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The resting state fMRI time series appears to have cyclic patterns, which indicates

presence of cyclic interactions between different brain regions. Such interactions are

not easily captured by pre-established resting state functional connectivity methods

including zero-lag correlation, lagged correlation, and dynamic time warping distance.

These methods formulate the functional interaction between different brain regions as

similar temporal patterns within the time series. To use information related to temporal

ordering, cyclicity analysis has been introduced to capture pairwise interactions between

multiple time series. In this study, we compared the efficacy of cyclicity analysis

with aforementioned similarity-based techniques in representing individual-level and

group-level information. Additionally, we investigated how filtering and global signal

regression interacted with these techniques. We obtained and analyzed fMRI data

from patients with tinnitus and neurotypical controls at two different days, a week

apart. For both patient and control groups, we found that the features generated by

cyclicity and correlation (zero-lag and lagged) analyses were more reliable than the

features generated by dynamic time warping distance in identifying individuals across

visits. The reliability of all features, except those generated by dynamic time warping,

improved as the global signal was regressed. Nevertheless, removing fluctuations

>0.1 Hz deteriorated the reliability of all features. These observations underscore

the importance of choosing appropriate preprocessing steps while evaluating different

analytical methods in describing resting state functional interactivity. Further, using

different machine learning techniques including support vector machines, discriminant

analyses, and convolutional neural networks, our results revealed that the manifestation

of the group-level information within all features was not sufficient enough to dissociate

tinnitus patients from controls with high sensitivity and specificity. This necessitates
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further investigation regarding the representation of group-level information within

different features to better identify tinnitus-related alternation in the functional organization

of the brain. Our study adds to the growing body of research on developing diagnostic

tools to identify neurological disorders, such as tinnitus, using resting state fMRI data.

Keywords: resting state fMRI, cyclicity analysis, functional interactivity, tinnitus, classification, fingerprinting,

latent space, data augmentation

1. INTRODUCTION

In this paper, we further evaluate the efficacy of cyclicity analysis
(Baryshnikov and Schlafly, 2016) that we have previously used to
characterize the interaction between brain regions (Zimmerman
et al., 2018). We compare this novel technique with pre-
established functional connectivity techniques including zero-
lag correlation, lagged correlation, and dynamic time warping
distance using resting state functional magnetic resonance
imaging (fMRI) data.

The human brain generates spontaneous neuronal activity
even at rest–in the absence of any stimulus, motor behavior,
or cognitive task. Such brain activity can be measured by
blood oxygenation level dependent (BOLD) signals using fMRI.
Previous studies have showed that these spontaneous activities
are not just random, but that they form spatial patterns of
coherent networks, indicating an interaction between neuronal
ensembles. (Biswal et al., 1995; Xiong et al., 1999; Greicius et al.,
2003; Horwitz, 2003; Fox et al., 2005; Fransson, 2005; Vincent
et al., 2006).

Resting state functional connectivity (rsFC) is one of the
most widely used analysis methods to specify intrinsic neural
interactivity. Functional connectivity is defined as simultaneous
or similar activity in discrete brain regions, which are not
necessarily adjacent to one another (Rubinov and Sporns, 2010).
The most popular rsFC technique measures temporal correlation
of the BOLD time series of the regions of interest (ROIs),
assuming static zero-lag synchrony (Hampson et al., 2002).
Despite being a core subroutine of rsFC, the correlation analysis
has two main drawbacks. First, it assumes the time series are not
auto-correlated (Dean and Dunsmuir, 2016), but this assumption
may not hold for resting state BOLD signals (Arbabshirani
et al., 2014). Second, the correlation analysis fails to capture
the information expressed in lag structure (Jafri et al., 2008;
Mitra et al., 2014). Lagged correlation (Mitra et al., 2014) and
dynamic time warping (DTW) distance (Sakoe and Chiba, 1978;
Meszlényi et al., 2017b) are two alternative techniques to address
the latter drawback. Although these techniques take the phase
shift between the time series into account, they have yet to fully
benefit from the information manifested within lag structure.
One such piece of information (manifested in lag structure but
not utilized by these techniques) is collective temporal ordering
of time series. The resting state fMRI time series demonstrate
cyclic patterns, which indicates an underlying self-sustained
cycling among processes in different ROIs. As explained by
Baryshnikov and Schlafly (2016), there is a distinction between
cyclic and periodic phenomena. Similar to periodic signals, cyclic

signals demonstrate repetitive patterns, albeit not in a periodic
fashion. That is, the cyclic patterns are not invariant for any time
interval, e.g., T. It is worth mentioning that periodic phenomena
are necessarily cyclic, but cyclic phenomena are not periodic. For
more details, see Baryshnikov and Schlafly (2016).

The cyclic relationships between brain regions remain
indiscernible to correlation-based and DTW distance measures.
Based on the notion of cyclic signals (Baryshnikov and
Schlafly, 2016), cyclicity analysis technique has been used
(Zimmerman et al., 2018) to assess resting state functional
connectivity by examining the temporal ordering, i.e., leader-
follower relationship, between neural activity of different ROIs,
providing information germane to the cyclic ordering among
the time series. Unlike effective connectivity techniques, such
as Granger causality (Hamilton et al., 2011; Yu et al., 2016),
cyclicity analysis does not reveal causal influence between brain
regions although it provides us with information flow. Granger
causality analysis is a linear multivariate autoregressive model
that assumes resting state fMRI time series are stationary, which
may not be an accurate assumption (Chang and Glover, 2010).
In contrast, cyclicity analysis is a non-linear technique, invariant
to re-parameterization and does not require the stationary
assumption. In correlation-based and DTW distance measures,
the correlation and distance values determine the extent of
neural connectivity. In cyclicity analysis, however, the sign and
magnitude of the values indicate an average directed leader-
follower relationship and its reverse; while a zero value implies
zero average interaction. We group all these techniques together
in a term broader than functional connectivity: “resting state
functional interactivity” (rsFI), encompassing all manner of
direct and indirect interactions among brain regions.

The lag differences between resting state time series may
carry information pertinent to intrinsic neuronal fluctuations
(Mitra and Raichle, 2016). As alluded earlier, lagged correlation
analysis has been employed to mitigate the impact of phase
shifts on rsFI (Jafri et al., 2008; Mitra et al., 2015). Although
lagged correlation provides information useful to understanding
the temporal organization of resting state BOLD signals, the
general low temporal resolution of fMRI still poses practical
hindrances to this technique. That is, the time lag between time
series may be on the order of less than the temporal sampling,
necessitating the use of interpolation methods. This leaves open
the exact interpolation method used as a hyper-parameter to be
chosen, which introduces some degree of uncertainty. In Mitra
et al. (2014, 2015), the authors used lagged cross-correlation to
study spatiotemporal resting state BOLD fluctuations assuming
that cross-correlation curves exhibit only a single peak at a

Frontiers in Computational Neuroscience | www.frontiersin.org 2 January 2020 | Volume 13 | Article 94

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Shahsavarani et al. Cyclicity Analysis and Functional Connectivity Measures

certain time delay. However, this assumption depends on the
preprocessing steps applied to the time series.

Unlike correlation, the DTW distance takes into account
non-stationary phase lags between ROIs, capturing functional
interactivity with greater sensitivity. TheDTWdistancemeasures
the similarity between two time series by finding their optimal
alignment under non-linear but monotonic warping of the time
axis (Ding et al., 2008). Over the past decade, this measure
has attracted attention in neuroscientific applications. Silbert
et al. (2014) used DTW to align fMRI time series with speech
signals and in a multi-modal study, Dinov et al. (2016) applied
DTW on an EEG-fMRI data to study brain dynamics, assessing
oscillatory patterns. Recently, Meszlényi et al. (2017b) used DTW
to measure rsFC and classify subject groups based on gender
while examining different machine learning techniques including
support vector machines and convolutional neural networks.
Their results showed that DTW was more robust and had
higher sensitivity to group differences compared with zero-lag
correlation and lagged correlation. Despite this noted advantage
of the DTWdistance measure over correlation-based analyses, its
efficacy in rsFI analysis has yet to be well-explored.

Unlike zero-lag and lagged correlation analyses (both of
which aim to find similarity between signals) and DTW
distance measures (which aim to find similarities between signals
while accounting for non-linear warping), the cyclicity analysis
determines pairwise influences between time series. Cyclicity
analysis (Baryshnikov and Schlafly, 2016) is a new technique
for extracting features invariant to time re-parameterizations
and translations of signals. In Baryshnikov and Schlafly (2016),
the authors introduced simple modifications to the analysis
accounting for noisy data and discussed its applicability to signals
with aperiodic but repetitive patterns, which are properties
abundant in physiological data. Cyclicity analysis uses so-called
iterated path integrals, which are also systematically exploited
in the “signature method” (Chevyrev and Kormilitzin, 2016).
Whereas the general idea of replacing the time series by
their signatures faces the challenge of exponential increase in
the dimensionality of features, moving from all pairs, to all
triplets, to quadruplets, and so on, cyclicity analysis restricts
itself to pairwise influences so that the generated features are
one, amenable to matrix analysis methods, and two, maintain
a balance between the number of independent samples and
dimensionality of features. This allows it to remain interpretable
and suitable to machine learning techniques when there is
a dearth of data as in the case of fMRI studies. In our
previous study (Zimmerman et al., 2018), we applied the cyclicity
analysis to resting state fMRI data and showed that the features
extracted from this technique are relatively stable apropos of time
and subjects.

To use rsFI measures as an objective biomarker aiming to
develop diagnostic tools, it is necessary to prove the stability of
such markers across time. Using zero-lag correlation analysis and
data from the Human Connectome Project, Finn et al. (2015)
and Amico and Goñi (2018) showed the stability and reliability
of the fMRI functional interactivity profile as a “fingerprint”
to identify individuals from a healthy population, for both
resting state and task-based paradigms. Using cyclicity analysis,

Zimmerman et al. (2018) also showed that individuals from
both patient and healthy control populations can be reliably
identified based on the resting state fMRI data collected across
a week’s span. To the best of our knowledge, similar evaluation
has not yet been conducted to examine the stability of lagged
correlation and DTW distance as compared with cyclicity and
zero-lag correlation analyses. Additionally, assessing the effect
of different preprocessing steps, especially the effect of the
controversial ones, on rsFI measures is of great importance as
it provides insights about both the information embedded in
each rsFI measure and various preprocessing steps. One such
preprocessing step is global signal regression (GSR) (Murphy and
Fox, 2017). Global signal is referred to as spontaneous BOLD
fluctuations that are common throughout the brain and defined
as the average of BOLD signals over all voxels in the brain (Fox
et al., 2009; Murphy et al., 2009). The fluctuations in the global
signal have been attributed to non-neuronal origins, especially
physiologically induced fluctuations, such as changes in the level
of arterial carbon dioxide or changes in cardiac rhythm. In the
literature, it has been argued that the variances associated with
global signal should be removed from the resting state data
because it may inflate the connectivity measures, specifically the
results from the correlation metric (Fox et al., 2009). Murphy
et al. (2009), however, showed that regressing out the fluctuations
related to global signal introduces spurious negative correlations
as well as reducing correlation in some areas. In contrast, Fox
et al. (2009) argue that using GSR indeed enhances and improves
results from correlation analysis. This lack of consensus across
studies necessitates the assessment of functional interactivity
techniques with and without GSR by each study (Caballero-
Gaudes and Reynolds, 2017). In a recent study, for instance,
Meszlényi et al. (2017b) evaluated the efficacy of DTW distance
as a rsFC measure by comparing it with correlation (both zero-
lagged and lagged) while considering both conditions of with and
without GSR. Their results demonstrated that the DTW distance
is more robust to employing GSR than the correlation analyses.

Neurological disorders, such as Alzheimer’s disease (Greicius
et al., 2004), depression (Greicius et al., 2007), and schizophrenia
(Zhou et al., 2007) disturb resting state coherence patterns
and reorganize the interaction between different parts of the
brain. Likewise, such disturbances have been reported in patients
with tinnitus (Schmidt et al., 2017). Tinnitus or “ringing in
the ears” refers to phantom auditory perception when there is
no external physical source; a condition affecting more than
50 million adults in the United States (Shargorodsky et al.,
2010). The handicap resulting from tinnitus varies from mild
to severe. Depending on the level of severity, tinnitus can
become bothersome, leading to distress, frustration, annoyance,
disrupted sleep, depression, and/or anxiety, having a major
impact on the patients’ personal and professional life (Møller,
2007). Tinnitus is often subjectively diagnosed by self-report.
That is, there are no standard objective criteria to corroborate
the patients’ anecdotal report of tinnitus presence, and there is
no cure for this condition. Previous studies have shown that
pathological disturbances in the coherence of spontaneous BOLD
fluctuations hold valuable diagnostic information to discriminate
between subject groups. Our previous study (Zimmerman et al.,
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2018), using cyclicity analysis, showed promising results in
finding group level differences between patients with tinnitus and
healthy controls, suggesting value in using resting state BOLD
signals as a diagnostic tool to objectively dissociate tinnitus from
the norm.

1.1. Goal of Study
The goal of the current study was to compare cyclicity
analysis with pre-established rsFI techniques including zero-
lag correlation, lagged correlation, and DTW distance. To
demonstrate the practical and clinical relevance of this
comparison, differences between tinnitus patients and controls
were assessed with respect to rsFI. Further, we examined the
stability of the features extracted by these four measures across
two fMRI scans, conducted 1 week apart. We evaluated the
effect of preprocessing steps on these measures; specifically,
we investigated the effect of GSR and filtering on resting
state fMRI data. We compared the classification accuracy using
these features under traditional and modern machine learning
techniques including support vector machines, discriminant
analysis, and convolutional neural networks.

2. FUNCTIONAL INTERACTIVITY
MEASURES

In this section, we briefly introduce the technical definition of
cyclicity analysis, lagged correlation analysis, and dynamic time
warping distance measure.

2.1. Cyclicity Analysis
Tools from Fourier analysis can be employed to investigate
the properties of periodic signals. Precisely, a signal, r(t), is
considered periodic if its patterns repeat regularly. In other
words, there is a time interval T such that r(t + T) = r(t).
However, many physiological signals, such as cardiac rhythm,
electroencephalogram recordings, and fMRI BOLD signals are
aperiodic, which are not truly periodic yet have repetitive
patterns across time. Therefore, Fourier analysis cannot be
applied to investigate the properties of cyclic signals where the
patterns repeat irregularly. Instead, cyclicity analysis assumes
the existence of an appropriate re-parameterization of time
under which unobserved periodic signals generate the observed
aperiodic ones. It does this by interpreting the observed time
series as paths in path spaces. Consequently, they can be analyzed
using re-parameterization invariant features of paths and path
spaces, where the cyclic signals are considered as paths. In fact,
a signal, g(t), is considered cyclic if there is a monotonically
increasing bounded function, φ(t), so that g(φ(t)) is periodic.
For more details, see our online tutorial: http://acnlab.beckman.
illinois.edu/.

Cyclicity analysis aims to infer the temporal ordering structure
in such cases by analyzing all pairs of signals in theN dimensional
multivariate time series. For given two scalar valued signals f (t)
and g (t) observed over an interval [0,T], equivalued at 0 and T,

one can assign a signed algebraic area as

Afg : =
1

2

T
∫

0

g (t) df (t) − f (t) dg (t) dt, (1)

to the pair over the interval of observation. The magnitude of this
quantity is determined by the area enclosed by projection of the

trajectory
(

f (t), g(t)
)T

onto the f − g coordinate planes with the
sign positive if g(t) follows f (t).

For any given N dimensional times series, this leads to

the creation of a skew-symmetric lead matrix A with N(N−1)
2

independent entries. Each element Akl of such a matrix
corresponds to the average leader follower relationship (implied
by the sign and magnitude of the calculated area) between
two pairs or ROI time series: Xk and Xl over the interval of
observation. The spectral analysis of the lead matrix provides
information pertinent to collective temporal ordering of the
signals even in the presence of noise. That is, the temporal
ordering is associated with the phase angles of the complex
valued elements in the eigenvector corresponding to the largest
eigenvalue. For more details, see Baryshnikov and Schlafly
(2016); Zimmerman et al. (2018).

2.2. Lagged Correlation Analysis
Zero-lag correlation analysis assumes synchronous activity
between different ROIs and fails to extract information from
the latency structure (Majeed et al., 2011; Mitra et al., 2014).
Lagged correlation analysis has been suggested to take latency
into account while measuring the correlation between time
series. Lagged correlation analysis leads to two matrices from
the underlying time-series data: (1) lagged correlation matrix
(LCM), and (2) time delay matrix (TDM). For every pair of time
series, x(t) and y(t), the correlation between x(t ± τ ) and y(t)
is computed. The value of τ at which the correlation function
has extremum is stored in the TDM and the corresponding
correlation value is stored in the LCM.

2.3. Dynamic Time Warping
The dynamic time warping (DTW) algorithm quantifies the
distance between two time series, namely their overall similarities
in shape (e.g., peaks and troughs) by taking temporal dynamics,
such as speed or phase shift into account. The DTW algorithm
was first introduced by Sakoe and Chiba (1978) in the realm of
automatic speech recognition. The key idea is that some non-
linear variations of speech signals, such as temporal compression,
local delays, etc., can and sometimes must be ignored. For
example, the frequency and the rate at which a sentence
is uttered is immaterial and needs to be ignored while the
sentence is being semantically decoded. The DTW algorithm
computes the distance between two given time series of not
necessarily equal length, X = (x1, x2, . . . , xk, . . . , xM) and Y =

(y1, y2, . . . , yj, . . . , yN), by finding the optimal alignment between
the series. In doing so, it constructs an M by N matrix, C. Each
element of the matrix Ckj corresponds to the optimal cost of the
alignment betweenXk = (x1, x2, . . . , xk) andYj = (y1, y2, . . . , yj),
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i.e., the first k points of X and the first j points of Y . This optimal
cost is obtained as

Ckj = dkj +min(C(k−1)j,C(k−1)(j−1),Ck(j−1)), (2)

where dkj is a distance metric, such as the Euclidean distance.
One, of course, has a choice of a distance function. The DTW
algorithm, in fact, calculates the “optimal global match” between
the index sets {k} and {j} while satisfying the constraints, such as
monotonicity and continuity. See Meszlényi et al. (2016, 2017b)
for more details. To avoid the brute-force search of all possible
alignments for the optimal match, dynamic programming-based
approach has been used to implement the DTW with asymptotic
running time of O(MN). The optimal alignment is defined as a

warping path, which is the sequence of indices {k̃} on X and {j̃}
on Y such that C

k̃j̃
is minimal for each corresponding pair. The

warping path of two identical series is defined by the diagonal
indices. As the distance between the two series increases, the
warping path deviates from the diagonal. High computational
complexity is the main hurdle that limits the applicability of
this technique.

3. MATERIALS AND METHODS

3.1. Participants and Data Acquisition
Two groups of participants were included in this study: those
with tinnitus as a patient group and those without tinnitus as a
control group. The tinnitus group included 50 patients (mean
age ± standard deviation: 52.96 ± 10.29 years; 38 with hearing
loss; 21 women; mean tinnitus duration: 15.5 ± 14.02 years) and
the control group 29 participants (mean age: 47.75± 11.06 years;
12 with hearing loss; 15 women). Resting state BOLD data were
obtained using a 3T Siemens Magnetom Prisma MRI scanner
in two visits, 1 week apart. To do so, a gradient echo-planar
EPI sequence with transversal orientation was used (repetition
time [TR] = 2000 ms, echo time [TE] = 25 ms, flip angle =

90◦, 38 slices, voxel size = 2.5 × 2.5 × 3 mm3). In addition to
functional images, structural images including a high-resolution,
T1-weighted sagittal MPRAGE image (TR = 2,300 ms, TE =

2.32 ms, flip angle = 8◦, 192 slices, voxel size = 0.9 × 0.9 × 0.9
mm3), and a lower-resolution, T2-weighted transversal image
(TR = 3,400 ms, TE = 65 ms, flip angle = 120◦, 38 slices, voxel
size = 1.2 × 1.2 × 3 mm3), were collected and further used in
preprocessing. At each visit, two∼10-min resting state data were
acquired while participants were lying supine inside the scanner
with eyes open looking at a white fixed point (+) on the center of
a black screen. Further, earplugs were used to reduce the scanner
noise. Data collection was conducted with the approval of the
University of Illinois at Urbana-Champaign Institutional Review
Board (#15955) and each participant provided informed consent
prior to image acquisition in the first visit.

3.2. Preprocessing
Data were preprocessed using Statistical Parametric Mapping
software (SPM12) (http://www.fil.ion.ucl.ac.uk/spm/software/
spm12). The first four volumes of resting state data were excluded

to allow for magnet stabilization, leaving 300 resting state
volumes for preprocessing at each run.

Similar to our previous work (Schmidt et al., 2017;
Zimmerman et al., 2018), data were first corrected for slice
timing, and then realigned to the mean fMRI image to correct
for head motion using a 6-parameter rigid body transformation.
The data with motion greater than a 2-mm translation or 2◦

rotation were removed from resting state analysis. Subsequently,
two co-registration steps were carried out using a 12-parameter
affine transformation: (1) aligning the T-2 weighted image to
the mean fMRI image, and (2) aligning the T-1 weighted image
to the co-registered T-2 weighted image. Next, the co-registered
T-1 weighted was normalized to a stereotactic space, i.e., MNI
space, using a non-linear warp transformation. This image was
used to realign and normalize the functional data. Further, the
normalized images were spatially smoothed using a Gaussian
kernel (8×8×8mm3). The segmentation step was not performed.
MarsBaR (Brett et al., 2002), a toolbox for SPM12, was used
to extract the time series with 300 time points from ROIs.
The 33 ROIs were chosen based on our previous studies of
tinnitus (Zimmerman et al., 2018), and are given in Table 1.
The time series of each ROI was obtained by averaging the time
courses across all voxels within the ROI. After generation of
said BOLD fMRI time series, GSR was presented as an optional
prepossessing step.

It has been argued that frequencies higher than 0.1 Hz do not
contribute to resting state regional coherency as they are often
related to physiological noise including cardiac and respiratory
cycles (Cordes et al., 2001). As a result, the time series data
were band-pass filtered, using a Bessel filter with low and high
cutoff frequencies of 0.008 and 0.08 Hz as a baseline. Before
filtering, the time series were mean centered, de-trended, and
scaled. Three scaling methods were considered, scaling relative
to: the quadratic variation, the norm, and the standard deviation
of the time series. In the cyclicity analysis, the signals were also
end-matched before scaling.

3.3. Features
After preprocessing, by employing seed-based connectivity
approach, the fMRI time series of the 33 ROIs were analyzed
using four rsFI techniques to generate 33 × 33 feature matrices.
This resulted in:

1. Skew-symmetric lead matrices (LM), using cyclicity analysis,
2. Symmetric zero-lag correlation matrices (CM), using

correlation analysis,
3. Symmetric lagged correlation matrices (LCM), using

correlation analysis,
4. Symmetric dynamic time warping matrices (DM), using

dynamic time warping algorithm.

3.4. Stability and Robustness
Similar to our previous work (Zimmerman et al., 2018), we
evaluated the stability and reliability of rsFI features in identifying
individuals by assessing the degree to which each rsFI feature
remained invariant across the two visits. To do so, we trained
1-nearest neighbor classifiers (with cosine similarity) on scans
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from one of the two visits and tested on scans from the other visit
and vice versa, resulting in running two classifiers. The accuracy
was measured using the RK correlation coefficient, which is
a multi-class extension of the Mathews correlation coefficient
for two class confusion matrices (Gorodkin, 2004). Further, to
examine the robustness of each feature to GSR and filtering cutoff
frequencies, the effect of these choices on the stability of each
matrix was assessed. Additionally, for each subject and for each
feature, wemeasured the cosine differences between features with
and without GSR.

3.5. Classification
To evaluate the efficacy of each rsFI feature in identifying the
neural correlates of tinnitus, we investigated the separability
of tinnitus from controls by assessing the accuracy of three
classifiers: (1) discriminant analysis, (2) support vector
machines, and (3) convolutional neural networks. Discriminant
analysis and support vector machine are classical methods
in machine learning and we refer the reader to Theodoridis
and Koutroumbas (2009) for the mathematical details and
implementation. Convolutional neural network is a modern
machine learning technique widely used to analyze visual
patterns; for more details, see Krizhevsky et al. (2012). In the
following subsections, we briefly introduce these classifiers and
list the preprocessing steps specific to the classifier at hand.
Monte Carlo cross validation with 100 times repetition was
used to train and test all the classifiers. Seventy percent of the
data were randomly extracted to train and the remainder of the
dataset was used to test the classifiers. Discriminant analysis and
support vector machine implementations found in Pedregosa
et al. (2011) and neural network package described in Abadi et al.
(2015) were used toward this purpose.

3.5.1. Discriminant Analysis
Linear discriminant analysis (LDA) and quadratic discriminant
analysis (QDA) are two widely-used classification techniques,
which are based on Bayes classifier approximation. Both LDA
and QDA assume that the probability density function of the
input data (features, independent variables, predictors, etc.) for
each class are drawn from a Gaussian distribution (James et al.,
2013). LDA assumes that all Gaussian distributions have equal
variance (in the case of univariate distributions) or covariance
matrices (in the case of multivariate distributions) whereas QDA
assumes each distribution has a distinctive variance or covariance
matrix. The LDA decision boundary is a linear function of the
inputs whereas QDA decision boundary is a quadratic function of
the inputs, both estimating the Bayes decision boundary (James
et al., 2013). In the case of multivariate distributions with a
large number of dimensions, dimension reduction techniques are
required to prevent numerical instability while calculating the
inverse of the covariance matrices, especially, when the number
of training samples is relatively small.

In our experimental setup, given that the feature matrices
are either symmetric or skewed-symmetric, we only considered
the upper triangular part of each feature matrix as the input
data. Before dividing the data into the training and test sets, the
data were vectorized and normalized. Due to the low number

of training observations (i.e., number of unique subjects in
the smallest group) relative to the input dimension (i.e., 528),
principal component analysis (PCA) was applied to project
the input data onto a 10-dimensional space before feeding the
training data into the LDA or the QDA classifier and performing
discriminant analyses.

3.5.2. Support Vector Machine
In the past three decades, support vector machine (SVM) has
emerged as one of the most popular classification techniques.
Traditional SVM is a maximum margin classifier developed
based on the linear classification problem, involving the
construction of a separating hyperplane that breaks up training
observations based on the corresponding class labels. The margin
being defined as a distance between any two hyperplanes
that obtain separation in the linearly separable case, SVMs
solve an optimization problem with some specific constraints
on finding an optimal hyperplane that maximizes the margin
(James et al., 2013). The name SVM comes from the definition
of the vectors that lie on the maximal margin as “support
vectors.” With the introduction of the kernel trick (Boser et al.,
1992), the constructed hyperplane can be linear or non-linear
depending on the kernel used to transform the representation
of the input data. In our experimental setup, the SVM with
linear, quadratic, and Gaussian kernels were examined. To
reduce over-fitting, slack variable and tuning parameter were
used to allow misclassification of some training data close
to margin.

Similar to DA, the upper triangular part of the featurematrices
was vectorized. Following this, the data were standardized by

removing the mean and scaling to unit variance (Z =
X − µ

σ
,

where µ and σ are empirical mean and standard deviation).
Further, PCAwas used to reduce the dimension of the input space
from 528 to 20. Finally, the data were divided into training and
test sets and fed into the SVM classifier.

3.5.3. Convolutional Neural Networks
Using convolutional neural network (CNN), we examined
the efficacy of rsFI features in distinguishing patients with
tinnitus from those without tinnitus based on the visual
interactivity patterns manifested in the feature matrices. CNN
is a class of artificial neural networks that uses convolution
operation inspired by visual neuroscience (Goodfellow et al.,
2016). Contrary to the conventional neural networks, CNN
introduces sparse connectivity by sharing parameters leading
to fewer number of parameters. Similar to conventional neural
networks, CNN can use gradient-descent based algorithms
to classify training observations according to their class
labels. Considering the small sample size in our experimental
setting, CNN with simple architectures was assessed to reduce
overfitting. A CNN was trained and tested on each feature
matrix. The CNN architecture proposed by Meszlényi et al.
(2017a) was adopted wherein they showed that CNN can
differentiate between subject groups using rsFC data. The reader
is referred to Figure S1 for a detailed explanation of the
CNN architecture.
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FIGURE 1 | Generating synthetic data using variational auto-encoders. LM, lead matrix; DM, dynamic time warping distance matrix. Since the VAE trains to encode

and decode on vectorized versions of the feature matrices (with redundant information removed), the visualization above is generated by vectors recast into matrix

form. Therefore, the diagonal entries (which, indeed, are either zero or one) are irrelevant.

The actual power of the CNN classifier is manifested when
trained with large datasets. Considering the small size of our
database, in order to increase the efficacy of the CNN classifier,
we used a generative model to generate synthetic samples,
augmenting our training data. Particularly, variational auto-
encoders (VAE) were implemented with two fully connected
layers for both the encoder and decoder, and a two-dimensional
latent space using mean-squared error loss as the construction
loss and Kullback-Leibler divergence as the latent space loss.
The key idea behind the VAE is to approximate the probability
distribution of the input data in a latent space from which
synthetic samples can be later drawn. For further details, see
Kingma and Welling (2013) and Figure S2.

In our experimental setup, we used the data from both
subject groups to train VAE. After training, no distinct separation
between the patient and control distributions was found in
the latent space. To overcome this, we trained VAE separately
for each class. In doing so, the data were normalized and
subsequently divided into the test and training sets. The data
for each class were further normalized before training the VAE

and later mean adjusted and re-scaled after training. Finally,
we re-assessed the CNN performance using the augmented
data. Figures 1, 2 demonstrate the synthetic LM, DM, CM, and
LCM along with an example from their corresponding actual
data. Note that for purposes of training the machine-learning
models in this study (except for the CNN), the feature matrices
were always vectorized and had redundant information (i.e.,
the diagonal values and the lower or upper half) removed
from them. Therefore, the generated augmented samples were
actually vectors, which were later matricized for visualization
purposes or training the CNN; consequently the diagonal values
in Figures 1, 2 hold no meaning.

4. RESULTS

4.1. Stability and Robustness
Tables 2, 3 summarize the accuracy of 1-nearest neighbor
classifiers in identifying individuals, using feature matrices (LM,
CM, LCM, and DM) with different filter settings and with &
without GSR. The results showed that the extent to which feature
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FIGURE 2 | Generating synthetic data using variational auto-encoders. CM, zero-lag correlation matrix; LCM, lagged correlation matrix. Since the VAE trains to

encode and decode on vectorized versions of the feature matrices (with redundant information removed), the visualization above is generated by vectors recast into

matrix form. Therefore, the diagonal entries (which, indeed, are either zero or one) are irrelevant.

matrices remained stable across the visits varied depending on
the employment of GSR and the filters. In general, GSR improved
the stability of all feature matrices except those generated by the
DTW distance measure (i.e., DM). However, the effect of band-
pass filtering was dependent on the feature matrices. Particularly,
applying band-pass filters reduced the stability of LM regardless
of employing GSR, whereas it increased the stability of other
matrices, especially when combined with GSR. For all feature
matrices, as the upper cutoff frequency of the band-pass filter
increased from 0.08 to 0.2 Hz, stability was enhanced. The
scaling method did not affect the general trend of stability except
for DM, i.e., scaling the time series using either the norms or
standard deviation adversely affected the stability of DM. For
simplicity, only the results using quadratic scaling are presented
here and those related to other scaling methods are given in
Tables S1, S2.

As shown in Tables 2, 3, CM had the highest stability, and
DM had the lowest stability across the visits. Specifically, both
CM and LCM had the highest stability (92 and 90%, respectively)

when GSR was applied with band-pass filtering (upper cutoff
frequency of 0.2 Hz). LM also showed the highest stability (83%)
when the global signal was regressed, but with no filtering. Like
CM and LCM, applying band-pass filters, specifically with the
upper cutoff frequency of 0.2 Hz, increased the stability of DM.
However, unlike the other feature matrices, DM demonstrated
the highest stability (0.56%) when the global signal was not
regressed. Figure 3 depicts the confusion matrices of 1-nearest
neighbor classifiers for the conditions in which each feature
matrix exhibited the highest reliability.

We further examined the robustness to GSR, by measuring
the cosine distance between the feature matrix with GSR and
the feature matrix without GSR for each individual subject.
Figure 4 shows the distribution of these distances measured for
LM, CM, LCM, and DM, under three filtering conditions. A non-
parametric Kruskal-Wallis test (followed by a Mann-Whitney U
post-hoc test with Bonferroni correction) revealed that DM was
the feature matrix most robust to GSR, whereas CM and LCM
were the feature matrices least robust to GSR. The statistical
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TABLE 1 | The regions of interest in the study and their corresponding

functional networks.

# Region of interest Functional network

1 Left amygdala Limbic

2 Left anterior insula Limbic

3 Left cuneus Visual

4 Left frontal eye field Dorsal attention

5 Left inferior frontal lobe Dorsal Attention

6 Left inferior parietal lobe Default mode

7 Left mid frontal gyrus Dorsal Attention

8 Left parahippocampus Limbic

9 Left posterior intraparietal sulcus Dorsal attention

10 Left primary auditory cortex Auditory

11 Left primary visual cortex Visual

12 Left superior occipital lobe Visual

13 Left superior temporal junction Auditory/Limbic/Visual

14 Left superior temporal sulcus Auditory

15 Left ventral intraparietal sulcus Dorsal attention

16 Medial prefrontal cortex Default mode

17 Posterior cingulate cortex Default mode

18 Precuneus Default mode

19 Right amygdala Limbic

20 Right anterior insula Limbic

21 Right cuneus Visual

22 Right frontal eye field Dorsal attention

23 Right inferior frontal lobe Dorsal Attention

24 Right inferior parietal lobe Default mode

25 Right mid frontal gyrus Dorsal Attention

26 Right parahippocampus Limbic

27 Right posterior intraparietal sulcus Dorsal attention

28 Right primary auditory cortex Auditory

29 Right primary visual cortex Visual

30 Right superior occipital lobe Visual

31 Right superior temporal junction Auditory/Limbic/Visual

32 Right superior temporal sulcus Auditory

33 Right ventral intraparietal sulcus Dorsal attention

test also showed that band-pass filtering significantly reduced the
robustness to GSR, for all feature matrices.

4.2. Classification
Overall, the performance of all classifiers was close to or slightly
better than chance, indicating a poor dissociation between
tinnitus patients and healthy controls. Nevertheless, there were
some differences across classifiers and input feature matrices.
That is, the performance of SVM on LCM (sensitivity of 64%
and specificity of 54%) surpassed the performance of all other
classifiers. Also, incorporating augmented data improved the
sensitivity of the CNN on all feature matrices, but deteriorated
the specificity, except for DM. Specifically, using the condition
in which DM had the worst reliability in identifying individuals
(i.e., with GSR and no filtering), the CNN had the best sensitivity
(58%) and specificity (58%) in separating subject groups. This

TABLE 2 | The accuracy rate of 1-nearest neighbor classifier to identify individuals

across two scan sessions held 1 week apart with different filter specifications and

no GSR.

No GSR

Feature No filter BPF (0.008 ≤ fpass ≤ 0.08 Hz) BPF (0.008 ≤ fpass ≤ 0.2 Hz)

LM 0.68 0.45 0.67

CM 0.53 0.53 0.69

LCM 0.48 0.45 0.64

DM 0.32 0.47 0.56

The time series were normalized using their quadratic variation. LM, Lead Matrices; CM,

Zero-lag Correlation Matrices; LCM, Lagged Correlation Matrices; DM, Dynamic Time

Warping Matrices; BPF, Band-Pass Filter; GSR, Global Signal Regression.

TABLE 3 | The accuracy rate of 1-nearest neighbor classifier to identify individuals

across two scan sessions held 1 week apart with different filter specifications

and GSR.

With GSR

Feature No filter BPF (0.008 ≤ fpass ≤ 0.08 Hz) BPF (0.008 ≤ fpass ≤ 0.2 Hz)

LM 0.83 0.56 0.79

CM 0.78 0.82 0.92

LCM 0.76 0.80 0.90

DM 0.28 0.42 0.53

The time series were normalized using their quadratic variation. LM, Lead Matrices; CM,

Zero-lag Correlation Matrices; LCM, Lagged Correlation Matrices; DM, Dynamic Time

Warping Matrices; BPF, Band-Pass Filter; GSR, Global Signal Regression.

points to a trade-off between identifying at the individual level
and generalizing to the group (Finn et al., 2017).

4.2.1. Sparse SVM
Sparse linear SVM (Bi et al., 2003) was used to identify
inter-regional functional interactions that played a dominant
role in correctly separating tinnitus patients from controls.
Subsequently, the classification accuracy of QDA, SVM, and
CNN was re-evaluated using such selected variables. The
standard risk function minimized by SVM includes two terms:
the hinge loss function and squared ℓ2-norm of the weight vector.
In sparse linear SVM, the ℓ1-norm is used as the regularization
term in lieu of ℓ2-norm allowing for a sparser solution of the
weight vector. The non-zero elements of the weight vector then
inherently correspond to variables that play more dominant roles
in building the optimal separating hyperplane.

The graphs shown in Figures 5–8 depict the salient inter-
regional interactions as quantified by cyclicity analysis, zero-
lag correlation, lagged correlation, and DTW distance measure,
respectively. Each ROI is represented by a node and the
interaction between ROIs is depicted as an edge. The width
of each edge signifies the magnitude of the interaction, which
corresponds to the absolute values of the weight vector obtained
in the SVM solution. Using these dominant interactions, the
dimension of each feature matrix was reduced and used to re-
evaluate the classifiers. The results showed that dimensionality
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FIGURE 3 | Confusion matrices of 1-nearest neighbor classifiers with the highest accuracy for each interactivity feature set used to identify individuals across two

visits, held 1 week apart. DTW stands for dynamic time warping.

reduction based on sparse SVM improved the classification.
Again, SVM (here, on CM instead of LCM) outperformed other
classifiers, with sensitivity and specificity of 62%.

As illustrated in Figures 5–8, sparse SVMs found different
salient interactions between ROIs depending on the rsFI feature
matrix, filtering setting, and GSR. For example, using LM
without filtering and without GSR, the sparse SVM found
an interaction between precuneus and the right cuneus as a
dominant interaction in separating tinnitus from controls. In
addition to the aforementioned interactivity, using LM with
filtering (upper cutoff frequency of 0.2 Hz) and with GSR, the
sparse SVM found the interactivity between the left primary
visual cortex and the left primary auditory to be useful in
separating subject groups. For all matrices except DM, using GSR
decreased the degree of sparsity obtained in the solution, leading
to the hyperplanes defined by more non-zero elements when
differentiating subject groups. Here, the robustness of DM toGSR
is consistent with the results observed in the stability analysis,
where DM was the feature matrix most robust to GSR. In sum,
the importance of interactions between different ROIs in building
the optimal separating hyperplane was found to depend on the
particular feature matrix and chosen preprocessing steps.

4.2.2. Non-linear Dimensionality Reduction
To further investigate the poor performance in group
separability, we visualized each feature matrix across all
participants using t-distributed stochastic neighbor embedding

(t-SNE), which is a non-linear dimensionality reduction method
(Maaten and Hinton, 2008). Using t-SNE with perplexity (a
hyper parameter in the algorithm) of 50, CM, LCM, and DM
were divided into two distinct clusters after mapping into a
2-dimensional space. Such clear separation was less pronounced
in the case of LM, regardless of GSR. GSR, no matter the
filter setting, changed both CM and LCM into a continuum
and obscured the boundary between the two clusters. This
was not the case with DM, which remained as two clusters.
This is an observation consistent with previous stability and
classification results, which underscores the robustness of DM
to GSR. Figure 9 depicts CM and DM of both tinnitus and
control populations after applying t-SNE, using band-pass
filtering (0.008 ≤ fpass ≤ 0.2) and with & without GSR. Each
observation is shown with its corresponding feature matrix.
Further investigation revealed that this observed clustering
was not correlated with the subject group labels or any other
metadata, such as hearing status, age, or gender. Nevertheless,
as demonstrated in the upper left panel of Figure 9, it appears
that the samples in one cluster have higher correlation values
(illustrated by lighter colors) than the samples in another cluster.
Using another popular non-linear dimensionality reduction
method, Isomap (Tenenbaum et al., 2000), a trend similar to
tSNE was observed. As illustrated in the upper left panel of
Figure 10, the samples with greater values of Dimension 1,
depicted by darker colors in the right, can be distinguished
from those with smaller values in the left. Like tSNE, using GSR
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FIGURE 4 | Robustness to global signal regression. The distribution of the cosine distances between with and without global signal regression across all subjects for

each feature under three conditions: (1) No filtering, (2) Band-pass filtering (0.008 ≤ fpass ≤ 0.08 Hz), and (3) Band-pass filtering (0.008 ≤ fpass ≤ 0.2 Hz). LM, CM,

LCM, and DM stand for lead matrix, zero-lag correlation matrix, lagged correlation matrix, and dynamic time warping matrix, respectively.

eliminated this differentiation in zero-lag correlation analysis,
whereas it did not change such differentiation in DTW distance
measures. The results of these visualization methods may help
partially explain the low sensitivity and specificity observed in the
classification results. Though both stochastic and deterministic
unsupervised clustering methods found a natural separation into
low and high values in some two-dimensional latent space, the
obtained separation was not materially related to the group labels
at hand. Examples of the algorithms applied to other feature
matrices can be found in Figures S3, S4.

5. DISCUSSION

Altogether, the results of this study indicate that the surveyed
fMRI rsFI methods, including cyclicity analysis and pre-
established functional connectivity methods, generate features
that convey sufficient information for identifying individuals
across visits on different days. However, these methods may
poorly manifest the group-level information essential to reliably
identify tinnitus population investigated in our study.

5.1. Identifying Subject Groups
As an example patient group, in this study we focused on tinnitus.
In clinical settings, tinnitus is commonly diagnosed by self-report
because there are no diagnostic tools available to objectively
identify this condition. Using brain imaging, specifically fMRI,
previous studies including our own work have reported intrinsic

large-scale neural networks implicated in tinnitus (Burton et al.,
2012; Maudoux et al., 2012; Schmidt et al., 2013, 2017; Davies
et al., 2014). Default mode (Raichle et al., 2001), dorsal attention
(Fox et al., 2006), and auditory networks are examples of such
neural ensembles. For a review, refer to Shahsavarani et al. (2019).

Identifying invariant neural correlates of tinnitus as objective

neuroimagingmeasures can potentially advance the development
of diagnostic and treatment tools for this disorder. Thus, it

is imperative to evaluate the efficacy of the rsFI measures in
dissociating patient groups from neurotypical controls. In the
current study, we evaluated the effectiveness of machine-learning
techniques (including DA, SVM, and CNN) in separating
tinnitus from healthy groups using features extracted by cyclicity
analysis, zero-lag correlation analysis, lagged correlation analysis,
and dynamic time warping distance measure. Our experiments
revealed a poor performance for the classifiers in identifying
the two subject groups. Although reducing the number of
dimensions (using sparse SVM) or augmenting the training
data (for the CNN classifier) improved the performance of
the classifiers, the classification problem still needs further
enhancements to be competitive with results in similar
approaches, for example, to cancer detection, susceptibility &
prognosis studies etc. (Tan and Gilbert, 2003; Cruz and Wishart,
2007; Kourou et al., 2015).

Exploring the separability of subject groups, sparse SVM
found different salient interactions between regions and
networks in building a separating hyperplane to dissociate
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FIGURE 5 | Cyclicity analysis—the salient interactions in separating patients and control groups, selected by sparse SVM. The nodes correspond to the ROIs listed

on the left side of the figure. The edges represents the interaction between ROIs corresponding to SVM solution of the weight vector. The width of the weights relates

to the magnitude of interactions. GSR stands for global signal regression and f denotes the passed frequencies of band-pass filters.

tinnitus from control, depending on the rsFI analysis. Recall that
in the hinge loss:

l
(

y
)

= max
(

0, 1− ty
)

= max
(

0, 1− t
(

w · x+ b
))

, (3)

where t is the true label and y is the prediction, the elements of
the vectorw determine the optimal separating hyperplane (which
maximizes themargin). In other words, the hinge-loss will choose
a combination of the ROI interactions that form a maximum
margin separating hyperplane between the two sets of labels
because each element of our vector corresponds to the interaction
between a pair of ROIs. However, in the sparse SVM formulation,
the hinge loss is used in conjunction with a ℓ1 norm on w. This
causes the optimization to have a trade-off between maximizing
margin while maintaining classification accuracy and sparsifying

w. Thus, it selects those ROI interaction pairs that determine the
cardinal orientation of the hyperplane (to maximize accuracy)
while reducing the number of components (by sacrificing on
the margin), and thereby gives us interaction pairs that play a
dominant role in differentiating the two classes. In our study, we
found that different rsFI analyses resulted in different dominant
ROI pair interactions in creating a separating hyperplane for the
point cloud. For simplicity, here, we just discuss the condition in
which the resting state fMRI time series were band-passed using
the conventional upper cutoff frequency of 0.08 Hz, and without
removing the global signal, as depicted in the left middle panels
in Figures 5–8.

For cyclicity analysis, the interaction between precuneus
and visual cortex as well as the interaction between the left
parahippocampus and the left frontal eye field was found to
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FIGURE 6 | Zero-lag correlation analysis—the salient interactions in separating patients and control groups, selected by sparse SVM. The nodes correspond to the

ROIs listed on the left side of the figure. The edges represents the interaction between ROIs corresponding to SVM solution of the weight vector. The width of the

weights relates to the magnitude of interactions. GSR stands for global signal regression and f denotes the passed frequencies of band-pass filters.

contribute to the separation of tinnitus and control groups.
Precuneus is a major hub in the default mode network and
its interaction with other networks indicates that the coherency
of the default mode network is disrupted in tinnitus. In fact,
several studies have reported tinnitus-related decrease in the
coherency of the default mode network (Schmidt et al., 2013;
Carpenter-Thompson et al., 2015; Lanting et al., 2016; Leaver
et al., 2016b). Given that the participants had their eyes open
during the scan, the interaction between the default mode
network and visual network is expected. The interesting point
is that this interaction was different between the tinnitus and
control groups. Parahippocampus is a part of the limbic system
and the frontal eye field is a major node in the dorsal attention
network. In a tinnitus model based on cognitive control of
emotion (Husain, 2016), we suggest that the constant percept of

tinnitus may correlate with changes in the interaction between
the dorsal attention network and the limbic system, regulating
the emotional response to tinnitus. The interaction between the
parahippocampus and the frontal eye field found by sparse SVM
is in support of this model.

For both zero-lag correlation and lagged correlation analyses,
the interaction between the auditory network and the limbic
system was predominant in separating subject groups. The
central auditory regions are neuroanatomically connected to the
limbic system, which evokes emotional responses to auditory
stimuli. In turn, the limbic system interacts with the auditory
system, which regulates sound perception based on emotional
processing. Previous studies have reported on tinnitus-related
alternations in the interaction between the auditory network
and the limbic system (Rauschecker et al., 2010; Maudoux
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FIGURE 7 | Lagged correlation analysis—the salient interactions in separating patients and control groups, selected by sparse SVM using lagged matrices. The nodes

correspond to the ROIs listed on the left side of the figure. The edges represents the interaction between ROIs corresponding to SVM solution of the weight vector.

The width of the weights relates to the magnitude of interactions. GSR stands for global signal regression and f denotes the passed frequencies of band-pass filters.

et al., 2012; Schmidt et al., 2013, 2017; Leaver et al., 2016a),
which endorses the importance of this interaction found by
sparse SVM.

For dynamic time warping distance measure, similar
to cyclicity analysis, the interaction between the limbic
system and the dorsal attention network was found to be
different between the tinnitus and healthy control groups.
In addition, the interaction between the left frontal eye field
and the medial prefrontal cortex, part of the default mode
network, was useful in differentiating tinnitus patients from
healthy controls. Previous research from our lab (Schmidt
et al., 2017) has shown that tinnitus is correlated with
increased functional interactivity between the default mode
network and the dorsal attention network, supporting the
interaction between medial prefrontal cortex and the frontal
eye field.

Although, the results from sparse SVM are consistent with
the findings from previous studies, it is worth noting that the
ROIs used in this study were chosen based on seminal work
on tinnitus. Therefore, finding an interaction implicated in
tinnitus is not surprising. In addition, the importance of the
interactions in separating subject groups highly depended on
the rsFI analysis method and the choice of preprocessing. This
sensitivity to different methodologies and data analyses may help
partly explain the inconsistent evidence provided by previous
rsFC studies on tinnitus (Schmidt et al., 2017; Shahsavarani et al.,
2019).

5.2. Identifying Individuals
The rsFI analyses explored in this study (i.e., cyclicity analysis,
zero-lag correlation analysis, lagged correlation analysis, and
dynamic time warping distance measure) extract distinctive or
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FIGURE 8 | Dynamic time warping distance—the salient interactions in separating patients and control groups, selected by sparse SVM using dynamic time warping

matrices. The nodes correspond to the ROIs listed on the left side of the figure. The edges represents the interaction between ROIs corresponding to SVM solution of

the weight vector. The width of the weights relates to the magnitude of interactions. GSR stands for global signal regression and f denotes the passed frequencies of

band-pass filters.

overlapping information from resting state fMRI data. Using
data from patients with tinnitus and healthy controls, we
found that the features generated by correlation-based methods
and cyclicity analyses were highly reliable and reproducible
across two visits (being 1 week apart). Our results also showed
that employing GSR boosted the reliability of these features
to identify individuals. This suggests that applying GSR may
augment the representation of information at the level of
individual participants.

Contrary to cyclicity and correlation-based analyses, the
features generated by the DTW distance measures demonstrated
poor reliability across visits, indicating that these features
represent less participant-specific information compared with
other techniques. This is in accordance with the observation in

our study that using GSR did not alter the reliability of these
features, implying the high robustness of the DTW distance
measures to GSR. This finding is also consistent with the results
presented by Meszlényi et al. (2017b) where they showed that
both zero-lag and lagged correlation were less robust to GSR
compared with DTW distance. Meszlényi et al. (2017b) also
showed that using resting state features extracted by measuring
the DTW distance between fMRI time series improved the
accuracy of identifying subject groups using machine-learning
techniques. As mentioned earlier, our results showed that the
DTW distance was the least stable feature in identifying specific
individuals across visits. Although we did not observe any
advantage in using the DTW distance measures to classify our
particular subject groups (except for CNNwith augmented data),
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FIGURE 9 | T-distributed Stochastic Neighbor Embedding (t-SNE)—Non-linear dimensionality reduction to two dimensions of the zero-lag correlation and dynamic

time warping (DTW) matrices without and with global signal regression (GSR). The resting state fMRI data were band-pass filtered (0.008 ≤ fpass ≤ 0.2) before

extracting the features. Each observation is depicted with its corresponding feature matrix.

the findings across our study and Meszlényi et al. (2017b)’s study
suggest that this measure may represent group-level information
to a greater extent than the participant-specific information
compared with other measures; a hypothesis that can be further
investigated in future studies.

In general, band-pass filtering of the resting state fMRI

time series deteriorated the reliability of cyclicity analysis, but
either did not change or even improved the reliability of the

features extracted by other methods. Especially, using the upper
cutoff frequency of 0.2 Hz increased the accuracy of individual
identification across visits. It should be noted that this upper
cutoff frequency is greater than what has been suggested for
resting state fMRI analyses. In the literature, using band-pass
filters with the lower cutoff frequency of 0.005–0.008 Hz and the
upper cutoff frequency of 0.08–0.1 Hz has been recommended
(Biswal et al., 1995; Obrig et al., 2000; Cordes et al., 2001;
Hampson et al., 2002) although there are studies showing
higher frequencies may correspond to neuronal activity related
to rsFC (Caballero-Gaudes and Reynolds, 2017). The results of
our study showed that removing frequency fluctuations >0.1
Hz adversely affected the reliability of functional interactivity

features in identifying individuals. In contrast, removing the
global signal had a positive impact on the reliability of the
analysis methods except for the DTW distance. This finding
implies that the global signal may carry information that is
detrimental to representing subject-level information, whereas
short time scale fluctuations between 5 and 10 s may beneficial
for improving subject-level information. Furthermore, these
observations suggest that the relative importance of frequency
components in rsFI analyses may vary according to the analysis
being conducted. The noted interaction between preprocessing
steps and different analysis methods remains to be investigated
using other patient populations or subject groups.

5.3. Cyclicity and Similarity
Inherently, cyclicity analysis and the other methods analyze
different temporal patterns. Cyclicity analysis gauges the
temporal ordering of time series, capturing the cyclic interactions
amongst time series whereas zero-lag correlation, lagged
correlation, and DTW distance measure the similarity between
time series. The fMRI time series has serial dependency due
to the slow nature of hemodynamic response (Christova et al.,
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FIGURE 10 | Isomap—Non-linear dimensionality reduction to two dimensions of the zero-lag correlation and dynamic time warping (DTW) matrices without and with

global signal regression (GSR). The resting state fMRI data were band-pass filtered (0.008 ≤ fpass ≤ 0.2) before extracting the features. Each observation is depicted

with its corresponding feature matrix.

2011; Bright et al., 2017). Although preprocessing procedures,
such as de-trending and filtering whiten the time series to some
extent and reduce their auto-correlation (Arbabshirani et al.,
2014), the serial correlation still remains an issue, suggesting
spurious results in correlation-based analyses. In addition, zero-
lag correlation does not consider phase shift between time series,
and thereby ignores the interactivity information manifested in
lag structure.

As mentioned in section 1, lagged correlation has been
used to circumvent the phase problem in zero-lag correlation
(Mitra et al., 2014, 2015). However, due to the low temporal
resolution of fMRI data, the need for applying interpolation
techniques, e.g., parabolic (Mitra et al., 2014), bi-cubic (Shah
et al., 2018), complicates the estimation of the optimal time
delay and its corresponding correlation. In previous studies
(Mitra et al., 2014, 2015), it was assumed that lagged correlation
curves exhibit a single peak. Much as this assumption simplifies
the estimation of the optimal time delay, the extent of its
validity depends on preprocessing steps. Particularly, removing
the DC component from time-series (e.g., by band-pass filtering)

can introduce multiple peaks in the lagged correlation curves.
On the other hand, if low-pass filtering is used as in Mitra
et al. (2015), the single-peak observation holds. This is mostly
because the resting state fMRI data has small fluctuations and
keeping the DC component will dominate the lagged correlation
results, leading to single peak curves. Our results showed that
zero-lag correlation was slightly more reliable in identifying
individual across visits than lagged correlation. The DTW
distance, on the other hand, does not assume serial independency
in time series, and further takes the phase information into
consideration (Meszlényi et al., 2017b). Nevertheless, our results
showed that DTW distance was the least reliable measure in
identifying individuals.

Cyclicity analysis uses information embedded in lag structure
beyond only considering the phase differences between time
series. That is, it approximately reconstructs a global temporal
ordering of the signals in a multidimensional time series, by
capturing and analyzing all pairs of cyclic interactions among
its constituent elements. Cyclicity analysis does not assume serial
independency in time series and yields features that are invariant
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to re-parameterizations and translations of signals. This feature
may be important in analyzing biophysical signals. Consider the
cardiac rhythm: while over a shorter time span one may attribute
a “period,” over longer time spans it may vary said period—for
example resting heart rate vs. active heart rate. Such variations
can be considered as re-parameterizations of the time axis and
cyclicity analysis produces features that are invariant under such
transformations. Similar to correlation-based analyses, cyclicity
analysis was shown to be stable and reliable in identifying
individuals across visits.

Each feature examined here has several applications and may
perform at some applications better than others. This study
reiterates that care must be taken in designing preprocessing
pipelines for time series because it highly affects the information
embedded in the features. This might be relevant for the studies
that aim to use pre-cleaned and/or de-noised versions of BOLD
time series from various sources.

5.4. Future Work
The cyclicity analysis investigated in this study used pairwaise
interactions, but the general machinery of the “signaturemethod”
can employ triplets and quadruplets and so on, in the context of
path signature. Much as this can investigate intricate relationship
between time series, the number of features exponentially
grows as the order of the interaction increases. Future work
will investigate taming this imposed computational complexity,
which will allow for generating and studying features that assess
the interactivity in a larger scale than pairs.

The coherency of the spontaneous neural fluctuations changes
within time scales of seconds or minutes, denoting an underlying
non-stationary process (Chang and Glover, 2010; Christova et al.,
2011; Hutchison et al., 2013b; Allen et al., 2014). We are planning
to adapt various methods, such as sliding window (Handwerker
et al., 2012; Hutchison et al., 2013a; Allen et al., 2014) or
dynamic mode decomposition (Brunton et al., 2016) to explore
dynamic rsFI. Moreover, we plan to take advantage of both
static and dynamic analyses to further evaluate and investigate
the enhancement of the group-level information within the rsFI
features to facilitate identifying subject groups. Additionally, to
improve the group signatures in rsFI fMRI data, we will evaluate
the techniques similar to ones assessed by Amico andGoñi (2018)
in which they identified group-level, subject-level, and noise-
level information, and improved the individual fingerprint in
functional connectomes.

Finally, due to the fact that different analysis techniques
capture different aspects of rsFI, future efforts will be targeted
toward developing methods that combine the merits of different

analyses. Furthermore, as suggested by Finn et al. (2017), we
will leverage the techniques and results of the current study to
investigate whether other brain states, rather than resting state
(e.g., passively watching video or listening to music), can better
manifest group-level information.
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