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Complex environments provide structured yet variable sensory inputs. To best exploit

information from these environments, organisms must evolve the ability to anticipate

consequences of new stimuli, and act on these predictions. We propose an evolutionary

path for neural networks, leading an organism from reactive behavior to simple proactive

behavior and from simple proactive behavior to induction-based behavior. Based on

earlier in-vitro and in-silico experiments, we define the conditions necessary in a network

with spike-timing dependent plasticity for the organism to go from reactive to proactive

behavior. Our results support the existence of specific evolutionary steps and four

conditions necessary for embodied neural networks to evolve predictive and inductive

abilities from an initial reactive strategy.
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1. INTRODUCTION

There are surprisingly few hypotheses about how cognitive functions such as generalization and
prediction might have evolved. The ability to generate predictions especially, is often assumed to
be a given in evolutionary simulations. Dennett proposes an evolutionary path by dividing living
systems in four classes (Dennett, 1995): Darwinian creatures, with hard-wired reactions acquired
through evolutionary processes; Skinnerian creatures, with phenotypic plasticity to acquire suitable
sensory-motor coupling in their environment; Popperian creatures, which can predict the outcome
of their actions; and Gregorian creatures, which use knowledge acquired from their predecessors.
Dennett also proposes that the biological creatures must have evolved in this order. The three types
of agents discussed in this paper have partial overlap with Denett’s classification. We focus on a
specific definition of “agent”: a neural network embedded in a body, and able to perform actions
that cause changes in the environment. Note that we only consider agents that are able to learn

during their lifetime. Our three types of agents are as follows:

• Reactive agents learn during their lifetime how to react to environmental stimuli. These agents
correspond to Skinnerian creatures.

• Through evolution, if reactive agents become able to act in anticipation of a stimulus before
receiving that stimulus, we call them proactive agents: they can perform actions based
on prediction. Proactive agents correspond to Popperian creatures. The idea that organisms
constantly try to predict their environment has been credited for explaining typical perception
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(Rao and Ballard, 1999), illusions (Raman and Sarkar, 2016;
Edwards et al., 2017; Watanabe et al., 2018), hallucinations
(Powers et al., 2016; Suzuki et al., 2017), and even
consciousness (Seth et al., 2012). Without going so far,
proactive agents have clear advantages over reactive agents:
they can avoid or select behaviors before experiencing
undesirable (resp. desirable) consequences.

• Inductive agents fit in-between Denett’s Popperian and
Gregorian creatures. Inductive agents are able to make
generalizations about learned stimuli, and to react to new
stimuli based on these generalizations. As Gregorian creatures
must be able to apply knowledge from their predecessors to
their own situation, we can argue that inductive agents must
come before Gregorian creatures in terms of evolution.

The distinction between reaction and prediction can be unclear,
because learning to react to stimuli is sometimes inseparable from
learning to predict consequences of stimuli. Here, we define a
prediction as the information generated inside an agent, equal to
the content of an external input, but preceding that input in time.
The ability to make predictions therefore implies the existence of
a generative model inside the agent.

In Chung et al. (2009) and Kwon and Choe (2008), Chung and
Kwon show through simulated evolution experiments that neural
networks with predictable dynamics are better at generalizing
what they learned to novel tasks. The predictability of network
dynamics does not correlate with better performance on known
tasks, but it does correlate with better performance on new
tasks, showing that the networks have better generalization
abilities. Unfortunately these results do not tell us about the
actual predictive ability of the networks. Predictable networks do
better, but are the networks themselves performing any kind of
predictions on the environment?

The contribution of this paper is to propose a theory of
how and why predictive and generalizing abilities might have
evolved in neural networks. To the authors’ knowledge, there is
currently no theory relating these concepts or explaining how, in
practice, they would have emerged from an evolutionary point of

FIGURE 1 | Our proposal of evolutionary path for reactive agent, proactive agent, and inductive agent. An organism needs behavior; this need is met by the evolution

of actuators to modify the world. It needs to know the consequences of its actions without necessarily acting them out; this need is met by evolving predictive abilities.

Finally, the agent needs to generalize these predictions, which is the role of classification. Prediction emerges to improve the agent’s actions, and classification

emerges to improve the agent’s predictions.

view. In this paper, we focus on the evolutionary transition from
reactive agents to proactive agents, and from proactive agents to
inductive agents.

Figure 1 shows how these three functions are linked, and the
environmental needs these functions can fulfill for an embodied
agent. An agent first needs behavior: the ability to change its
environment to its advantage. This need is met by reactive agents:
through action, they can change their environment. An agent that
can only react to the environment does not have much control
on its future. Increasing this control is increasing empowerment.
Empowerment is a quantity defined as how much the agent
can potentially influence the environment. It quantifies not what
the agent actually does, but what it can “potentially” do to
influence the environment (Klyubin et al., 2005). To increase its
empowerment, an agent needs to predict the consequences of

its actions: these are proactive agents. Finally comes a need for

generalization: the ability to recognize new inputs as being similar

to known inputs, and to generate appropriate predictions. This

need is met by inductive agents through classification. We argue
that action, prediction and classification emerge from the bottom

up: prediction emerges from action and classification emerges
from prediction.

As a practical example of learning rule that can be used for
the three functions, we use results from our experiments with
Learning by Stimulation Avoidance (LSA). LSA (Sinapayen et al.,
2017) is a property exhibited by spiking networks coupled with

Spike-Timing Dependent Plasticity rules (STDP; Caporale and

Dan, 2008): the networks learn the behaviors that stop external

stimulation, and they learn to avoid the behaviors that start
external stimulation. Neither LSA nor STDP are considered

as necessary mechanisms in this paper; we take them as one

practical example of how our ideas can be implemented, and we
acknowledge that other implementations are possible.

STDP causes changes in synaptic weights between two firing
neurons depending on the timing of their activity (Figure 2). For
a presynaptic neuron i, postsynaptic neuron j, and the connection
wi,j from i to j: if neuron i fires just before neuron j, wi,j increases

Frontiers in Computational Neuroscience | www.frontiersin.org 2 January 2020 | Volume 13 | Article 88

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Sinapayen et al. Reactive, Proactive, and Inductive Agents

FIGURE 2 | Symmetric spike-timing dependent plasticity between two neurons. Let us consider presynaptic neuron i, postsynaptic neuron j, and the connection wi,j

from i to j. If neuron i fires just before neuron j (i.e., 1tp < 20 ms), the synaptic weight increases by 1w. If neuron i fires just after neuron j (i.e., 1td < 20 ms), the

synaptic weight decreases by 1w.

[long-term potentiation (LTP)], and if neuron i fires just after
neuron j, wi,j decreases [long-term depression (LTD)].

In LSA, two mechanisms for avoiding stimulation emerge
based on STDP. We explain these two mechanisms through a
minimal case with three neurons: an input neuron, an output
neuron, a hidden neuron. The input neuron is connected to
the two other neurons (Figure 3). The hidden neuron has
no effect on other neurons or on the environment, and fires
randomly. The first mechanism, mediated by LTP, reinforces
behaviors that lead to a decrease in stimulation (Figure 3A). We
assume an embodiment in which if the output neuron fires, the
stimulation to the input neuron is temporarily and immediately
removed (the action of firing leads to a decrease of external
stimulation). This leads the connection weight from the input
neuron to the output neuron to increase, because on average
the effect of LTP is stronger than the effect of LTD. On the
other hand, the connection from the input neuron to the hidden
neuron barely changes, because on average the effect of LTP
and LTD are similar. Thus, behaviors leading to a decrease in
stimulation are reinforced. The second mechanism, mediated by
LTD, is the weakening of behaviors leading to an increase in
stimulation (Figure 3B). We assume an embodiment in which if
the output neuron fires, then stimulation from the environment
to the input neuron starts (the action of firing leads an increases
of external stimulation). In that case, the connection weight from
the input neuron to the output neuron decreases because on
average the effect of LTD is stronger than the effect of LTP.
The connection from the input neuron to the hidden neuron
barely changes because the effects of LTP and LTD are equivalent
on average. Thus, behaviors leading to increases in stimulation
are weakened.

We explained LSA in a minimal case for the sake of clarity,
but these dynamics work in larger networks that can express a
greater variety output patterns, as we demonstrated in Sinapayen

et al. (2017), Masumori et al. (2017), and Masumori (2019).
Among all output patterns, output patterns leading to a decrease
in stimulation are reinforced by the first mechanism; output
patterns leading to an increase in stimulation are weakened by
the second mechanism. There is one limitation to the scalability
of these networks: the bigger the network, the more internal
noise the output neurons receive, and the harder it is for the
network to learn a task. We previously showed that there is a
lower limit of signal-to-noise ratio (SNR) in the network for LSA.
The SNR decreases when the network size increases, and at the
size of 60,000 neurons the network cannot learn even simple
behaviors (Masumori, 2019). Below, we discuss the conditions for
the emergence of various behaviors in networks subject to LSA.

We first demonstrate the existence of three conditions
required to obtain reactive behavior in biological networks as
well as simulated networks (section 2). We then show that a few
modifications in the topology allow simulated networks to learn
to predict external stimuli (section 3.1). Finally, we explain how
the reactive and predictive structures can be coupled to produce
proactive behavior (section 3.2) before discussing how inductive
behavior can emerge from predictions (section 4).

2. REACTIVE BEHAVIOR IN BIOLOGICAL
AND SIMULATED NETWORKS

Let us remind the definition of reactive agents from the
introduction of this paper:

Definition: Reactive agents learn during their lifetime how to
react to environmental stimuli.

Even without neural plasticity, an agent can act reactively
using hard-wired abilities as Darwinian creatures do. However,
hard-wired reactive behavior can have negative consequences if
environmental changes happen during an individual life time.
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FIGURE 3 | Learning by Stimulation Avoidance in three neurons: input neuron, output neuron, and hidden neuron. (A) Reinforcement dynamics of LSA. For an

embodiment where if the output neuron fires right after stimulation from its environment, the stimulation is temporarily removed, the time window 1tp1 between spikes

of the input neuron and spikes of the output neuron gradually becomes smaller on average than the time window 1td1 between spikes of the output neuron and

spikes of the input neuron. LTP being stronger than LTD, the connection weight from the input neuron to the output neuron increases. On the other hand, the

connection from the input neuron to the hidden neuron barely changes, as the time windows 1tp2 and 1td2 are similar on average. (B) Weakening dynamics of LSA.

For an embodiment where if the output neuron fires, stimulation to the input neuron starts, the time window 1tp1 between spikes of the input neuron and spikes of the

output neuron gradually becomes larger on average than the time window 1td1 between spikes of the output neuron and spikes of the input neuron. The effect of LTD

become stronger than the effect of LTP, and the connection weight from the input neuron to the output neuron decreases. On the other hand, the connection from the

input neuron to the hidden neuron barely changes.

FIGURE 4 | A robot is moving on a line. At the end of the line, bumping into a

wall causes stimulation. Turning around stops the stimulation by allowing the

robot to move away from the wall.

For example, a behavior resulting in a food reward might result
in getting poisoned in the future. In an environment that changes
rapidly, learning reactive behavior is an effective way to help the
survival of the agent. In this section, we focus on some necessary
conditions to learn reactive behavior.

In a previous study (Sinapayen et al., 2017), we showed that
spiking networks with STDP exhibit LSA. The behaviors learned
by these networks is reactive: they learn to perform an action after
receiving a certain type of stimulation.We offer a simple example
in Figure 4. A robot is moving on a line. At the end of the line,
bumping into a wall causes stimulation through distance sensors.
Turning around stops the stimulation by allowing the robot to
move away from the wall. The robot gradually learns to turn away
when its distance sensors are stimulated by the walls.

In this section, we focus on the necessary conditions for
reactive behavior to be learned (Figure 5). We identify one
qualitative condition for the network, Connectivity: relevant
information from the sensors must be able to reach the

actuators of the agent. In the specific case of LSA, it means
that input neurons must be able to directly or indirectly transmit
stimulation from the environment to the output neurons. This
condition can be broken if intrinsic noise is destroying the
signal or if the path from sensors to actuators is destroyed. This
condition is simple, but we build on it in following sections.
There is another qualitative condition for the environment,
Controllability: there exists a subset of outputs from the agent
that can modify the source of the input in the environment.
This definition is a special case of the definition of control by
Klyubin et al. (2005). In the specific case of LSA, it means that
there is an output pattern from the network that can inhibit the
stimulation through an action (e.g., turning away from the wall);
it can also mean that there is an action from the network that
can start the stimulation to the input neurons, in which case
this action will be avoided by the network in the future. The last
condition is a quantitative time constraint linking the network
and the environment: (1) the input-output loop must be closed

in less time than τ . τ is the time window during which the
network can evaluate the consequences of a specific action that it

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2020 | Volume 13 | Article 88

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Sinapayen et al. Reactive, Proactive, and Inductive Agents

FIGURE 5 | Necessary conditions for reactive behavior: Connectivity

condition for the network: relevant information from the environment must be

able to reach the actuators of the agent. In the specific case of LSA, it means

that input neurons must be able to directly or indirectly transmit stimulation

from the environment to the output neurons. Controllability condition for the

environment: there must be an output pattern from the network that can inhibit

the stimulation through some action. Finally, there is a time condition: the

input-output loop must be closed in less time than a specific time window τ .

The value of τ depends on the memory of the network. It is the time window

during which the network can evaluate the consequences of a specific action.

took. This time constant depends on the memory of the network.
For example, in a simulated minimal spiking network with two
neurons and in the absence of long term memory, τ is equal to
20 ms (the time constant of the STDP learning rule). The weights
of a neuron’s connections are only changed by STDP during this
20ms time window before or after the neuron spikes, so an action
by the network in response to a stimulationmust take effect in the
environment in less than 20 ms, for the action to be associated to
the input and learned by the network.

A reactive agent must respect these conditions. In the
following subsections, we explore the consequences of
these conditions and show that they are necessary for the
network to learn reactive behavior based on results from our
previous studies.

2.1. Controllability
In a previous paper, we showed that simulated networks and
biological networks can learn the wall avoidance task in a
one-dimensional environment (Figure 4; Masumori et al., 2018)
through LSA. This is reactive behavior, as the robot must react
to the wall by turning around. In those studies we compared
the results when Controllability is respected (the target output
from the network stops the stimulation immediately,1t2 = 0ms)
and when Controllability is not respected (the stimulation is
random and no output can stop it). The Connectivity condition
was respected in both conditions. In the controllable setting, the
networks learned to react to the stimulation by firing the expected
output; in the uncontrollable setting, the networks did not learn

to react to the input. Controllability is therefore necessary for
proper learning in both biological and simulated networks.

2.2. Connectivity
In a previous study, we also evaluated the relation between
connectivity and learning success in biological networks
(Masumori, 2019). To evaluate the connectivity between the
input neurons and the output neurons, we defined the
connectivity measure as the ratio of connections with low
time delay between input neurons and output neurons. We
defined a success measure as the decrease of reaction time
(time between reaching the wall and turning away from
it). We found a strong correlation between connectivity and
success; in addition, if the connectivity measure is zero
(no appropriate connections between input and output), the
network cannot learn the behavior to avoid the stimulation.
Connectivity is therefore necessary for proper learning in
biological networks, and although we have not yet conducted
simulation experiments, we argue that this condition should be
respected in simulated networks.

Since, for LSA, the loop formed by stimuli—input neurons—
output neurons—feedback from output to stimuli should be
closed within a specific time window, it is clear that a time
condition is required. In the previous study, we showed that the
this loop must be closed in 40 ms in simulated networks with
100 neurons (Masumori, 2019). The embodiment was idealized:
the time delay for executing an action was dismissed. However,
in nature there are large differences between the timescale of
synaptic plasticity and timescale of behavior: e.g., in Drosophila,
synaptic plasticity lasts a few milliseconds, behaviors last seconds
(Drew and Abbott, 2006). This difference becomes larger if for
bigger and more complex bodies. One way of bridging this
gap is to sustain the response to stimuli (Drew and Abbott,
2006). This mechanism might be required if the embodiment is
more complex.

3. PROACTIVE BEHAVIOR IN SIMULATED
NETWORKS

Definition: Proactive agents perform actions based
on prediction.

Although it is difficult to discuss the evolution of prediction
separately from action, we first focus on the necessary conditions
for a network to learn to predict environmental input without any
actions. We then add actions back into the picture and discuss
proactive agents.

3.1. Predictions
In the introduction we defined a prediction as information
generated inside an agent, equal to the content of external
input, but preceding that input in time. To make predictions,
an agent therefore needs an internal generative model and a
way to compare the output of that model to the input from
the environment.

In Figure 6, we hypothesize that the comparison operation
is done by inhibitory neurons (Buonomano, 2000; Rao and
Sejnowski, 2001; Wacongne et al., 2012). These neurons can
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FIGURE 6 | Necessary conditions for prediction: Predictability condition for

the environment: the time correlation between the stimulus at T1 (unpredictable

anticipatory stimulus) and the stimulus at T2 (predictable target stimulus) must

be reliable, i.e., the environment must provide predictable stimuli in order for

predictions to be learned. Connectivity condition for the network: input

neurons must be able to directly or indirectly transmit and receive stimulation

from the inhibitory neurons. Time conditions: (1) the transmission and the

inhibition must be closed in less time than τ ; (2) time condition: the interval

between the anticipatory stimulus and the target stimulus must be closed in

less time than τ . The value of τ depends on the memory of the network.

compute prediction errors by inhibiting external stimulation:
the error is null if the output of the inhibitory neurons and
the external stimulation are exactly opposite. Since the STDP
rule does not change, in the case of LSA the only evolutionary
step between reactive and proactive agents is the addition of
inhibitory neurons in the network.

On the network, we still have the Connectivity condition:
relevant information from the sensors must be able to reach the
comparison units of the network. In the particular case of LSA,
the prediction signal and the input to be predicted come to the
inhibitory neurons; Connectivity is respected if the input neurons
are able to directly or indirectly transmit and receive stimulation
from the inhibitory neurons. This is the condition that allows us
to consider predictions as information generated by the network,
equal to the information of the target input, but preceding it:
the inhibitory neurons must fire just before the input neurons in
order to suppress the incoming stimulation. On the environment,
we have one new condition, Predictability: the time correlation
between the stimulus at T1 (unpredictable anticipatory stimulus)
and the stimulus at T2 (predictable target stimulus) must be
reliable, i.e., the environment must provide predictable stimuli
in order for predictions to be learned. In the case of LSA, the
condition is strict: T1 can be random, but T1 − T2 ≈ constant,
or the prediction cannot be learned. Not all environments respect
this condition: for example, at micro-scales, the motion of small
particles is stochastic.

There are also two time conditions; (1) is unchanged, the
input-output loop must be closed in less time than τ . The new
condition is (2) The time delay between the two stimuli must

be smaller than the total processing time of the network.
This condition simply states that the network cannot generate
predictions on a bigger timescale than the timescale of its
own memory.

Our previous results with a simulated minimal network
consisting of three neurons (1 anticipatory input neuron
stimulated at T1, 1 target input neuron stimulated at T2 and 1
inhibitory neuron in between), which satisfies these conditions,
could predict a simple causal sequence of stimuli (Masumori,
2019). Our preliminary results show that if the time interval
between T1 and T2 becomes large, the network is not able to learn
to predict the sequence.

This suggests that our proposed topology makes the network
strengthen the path from anticipatory to target neurons, and
that the Predictability condition and the time condition (2) are
necessary to learn predictions.

Therefore predictive abilities can evolve from a reactive agent
by adding only one element to its neural network: inhibitory
connections. In the next subsection, we discuss the necessary
conditions to obtain a agent that not only predicts inputs, but
also acts on these predictions.

3.2. Proactive Behavior
The reactive agent discussed in section 2 can only initiate an
action in relation to a stimulus after starting to receive that
stimulus. In the worst case, even if the agent learns a reaction
to a damaging stimulus, it cannot avoid the damage itself. If only
the agent could predict the damage when getting the anticipatory
stimulus, it could initiate an avoiding behavior before getting
damaged. In this purely speculative section, we discuss how
prediction and action can be combined into proactive behavior.

In Figure 6, there is only minimal processing happening
between the reception of an input and the next prediction.
Figure 7 shows how to leverage more complex processing.
For clarity, the output and input neurons are separated, but
in the simplest case a neuron can act both as an input (by
receiving external stimulation) and as an output (by outputting
directly to an inhibitory neuron). Here the task of the output
neurons is to activate the right inhibitory neurons at the right
time: the output neurons play the role of generative model.
After valid predictions start being learned by the network,
these predictions and the model that generates them can be
harnessed not simply by the inhibitory neurons, but can be
used to guide the behavior of the agent. Now the agent respects
our definition of proactive behavior: cued by an anticipatory
stimulus, it generates a prediction, and acts based on that
prediction. For example, learning to move to avoid damage
following an anticipatory stimulus.

From an evolutionary point of view, predictions can only
evolve if they provide increased fitness to the agent. The proactive
agent must therefore either evolve directly from a reactive
agent, or predictions must have evolved as a side effect of
some other fitness-increasing process. How is this possible? A
plausible evolutionary path might have looked like this: first,
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FIGURE 7 | Necessary conditions for proactive behavior: Predictability

condition for the environment: the time correlation between the stimulus at T1
(unpredictable anticipatory stimulus) and the stimulus at T2 (predictable target

stimulus) must be reliable, i.e., the environment must provide predictable

stimuli in order for predictions to be learned. Connectivity condition for the

network: input neurons must be able to transmit stimulation to inhibitory

neurons via output neurons and receive stimulation from the inhibitory

neurons. Time conditions: (1) the interval between the anticipatory stimulus

and the target stimulus must be closed in less time than τ ; (2) the time window

between transmission and inhibition must be smaller than τ . The value of τ

depends on the memory of the network.

reactive agents with increased number of neurons are favored by
evolution thanks to their bigger repertoire of reactive behaviors.
Since coupling several excitatory neurons together leads to over-
excitation of the network (maladaptive, synchronized bursts in
vitro; Wagenaar et al., 2005), mutations leading to the apparition
of inhibitory neurons are favored. Even randomly coupled,
inhibitory neurons tend to stabilize spiking networks (Brunel,
2000). In this random structure, some of the inhibitory neurons
will learn predictions because of LSA, even if the predictions are
not used by the agent. Eventually, the agents that randomly learn
to make use of these predictions are rewarded by higher fitness,
and the structure of the network becomes less random and closer
to our proposed structure, to favor the production of predictions.
We could then have proactive agents.

4. SPECULATING ABOUT INDUCTIVE
AGENTS

Definition: Inductive agents make generalizations about past
stimuli, and react to new stimuli based on these generalizations.

The proactive agent can learn temporal sequences of
stimuli, but it cannot extract relevant features to generalize
its predictions. It is unable to judge the similarity between
two stimuli, and must learn predictions anew for every
single stimulus.

The last step of the path is the inductive agent. Its ability to
perform classification is an advantage when the environment is
variable or noisy. In these conditions, the agent must learn to
abstract relevant signals from variable inputs.

Here the “similarity” of inputs can be defined in relation to
the predictions that they elicit. For example, if a set of inputs
A’ are all just noisy versions of input A, they should lead to the
same predictions and can therefore be considered similar; A’ and
A belong to the same class. “Noise” is one type of variation,
but there can be others that still lead to “similar” predictions,
where this time prediction similarity is defined relatively to the
actions afforded by the predictions. The notion of similarity can
in this way be propagated from the bottom up through all 3
functions: action, prediction, and classification. Same action or
same prediction caused by some inputs means that the inputs
belong to the same class.

With artificial networks, classification is typically considered
in the context of labeled data. The labels are used to compute an
error signal that is propagated from the output neurons to the
input neurons. For an agent in the biological world, there are
usually no labels, and reward/error signals from the environment
are too sparse to learn to classify even a few thousands of inputs.

Predictions can provide the abundant error signal necessary
to learn classification: each time step provides a prediction
error. The connections in the network can be optimized at each
time step to give better predictions. Let us suppose a cost on
updating the connections in the network: changing the weight
of one connection is less costly than changing the weight of
two connections, etc. We now have the perfect setup for the
emergence of hierarchies of classes.

In hierarchical networks, the input from lower layers is
aggregated in upper layers into classes that are more and more
general. The most invariant properties of the input end up being
represented by the classes at the top of the hierarchy. In our
proposal, the neurons receiving the raw prediction error are
the neurons close to the input neurons, lower in the hierarchy
(note that this is the opposite of Deep Learning Neural Network
architectures, where the error signal is propagated from higher
layers to lower input layers). The lower layers can remove as
much variance as possible from the input before passing it
to upper neurons. Most of the prediction error, due to the
most variable properties of the input, will be corrected in these
lower layers. The remaining error is progressively corrected
by updating weights in upper layers. Our proposal therefore
minimizes the cost of learning by having the entry point of the
error signal close to the input neurons.

Note that the cost function relies on the similarity measure,
therefore the similarity measure has to come first. Clustering
neurons into modules and organizing the modules hierarchically
decreases the number of weights that need to be changed at each
update. Clustering is always defined in relation to a similarity
measure. If the error signal on which weights updates are based
comes from the difference between prediction and input, the
similarity measure must also be based on the difference between
prediction and input.

Földiák (1991) demonstrate a similar result in simulation:
with a local learning rule (minimizing the number of weights
being updated), a predictive neural network learns invariances
in temporal sequences and becomes able to do simple
generalizations through groups of cells reacting to similar inputs.

Foldiak’s experiments demonstrate that predictive networks
with a cost on updating the weights learn to cluster their
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neurons and become able to perform generalization. Clustering
and generalization are the basis of classification as defined in
this paper.

Therefore we hypothesize that predictive abilities are a
necessary condition to obtain the abundant error signal
required to learn classification, and updating costs are a
necessary condition to obtain the hierarchical, modular structure
characteristic of generalization. A consequence of this hypothesis
is that classification emerges as a way to improve the quality
of predictions.

5. DISCUSSION

In this paper, we have outlined necessary, practical evolutionary
steps to go from a reactive to an inductive agent. The steps require
4 conditions to be satisfied:

• Connectivity: relevant information from the sensors must be
able to reach the comparison units of the network.

• Predictability: the time correlation between unpredictable
anticipatory stimuli and predictable target stimuli must
be reliable.

• Time condition (1): the input-output loop must be closed in
less time than a specific time window τ .

• Time condition (2): the transmission and the inhibition must
be closed in less time than τ .

The reactive agent, although requiring preliminary conditions
[Controllability, Connectivity, and time condition (1)], does not
require a well-designed network structure. The network requires
only excitatory neurons for the agent to learn reactive behaviors.
Prediction requires two additional conditions: Predictability and
time condition (2). A network respecting simple structural
rules and containing inhibitory neurons can learn predictive
behaviors. The proactive agent, in addition to the four previous
conditions, requires a more well-designed structure. Our results
support the hypothesis that in evolutionary history, at first,
reactive agents emerge with simple structured network with
limited type of neurons (excitatory neurons) and neuronal
plasticity. Proactive agents evolve from reactive agents with more
structured network with various type of neurons (excitatory
neurons and inhibitory neurons). Inductive agents, in addition
to the previous conditions, require to have a cost on updating the
weights of the network connections.

Our proposed action-prediction-classification evolutionary
path therefore requires, in this order, the evolution of: excitatory
neurons, inhibitory neurons, cost-based network structure.

What experiments could consolidate or disprove our
hypotheses? To demonstrate our proposed step for the transition
from action to prediction, we must show that inhibitory neurons
are used for prediction. This could be demonstrated by finding
a positive correlation between the activity of inhibitory neurons
and the value of target stimuli in the environment, especially in
animals with a simple nervous system.

The transition from prediction to classification
might be supported by extending the experiments of

Kwon and Choe (2008). They showed that generalization
might have evolved from networks with predictable internal
dynamics. If “predictable internal dynamics” reflect the fact
that the networks have learned to predict the environment,
and this environmental predictability is mirrored by internal
predictability, then this would support our hypothesis of a
transition from predictive networks to generalizing networks.
In addition, if the predictable networks show a hierarchical
internal structure with error correction happening primarily
at lower layers, this would further support our proposed
mechanism for the transition from prediction to classification.
This would demonstrate the relationship between classification
and prediction.

Our four types of agents depart from Dennett’s four classes
in two major ways. First, we are only interested in learning
happening during the lifetime of an agent: Dennett’s Darwinian
creatures (which have no learning ability) and Gregorian
creatures (which pass knowledge on beyond the timescale of a
lifetime) are out of the scope of our considerations. Secondly, we
introduce the inductive agent as a step between Popperian and
Gregorian creatures, thus arguing that the ability to generalize
through the classification of stimuli is evolutionary distinct
from predictive abilities and different from trans-generational
learning. Focusing on the evolutionary links between agents’
abilities made this new classification necessary.

There is recent interest in common AI approaches toward
predictive networks, yet the connection between action,
prediction, and classification is rarely explored. Indeed, until
recently, disembodied classifying networks represented most
of the state of the art. From there, interest is slowly shifting
toward predictive networks. Our results suggest that the opposite
direction, focusing on prediction and from there evolving
classification abilities, can be a fruitful area of research.
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