongly connected pathways form core structures that
are relevant to the network structure of the brain (Eguiluz
et al., 2005; Brown et al., 2012), I removed connections with
small connectivity weights using a threshold and constructed
the network with the residual connections. After introducing
the threshold wt for the connectivity weight wij, I obtained a
network description consisting of connections corresponding
to the |wij| > wt elements. In this analysis, considering the
differences between individuals, I defined the threshold value
of each individual connectivity matrix wt based on the average
connectivity< |w| > and the standard deviation σ|w|. I calculated
< |w| > and σ|w|, and defined the cut-off threshold in terms of
the following equation:

wt =< |w| > +n · σ|w|, (1)

with a parameter of n.

2.1.2. Structural Connectome Dataset
The simulation results based on the above functional connectome
datasets were compared to the structural connectome, and the
other connectome datasets describing the physical connection
between brain regions. The structural connectome datasets are
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constructed by the diffusion tensor imaging (DTI) method,
which traces the fiber tracts between brain regions and forms
another network at the whole brain scale, known as the structural
connectome (Sporns et al., 2005). The dataset is available from
the above website (http://umcd.humanconnectomeproject.org/)
with the pre-processed matrix of the connectivity strength being
the same to the fMRI cases (Brown et al., 2012). The DTI dataset
is taken from a subsect of the “1,000 connectome project,” tagged
as “NKI_Rockland” for the “Study Name” item, from the Nathan
Kline Institute (NKI)/Rockland sample in the web site. It contains
the matrices of 196 individuals, and each matrix has N = 188
matrix elements (188 × 188).

2.1.3. Information Transfer
Information in the brain is transferred by successive signal
propagation; this can be represented by the activated state of
each site (Tononi et al., 1994; Hilgetag and Grant, 2000; Beggs
and Plenz, 2003; Ghazanfar and Schroeder, 2006; Beggs, 2008;
Bressler and Menon, 2010; Sporns, 2013; Takagi, 2018). For
each node in the functional network, three states {1,−1, 0}
were assigned because the responses of neuronal activity can be
categorized as positive and negative (Fox et al., 2005; Shmuel
et al., 2006). In this representation, the inactivated regions were
assigned the 0 state, while the two states at ±1 represented
positive and negative activation states, respectively.

When considering information transfer, I represented a whole
state of the brain as S = (s1, . . . , sN) for a network size N,
whereby the i-th node was assigned as si ∈ {1,−1, 0}. I could
then calculate the responses R = (r1, . . . , rN) ri ∈ {1,−1, 0} for
a given connectivity matrix and threshold. For the given set of
S and connectivity matrix (wij), the response state was evaluated
using the following equation:

rj = σ (
∑

i∈N

wijsi). (2)

I denoted
∑

i∈N wijsi as r̂j, so a threshold of wt , σ (r̂j) was defined
as rj = 1,−1, 0 for cases r̂j > wt , r̂j < −wt , and |r̂j| ≤ wt . In this
simulation, I calculated the information transfer of stimuli S. The
input signals were taken randomly, although I did use the same
probability for positive and negative activation. I then assigned 1
and −1 to each input signal si, with the probability p being set to
0 in the other cases with the probability 1−2p. Each condition in
this simulation was repeated 100 times with each input signal.

2.2. Statistical Quantities of Information
Transfer Model
2.2.1. Mutual Information
To measure information transfer from the imposed stimuli to
the responses, I evaluated the mutual information for the set
of stimulus signals S and the corresponding responses R. It is
defined as H(R) − H(R|S) with H(R), the information of the
response R, and H(R|S), the conditional entropy. This quantity
was used to assess the efficiency of information transfer in the
neural network models and in real biological data (Beggs and
Plenz, 2003; Beggs, 2008).

In the analysis, themutual information of the transfer between
i and j nodes was estimated using the following equation:

m(i, j) = H(si)+H(rj)−H(si, rj), (3)

where the entropy H(si) and H(rj), as well as the joint entropy
H(si, rj), were calculated using the probabilities of each state:
si, rj ∈ {±1, 0}. Next, this quantity was estimated for the whole
network as follows: m =

∑
j < m(j)) > /N, with averaging as

< m(j) >= (
∑

im(i, j))/(N − 1) for all possible connections of
each node j.

2.2.2. Network Energy
The energy of the brain network is described in different ways,
which are mainly categorized into wiring costs for organizing the
network structure and those related to their activity. The total
number of connections determine the wiring cost to organize the
network structure (Achard and Bullmore, 2006; Bullmore and
Sporns, 2012). Thus, the wiring cost based on the topological
structure basically describes the energy demands of the brain
functional network. It is assumed that many characteristic
attributes of the brain network can be explained by minimizing
the wiring cost (Bullmore and Sporns, 2012).

Hence, I defined this energy, the wiring cost denoted as EW ,
using the following equation:

EW =
∑

i,j

ai,j, (4)

where ai,j denotes the element of the adjacency matrix. For an
undirected topological graph of a given matrix, the connection
for each pair of i and jwas represented using the adjacencymatrix
element, which is connected as ai,j = 1 for |wij| > wt , with
threshold wt , and disconnected as ai,j = 0 in other cases.

On the other hand, the Hopfield energy gives a definition
related to the dynamics and the associated information of
the neural networks. For a given network state of activation,
the Hopfield energy provides one definition of the network
energy. It models the network state of the neurons and can
also be applied to artificial neuronal networks (Hopfield, 1984;
Hinton and Salakhutdinov, 2006). Hopfield networks and similar
types of energy representation have been introduced to describe
the energy state of neural networks, modeling the spin glass
network (Hopfield, 1984). One example of the artificial learning
models that use this type of function is the restricted Boltzmann
machine, which evolves by adjusting the network variables
according to rules learned from the energy function (Hinton and
Salakhutdinov, 2006). It is defined as

EH = −(
∑

i,j

riwi,jrj) (5)

whereby I took a bias-free case in accordance with the
transfer model Equation (2).

In the original definition of the Hopfield energy (Hopfield,
1984) bias terms are present, such as those expressed as

∑
i ribi

with constant bias bi assigned the value for each node. In

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2020 | Volume 13 | Article 86

http://umcd.humanconnectomeproject.org/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Takagi Information, Energy, Patterns, and Brain

this simulation, they are excluded as the constants under
the assumption of homogeneity of nodes. According to this
simplification, the simulation is given in the bias-free form, and
takes 0 for the cases, such as the random state as well as negative
values, especially in the low energy states.

However, as the indicator of total activity cost, the Hopfield
energy would be estimated as small as the positive and
negative terms were not included in the definition. To avoid
this cancelation and estimate the total energy cost for the
activity, I introduced a definition of the activity cost using
the absolute values of each term and compared them with the
values mentioned above Equation (5). The definition given was
as follows:

EA =
∑

i,j

|riwi,jrj| (6)

represents the total energy cost for the activation dynamics. It
assesses the contributions from the positive and the negative
signal equally and then evaluates the total amount of signal
activations with their weights. In the discussion, I assessed the
energy of the functional brain network based on these definitions.

2.2.3. Overlapping Number in the Activation Patterns
I analyzed the pattern of the response signals R = (ri) using
the overlapping numbers of the different signals. I evaluated it in
terms of the number of regions activated or deactivated equally
with the different patterns. For the set of response patterns Rj =

(r
j
i), whereby j is an index of the input state, I counted the number

of the same responses r
j
i = r

j′

i for the pair j and j′. I normalized
this overlapping number by the total number of regionsN. I then
wrote it down as

h(j, j′) =
∑

i

π(r
j
i , r

j′

i )/N (7)

where π(r
j
i , r

j′

i ) is 1 for r
j
i = r

j′

i and 0 was taken in the other cases.

I then took the averages of all the pairs of Rj and Rj
′
.

The definition of the overlapping number (Equation 7) is the
same as that of the Hamming distance of the information theory.
It is used, for example, to measure the error in the signal transfer.
In the analysis, it was used to analyze the relationship between
the activation patterns and efficiency of the information transfer.
As excess overlapped states indicated that the variation in the
response S is lost, they resulted in the decrease in the mutual
information entropy.

The program for this network model is available at https://
github.com/coutakagi/fcn2019.git.

2.3. Network Structure and Statistical
Evaluation
The functional connectome is often described in topological or
weighted terms. Different measures are required to assess the
topological network structure, especially in terms of criticality.
To specify the criticality in the activation dynamics, the
characterization is given by the statistics of the avalanche events.
One measure is the mutual information entropy, such as defined

above, which is maximized in this state in comparison to the
super-critical state (in which excess activation is saturated) and
the sub-critical state (in which activations die out due to poor
sensitivity to the stimulus) (Beggs and Plenz, 2003; Beggs, 2008).
This is contrasted to the criticality of the topological structure,
which is usually characterized by appearances of the giant
connected component or other states, such as the small-world
topology (Watts and Strogatz, 1998), which are evaluated by
quantities, such as degree or the clustering coefficients.

Besides the total number of connections, topological
structures were measured in terms of the largest connected
component to provide a basic measure of the topological
network. With using the adjacency matrix, the size of each
connected component was then measured in terms of the
number of nodes in each connected subgraph, and these values
determined the largest connected component of each network.
In the present paper, I measured this quantity using R-package
igraph (Barrat et al., 2004).

On the other hand, to account for connectivity strength
wij, I took the absolute node strength value nsi =

∑
j |wij|

in each node and evaluated its statistical features using a
distribution model (Takagi, 2017, 2018). Due to the criticality
of the brain (Achard et al., 2006; Bassett and Bullmore, 2006;
Hagmann et al., 2008; van den Heuvel and Sporns, 2011; Takagi,
2017, 2018), the distributions of network variables, such as
degree, exhibit a characteristic shape similar to the power law.
However, when I adapted the power law to the distributions, this
straightforward application was prohibited because the energy
constraints on brain activity constitute an upper limits (Takagi,
2017, 2018). In the present study, the same assumption was
applied, and I introduced an upper strength limit of nsmax.
Following this assumption, I obtained an expression for the
normalized variable s̃ = (nsmax − ns) as

p(ns) ∝ (ñs)γ = (nsmax − ns)γ , (8)

with a constant γ (Takagi, 2017, 2018).
Next, I assessed the strength distribution ns in terms of

deviations from this model using the Kolmogorov-Smirnov
(KS) distance (Clauset et al., 2009; Klaus et al., 2011). For the
cumulative distribution pe(ns), which was experimentally given,
and that of the model pc(ns), which was fitted to the data, the KS
distance D was defined using the following equation:

D = max
w

|pe(ns)− pc(ns)| (9)

which measures the maximum distance of the model from
the experimental data. If this value was sufficiently small, the
network probably exhibits the feature characterized by this
distribution model.

Finally, I measured the clustering coefficient C, also known
as transitivity, for each adjacency matrix. This is another
important topological quantity which is often used as an
indicator of the small-world network (Watts and Strogatz, 1998).
It is defined as the probability that the adjacent vertices of
a vertex are connected (Watts and Strogatz, 1998). Here, it
is measured for each adjacency matrix, using the R-package
igraph (Barrat et al., 2004).
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FIGURE 1 | Activation and deactivation patterns in the local regions, and the information transfer associated with these patterns. (A) Activation and deactivation in the

brain is illustrated. In this figure, each circle represents the states of local regions in the brain, with solid lines corresponding to the connection between regions.

Activated regions are represented by red circles, while negatively activated ones are colored in blue. The residual white circles correspond to other inactivated states.

(B) The information transfer associated with these patterns is illustrated. The pattern state in the upper side, which is shown on the line, consists of signals transferred

to the lower sides, where each region state is changed according to the upper input patterns and the connection strengths between the regions.

3. RESULTS

3.1. Information Transfer Model
To analyze the information processing in the large scale network
of the human brain, I simulated information transfer using
successive activation patterns. Because activity in the brain can
be observed as activation and deactivation in local regions,
signal transmission associated with information processing can
be described in terms of successive changing at each site, with
positive or negative activation (Beggs and Plenz, 2003; Fox
et al., 2005; Ghazanfar and Schroeder, 2006; Shmuel et al., 2006;
Beggs, 2008; Bressler and Menon, 2010; Takagi, 2018). In the
model, the given brain state sites, as illustrated in Figure 1A,
were transferred to successive states, which were determined
by the correlation among the sites given by the matrix (wij)
as Figure 1B.

In the simulation, I calculated the response state R = (ri)
of the randomly stimulated signals S = (sj), as represented
by Equation (2), using the connectivity matrices (wij) of the
human connectome. Next, as shown in Figure 2, I evaluated
the efficiency of transfer of the mutual information, defined
as the average of Equation (3). As part of the preliminary
evaluation, I used randomly selected 100 individual matrices
for calculation. I compared this quantity among the different
states, which were varied in terms of the connectivity strength
threshold value wt and the activation probability of the input

stimuli. As shown in this figure, information transfer depended
on these parameters, while the activation probability p =

0.05 gave the maximum values for these different conditions.

Starting from the flatten values for lower thresholds due to its
negative threshold value on the left end, the measurements of the
mutual information entropy increased to their maximum values
in the intermediate states. Moreover, the standard deviations
for the thresholds n = 1.0, 0,−1.0 were evaluated for p =

0.05 as 9.11 × 10−2, 7.45 × 10−2, 1.34 × 10−1. These values
were smaller than their mean values, and these results were
stable. Because I were interested in the state with maximum
mutual information, I used this value, p = 0.05, in the
following simulation.

FIGURE 2 | Mutual information with different activation probabilities. Three

different values of the activation probability are shown: p = 0.1, 0.05, 0.01.

These conditions are shown with the dotted, the dashed, and solid lines,

respectively. The different states are measured, with the threshold values on

the x-axis being varied. I took the threshold as < |w| > +n · σ|w| with the

connectivity average < |w| > and its standard deviation σ|w| for each

connectivity matrix. Following this, the mutual information is evaluated by

taking the average of Equation (3).

3.2. Network Energy and Efficiency of the
Information Transfer
Constraints regarding energy would be a major factor regulating
network structure and activity in the brain (Bullmore and Sporns,
2012). Hence, I evaluated the network energy of each brain
state, which is a basic parameter to analyze brain activity.
Then, I showed the results of the measured energies using three
different definitions in Figure 3; in each graph, the connectivity
strength threshold differed. Further, I compared these values
with those of the random networks, which were considered as
the null model. The random networks with the same network
size were determined together with the randomly taken weights

Frontiers in Computational Neuroscience | www.frontiersin.org 6 January 2020 | Volume 13 | Article 86

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Takagi Information, Energy, Patterns, and Brain

FIGURE 3 | The three different types of energies, the wiring cost (Equation 4), the Hopfield energy (Equation 5), and the activity cost (Equation 6) are shown in (A–C),

respectively, with the solid lines on each graph. They are compared with the results of the random network, which are shown in the dashed lines. I applied the same

threshold set of values to Figure 2.

wi,j ∈ [−1, 1], and 1,000 random matrices were obtained. On
the contrary, the results for the brain network were measured
using the whole datasets, which contained 986 matrices of
different individuals.

The wiring cost defined in Equation (4) is shown in Figure 4A.
It was compared with the wiring cost of the random network,
which appeared as a straight line proportional to n of the
threshold value defined in Equation (1). In comparison with
these networks, it was found that the plotted curve of the brain
network has a relatively long tail for higher values of wt , which
indicated the well-known attributes of the brain network, such as
the scale-free and small-world network, as will be discussed.

The difference between the brain network and the random
one was enhanced in comparison with the values of the Hopfield
energy. Figure 4B shows the relatively large values for the brain,
while it took almost 0 for the random network due to the
cancellation of the positive and negative terms. To avoid this
cancellation and evaluate the total amount of the activity cost,
I calculated the energy with another definition given in Equation
(6) and plotted it in Figure 3C. The energy for each range except
for 0 states had higher wt values; the activity cost for the random
model was higher than those of the brain network as expected.

3.3. Normalized Energy and the Mutual
Information Entropy
Due to energy constraints, it was assumed that the activities for
the information transfer is required to be efficient (Bullmore and
Sporns, 2012). One description of the network efficiency for a
given cost was based on the energy consumed during the activity,
which was normalized by the wiring cost to organize the network
structure (Takagi, 2017). Then, at first, the Hopfield energy
was normalized with the wiring cost as EH/EW and shown in
Figure 4A. With regards to mutual information, the correlations
are depicted in Figure 4B, which indicates a negative correlation,
whereby decreasing the network energy resulted in increases in
mutual information. The same figure shows that there was a
peak around the maximum point of mutual information, where

mutual information was maximized and the network energy
associated with activity was minimized.

To clarify the cost performance of the activity in the brain,
I took another quantity, EW/EA, the wiring cost (Equation 4)
normalized by the activity cost (Equation 6). This normalized
quantity represents the wiring cost required to maintain a
unit amount of activity. The measurement is then shown in
Figure 4C, and its correlation with the mutual information
entropy is presented in Figure 4D. It shows the clear correlation
with a sharp peak, around which the mutual information is
maximized and the normalized wiring cost is minimized. These
results (Figures 4B,D) for different definitions of the normalized
energy exhibit the similar behavior and the clear dependency
of the mutual information entropy on the network energy.
Thus, these peaks on correlations define the optimal state of the
brain functional network, in which the efficiency of information
transfer for a given network energy cost was maximized.

3.4. Network Structure and the Optimal
State
I analyzed the network structure around this peak state. At
first, the topological network structure of each state around this
point was characterized in terms of the largest component size:
a basic quantity of the network topology. This result is shown in
Figure 5A, wherein the component size is shown normalized to
the network size. In the same graph, the largest component size
of the connected subgraph decreases with increasing threshold,
with the normalized size being 1, which corresponds to the fully
connected graph. Next, I took the correlation between mutual
information and this quantity in Figure 5B. The sharp peak on
this graph indicates that maximum information was realized in
the fully connected graph with minimum connections.

As shown in Figure 6, the topological network graph contains
excess connections in the lower threshold. In this state, signals
with information transfer also contain noise due to these excess
elements. At the higher threshold value, the network loses this
fully connected structure, and the graph is fragmented into
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FIGURE 4 | Network energy and the correlation with mutual information. (A) The Hopfield energy EH defined in Equation (5) is normalized by wiring cost EW , Equation

(4), and this normalized energy EH/EW is shown for the different threshold values. I applied the same threshold set of values to Figure 2. (B) showed a correlation

between mutual information and the normalized Hopfield energy. On the x-axis, I took the mutual information calculated using the whole datasets of matrices by

applying the method, which is denoted by a solid line (p = 0.05) (Figure 2). I plotted the corresponding points of each threshold value with the network energy on the

y-axis, as given in (A). (C) Another normalized energy, EW/EA where the wiring cost EW is defined as Equation (4) and the activity cost EA is defined as Equation (6), is

shown. The threshold is the same as that of the case of (A). Its correlation with mutual information entropy on (D) is the same as the case of (B).

multiple disconnected sub-components, as shown in Figure 6A.
In this state, mutual communication between disconnected
nodes is hindered, so the efficiency of the information transfer
might be reduced. The sharp peak on Figure 5B corresponds
to the boundary state between these two states, where the
network preserves the fully connected structure with minimum
connections. Combined with the correlation between mutual
information and network energy (Figures 4B,D, 5B), this result
can be interpreted as showing that efficiency and energy

consumption are optimized in this state, with a fully connected
structure that eliminates transfer noise.

Because this optimal state resides in the boundary state
between the fully connected and fragmented phases, it constitutes
a critical state, whereby connectivity strength, another important
variable of network structure, shows a characteristic distribution.
To introduce a distribution model for this critical state (Equation
8), I measured the statistical deviation of the total connectivity
strength of each node ns in Figure 7 using the KS distance,
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FIGURE 5 | The largest component size of the functional network and the mutual information (A). I showed the largest component size of the topological

representation for each threshold values. I took the average of the values of the largest component size, which are normalized by the total number of nodes in the

topological graph. (B) I show the relation between the mutual information and the largest component size. On the x-axis, I took the mutual information calculated

using the whole datasets of matrices by applying the method, which is denoted by a solid line (p = 0.05) (Figure 2). Then I plot the corresponding points for each

threshold value with the largest component size on the y-axis, which are given in (A).

FIGURE 6 | I illustrate the three different states of the topological network structures. (A) I show an example of the fragmented sate which contains the disconnected

components. (B) I show the critical state of the network topology, all components of which are fully connected with the minimum connections. (C) This state is also

the fully connected network, but it contains excess connections.

defined as Equation (9). As shown in Figure 7B, the KS distance
measured about 0.07 around its minimum value, which was
a sufficiently small fitting. Moreover, the model fitting was
validated by comparison to other distribution models (Takagi,
2017, 2018). In the case of node strength, the KS distance
values of this model 6.6 × 10−2 and of the normal distribution

8.5 × 10−2 support this model, with its lower value. In
addition, the correlation with mutual information is shown in
Figure 7C, which indicates that the characteristic distribution of
ns depends on this quantity, as is the case with larger component
sizes (Figure 5B) and with energy (Figures 4B,D). Therefore,
around the optimal state defined for efficiency and energy, the
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FIGURE 7 | I evaluated the distribution of node strength in terms of deviation from the distribution model using Kolmogorov-Smirnov (KS) distance. I showed a

correlation with mutual information. (A) I also showed KS distance values from the distribution model for different threshold values. I assessed this value in terms of

node strength, as well as the sum of the absolute values of connectivity strength for each node, using the distribution model. The threshold values were taken as the

same as in the other cases in Figure 2. (B) Using an example, I compared empirical distribution and the distribution model. The distribution was taken as the

threshold < |w| > with n = 0, at which the average KS distance was evaluated as 6.64× 10−2. (C) I showed a correlation between mutual information and KS

distance. On the x-axis, I took the mutual information calculated using whole datasets of matrices by applying the method, which is denoted by a solid line (p = 0.05)

(Figure 2). I then plotted the corresponding points for each threshold value with KS distance on the y-axis, as given in (A).

distribution of the node strength converges on this model, and
the characteristic network structure emerges.

3.5. Activation Patterns and Overlapping
To analyze how this characteristic state regulates information
transfer, I investigated the overlapping patterns of the response
signals, applying the results of the information transfer model
to Equation (2). As explained above, the repeatedly co-activated
regions of different stimulation signals are related to cognitive
processes (Haxby et al., 2001; Kumaran et al., 2016). For the set
of response signals to random stimuli, the number of overlapping
co-activated regions between different response signals was
quantified in terms of Equation (7). The results for different
network states are shown in Figure 8A, where the average of the
overlapping numbers is taken for all combinations of responses.
From lower thresholds to higher ones, the overlapping number
decreased with decreasing excess connections.While it took large
values at higher thresholds, it took the minimum value at the
intermediate state.

The correlation to efficiency of information transfer is shown
in the next panel (Figure 8B), in which the mutual information
and the number of the overlapping sites has a strong correlation.
As indicated by this graph, the overlapping number took the
minimum value for maximummutual information. On the other
hand, the same number reduced network energy, as shown
in Figures 8C,D, which show negative correlation. Therefore,
the activation patterns evaluated in terms of the overlapping
numbers are correlated strongly with the statistical quantities,
network efficiency and energy.

The relation between the overlapping number and the
network topological structures were also analyzed in Figure 9,
which shows the direct relation to the small world topology.
As described in the introduction, the small-world structure is
considered as another relevant attribute of the brain network.

The clustering coefficient was measured for each threshold
value in Figure 9A. The correlation to the overlapping number
was plotted on Figure 9B, in which a sharp peak around
the minimum overlapping number indicated that the phase
transition occurs around this point (with respect to the
topological structure). The further evidence for the relation to
small-world topology is given by the changes of this value.
According to the observation in theWatts-Strogatz model (Watts
and Strogatz, 1998), the clustering coefficient is stable near the
state of the small-world topology, which is accompanied by the
phase transition. The changes to the clustering coefficient C
were taken as the difference from the neighbor value, and were
plotted in Figure 9C (Takagi, 2018). The correlation against the
corresponding overlapping number is shown in Figure 9D. This
result explicitly shows the dependency of the stability of the
clustering coefficient and the phase transition of the topological
structure. Thus, the minimization of the overlapping number can
be correlated to the small-world topology.

3.6. Comparison to the Different Datasets
In order to verify the robustness of the above results, the
simulation results based on other matrix datasets are presented.
The first set is the sub-matrix, which is taken with randomly
selected nodes from the original matrix of the functional
connectome. The other set is the structural connectome, which
is constructed using the physical connections of fiber tracts in the
brain with the DTI method.

At first, the results with the sub-matrix were analyzed
(Figures 10A,B). This simulation uses the connectivity matrices
size in 100 nodes, which are selected randomly from the
total 177 nodes in each original matrix. Comparison of
Figures 4D, 10A shows the relations between the wiring cost and
the mutual information, and the minimization/maximization
relations between these quantities are exhibited adequately in
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FIGURE 8 | I show the number of overlapping patterns in the response signals, as well as their correlation with the mutual information (A). I showed the average of the

number of overlapping co-activated regions defined as Equation (7). I took different network states by varying the threshold, as with the cases in the other figures. (B) I

showed the correlation between the overlapping patterns given in (A) with the mutual information. On the x-axis, I took the mutual information calculated using the

whole datasets of matrices by applying the method, which is denoted by a solid line (p = 0.05) (Figure 2). Then I plotted the corresponding points of each threshold

value by overlapping numbers on the y-axis, which are given in (A). (C) There was a correlation between the overlapping patterns given in (A) and the normalized

Hopfield energy. On the x-axis, I measured the normalized Hopfield energy given in Figure 5A. I plotted the corresponding points of each threshold value with the

network energy on the y-axis, as given in (A). (D) A correlation was observed between the overlapping patterns given in (A) and the wiring cost performance given in

Figure 5C, similar to (C).

these panels. The other relation (Figure 8D) is also supported by
Figure 10B, which displays the relation between the overlapping
numbers and the wiring cost. These results with the sub-
matrices show that important properties between the overlapping
numbers and the wiring cost are stably obtained. The results
suggest that these values are independent to other factors, such as
the connectivity matrix size or the specific location of the brain
regions taken as nodes.

The results with the structural connectome are displayed
in Figures 10C,D. The results observed in the functional
connectome can be confirmed with Figures 10C,D, where the
simulation results exhibit similar properties to those given with

the fMRI datasets (Figures 4D, 8D), respectively. They also agree
with the similarity between the functional and the structural
connectome, in that the functional connectivity in the restring-
state has close relation to the physical connections, such as the
fiber tracts which organize the structural connectivity (Biswal
et al., 2010). Thus, the robustness and the stability of the major
properties obtained in this paper are given more strong evidence
by the results of the structural network datasets. Because the
structural network is comprised of the fiber tracts, the network
structure is more stable compared to the functional connectivity
based on the temporal dynamics correlations. In addition, the
results obtained with the physical connections further clarify the
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FIGURE 9 | Clustering coefficient and overlapping number. (A) The clustering coefficient C for the topological description with the adjacency matrix is averaged and

shown. The threshold values in the x-axis and the corresponding adjacency matrices are taken to be the same as those in Figure 4. The datasets of the matrix are

also the same to those used in Figure 4. (B) The correlation of the clustering coefficient C (shown in A) to the overlapping number is shown. The overlapping number

is the same to those in Figure 8A. The threshold range in this panel is taken in [−1.0,−2.0] so as to exclude the flat values in the lower thresholds. (C) The differences

of the clustering coefficient in (A) is shown. The difference 1C is calculated as 1C = C(i)−C(i+ 1), where the difference is taken with the next value in the graph and i

is the number of the threshold position counted from the lower side. (D) The correlation of the clustering coefficient difference 1C (shown in C) to the overlapping

number is shown. The values of the overlapping numbers are the same as those in Figure 8A. The threshold range (which was the same as C) is taken.

meaning of the energy. In particular, wiring cost can be explicitly
related to the real energy cost of the brain for network formation.

4. DISCUSSION

In the present paper, I modeled information transfer in the
brain based on a dataset of the human functional connectome.
As illustrated by Figure 1A, I represented brain activity using
the activation patterns of multiple regions. That is, information
processing was modeled in terms of the dynamics of successive
patterns of activation. These dynamics were described in terms
of the changing of activation states, as illustrated in Figure 1B,

wherein positively or negatively activated states were transferred
by activating or inactivating connected regions.

4.1. Information Transfer Model and Basic
Statistical Quantities
In this simulation, I calculated the information transfer of
randomly activated signals using Equation (2). Using this model,
I evaluated the mutual information, defined as the average of
Equation (3), and the network energy, defined as Equations
(4–6). They are shown in Figures 2, 4A, respectively. On
the other hand, numerous empirical studies have suggested
that information transfer in the brain is optimized, under
constraints, such as the energy consumption, by maximizing
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FIGURE 10 | Correlations in the small size functional network and the structural network. In (A,B), the correlation between the quantities shown in Figures 4D, 8D

are estimated, respectively for the small size functional network. The small size network, 100× 100 matrix, is taken from the original 177× 177 matrix with randomly

selected 100 nodes. The calculation methods for each panel is same to corresponding ones in each figure. The threshold range in this panel is taken in [−1.0,−2.0],

the same as in Figure 9 to exclude lower threshold ranges which are almost flat. In panels (C,D), the correlation between the same quantities are estimated for the

structural network. The connectivity matrix constructed from DTI images are downloaded from the same website as those of the functional connectome dataset

(http://umcd.humanconnectomeproject.org/) (Brown et al., 2012). The evaluation methods are the same as those for the above panels (A,B).

mutual information in the communication between brain
regions (Linsker, 1990; Friston, 2010; Bullmore and Sporns,
2012). Therefore, I assessed the correlation between these two
quantities. In these results given in Figures 4B,D, the energy is
evaluated in terms of its cost performance, then the Hopfield
energy normalized by the wiring cost and the wiring cost per
total activity cost are shown, respectively and the decreasing
of these quantities indicates the improvement of the cost
performance. I showed these relationships in Figures 4B,D, in
which I plotted the corresponding values of each network state.
The figure indicated a negative correlation between the values,
whereby increases in mutual information led to decreases in

network energy, and vice versa. Thus, these two quantities must
be correlated.

In particular, the peak around the maximum mutual
information in Figures 4B,D shows that information transfer
is optimized at this point by maximizing the quantity and
minimizing the energy. According to the theory of the brain
economy (Bullmore and Sporns, 2012), the efficiency of
information processing in the brain is likely optimized by trading
off with energy consumption. Although biological and empirical
requirements regarding efficiency and energy are independent
of each other, the result indicates that they are correlated, so
there may be a mechanism that controls information transfer
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while satisfying these two principles regarding the efficiency and
the energy.

4.2. Network Structure and Information
Transfer
Network analyses around this optimal state may explain the
mechanism by which information transfer is organized in
the brain. In Figure 5A, to allow topological representation,
I estimated the largest component size of the network. The
correlation with mutual information (Figure 5B) indicated that
the efficiency of information transfer is maximized at the critical
point between the fully connected network and the fragmented
network state, which contains disconnected subcomponents. At
this optimal state, the network maintains its fully connected
structure with the minimum number of connections (Figure 6).
This can be contrasted with the fragmented states, which inhibit
efficient communication due to disconnections between regions.
On the other hand, excess connections generate noise in the
response. Therefore, in the intermediate phase at the optimal
state, information transfer is cost effective, suppressing excess
signals, and preserving fully connected structure.

As illustrated in Figure 6, this state can be described as the
topological phase transition between the fully connected and
fragmented phases. In this way, it constitutes a critical state.
The distribution shape of node strength, another variable of
the network, corroborates the notion that mutual information
is maximized at the critical state. As shown in Figure 7A, the
distribution of node strength converges in the model Equation
(8), which assumes criticality and energy constraints (Takagi,
2017, 2018). This correlation shows that mutual information
(Figure 7C) increases as the values converge upon the critical
state. This result, along with the weighted network description
(Figure 7B), also suggests that topological states are also
correlated (Figures 4B,D). Both of these results indicate that
the optimal state regarding the efficiency of the information
transfer emerges in the critical state, suggesting that there is
criticality in the brain, as has been confirmed empirically in
various studies (Beggs and Plenz, 2003; Achard et al., 2006; Beggs,
2008; van den Heuvel and Sporns, 2011).

Although the state, which was specified as optimal, depends
on the parameters, such as the threshold value, the criticality that
supports its generality. Because the critical state was obtained
without adjusting or fine-tuning multiple system parameters, it
indicates that this state has the generality, which was obtained
regardless of the details of the parameters. In fact, the stable
results for the large samples about 1,000 individuals imply that
these features around the optimal state are general ones, which
emerge commonly and stably for different individuals.

This statistical features of node strength provide further
information about the mechanism of the information transfer
in this optimal state. The distribution of node strength
exhibits a characteristic shape, as illustrated in Figure 7B. The
cumulative distribution curve on the log-log plot indicates
that the network contains a large number of higher strength
nodes, which correspond to hubs in the functional network
and comprise the core structure within networks (Hagmann

et al., 2008; van den Heuvel and Sporns, 2011). Thanks
to such core networks, whole networks can acquire the
attributes of a small-world structure, allowing efficient
communication with shortened distance between the nodes
(Bassett and Bullmore, 2006) and improved robustness of
information transfer.

4.3. Activation Patterns and Principles of
Energy and Efficiency
The importance of these network states in regulating activity in
the brain can be evaluated using activation patterns. According
to the definition of the information transfer (Equation 2),
the response signals for the random input stimuli might be
determined, reflecting the network structure. For example, the
response probabilities are determined by the combination of
wi,j 6= 0 elements for each i, and then the overlapping number
would be given accordingly. Then, the overlapping number was
an indicator, which reflects the network structure, activation
patterns, and information transfer.

In Figure 8A, I evaluated the number of overlapping
activated regions between different response signals. The
correlation with efficiency of information transfer and
energy are shown in Figures 8B–D, which show that network
structure behaves in a similar way (Figures 5B, 7C), indicating
that these quantities depend strongly on the overlapping
number. Increase in this quantity to the higher threshold
was explained by the over-inactivated states with many 0
signals. The saturation of the activated signals, the higher
density of the signals shown in Figure 3C, explains the same
tendency, that is, increasing this quantity from the lower
threshold. In each case, the overlapping number is increased
at this state than during the intermediate states, at which
activated and inactivated signals are balanced. Thus, the
correlation between the mutual information entropy and the
activation patterns can be explained by this quantity, the
overlapping number.

As discussed above, increased overlapping may improve
robustness in signal transfer and facilitate rapid response to
the outer environment, with shortened communication distance
between nodes. Despite these advantages, excess overlapping in
the activation phase reduces the efficiency of the information
transfer and causes the energy loss (Figures 8B–D). This implies
that excess overlapping causes loss of efficiency and increases the
energy consumption related to information transfer. Thus, these
features have a trade-off relationship; that is, the robustness and
the rapidity of responses are balanced with loss of efficiency and
energy in information transfer.

In summary, the present results suggest that the principles of
efficiency and energy consumption are important to information
transfer. These principles affect multiple aspects of the functional
network in the brain, and I have shown the connectivity
strength (Figure 7C), activation patterns (Figures 8B–D), and
topological network of such structures (Figure 5B). The same
figures show the contribution of these principles to statistical
quantities, in which sharp peaks indicate a strong tendency
toward these quantities. Thus, these principles regarding
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efficiency and of information transfer are important factors
in regulating the characteristic attributes of the functional
network in the human brain, such as network structure and
activation patterns.
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