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Neural processing of sounds in the dorsal and ventral streams of the (human) auditory
cortex is optimized for analyzing fine-grained temporal and spectral information,
respectively. Here we use a Wilson and Cowan firing-rate modeling framework to
simulate spectro-temporal processing of sounds in these auditory streams and to
investigate the link between neural population activity and behavioral results of
psychoacoustic experiments. The proposed model consisted of two core (A1 and
R, representing primary areas) and two belt (Slow and Fast, representing rostral and
caudal processing respectively) areas, differing in terms of their spectral and temporal
response properties. First, we simulated the responses to amplitude modulated (AM)
noise and tones. In agreement with electrophysiological results, we observed an area-
dependent transition from a temporal (synchronization) to a rate code when moving
from low to high modulation rates. Simulated neural responses in a task of amplitude
modulation detection suggested that thresholds derived from population responses in
core areas closely resembled those of psychoacoustic experiments in human listeners.
For tones, simulated modulation threshold functions were found to be dependent on
the carrier frequency. Second, we simulated the responses to complex tones with
missing fundamental stimuli and found that synchronization of responses in the Fast area
accurately encoded pitch, with the strength of synchronization depending on number
and order of harmonic components. Finally, using speech stimuli, we showed that the
spectral and temporal structure of the speech was reflected in parallel by the modeled
areas. The analyses highlighted that the Slow stream coded with high spectral precision
the aspects of the speech signal characterized by slow temporal changes (e.g.,
prosody), while the Fast stream encoded primarily the faster changes (e.g., phonemes,
consonants, temporal pitch). Interestingly, the pitch of a speaker was encoded both
spatially (i.e., tonotopically) in Slow area and temporally in Fast area. Overall, performed
simulations showed that the model is valuable for generating hypotheses on how the
different cortical areas/streams may contribute toward behaviorally relevant aspects of
auditory processing. The model can be used in combination with physiological models of
neurovascular coupling to generate predictions for human functional MRI experiments.
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INTRODUCTION

The processing of sounds in primate auditory cortex (AC)
is organized in two anatomically distinct streams: a ventral
stream originating in areas located rostrally to the primary
auditory core and projecting to the ventral regions of the
frontal cortex, and a dorsal stream originating in areas located
caudally to the primary core and projecting to dorsal frontal
regions. Processing in these separate streams is hypothesized to
underlie auditory cognition and has been linked respectively to
specialized mechanisms of sound analysis for deriving semantic
information (“what” processing) or processing sound location
and sound movement (“where” processing) (Kaas et al., 1999;
Romanski et al., 1999; Belin and Zatorre, 2000; Kaas and Hackett,
2000; Rauschecker and Tian, 2000; Tian et al., 2001; Arnott
et al., 2004). Interestingly, the basic response properties (e.g.,
frequency tuning, latencies, temporal locking to the stimulus) of
neurons in areas of dorsal and ventral auditory streams show
marked differences (Rauschecker et al., 1996; Bendor and Wang,
2008; Oshurkova et al., 2008; Nourski et al., 2013, 2014), and
differences have been reported even for neurons from areas
within the same (dorsal) stream (Kuśmierek and Rauschecker,
2014). A consistent observation is that neurons in the rostral
field, in comparison to primary and surrounding auditory areas,
exhibit longer response latencies and narrower frequency tuning
(Recanzone et al., 2000; Tian et al., 2001; Bendor and Wang,
2008; Camalier et al., 2012), whereas neurons in the caudal
fields respond with shorter latencies, comparable to or even
shorter than those in A1, and have broader frequency tuning
(Recanzone et al., 2000; Kuśmierek and Rauschecker, 2014). How
this organization of neuronal properties within AC contributes
to the processing of spectro-temporally complex sounds remains
unclear and poses an interesting question for computational
endeavors (Jasmin et al., 2019).

Recent results of neuroimaging studies in humans have put
forward the hypothesis that fine-grained spectral properties
of sounds are analyzed optimally in ventral auditory regions,
whereas fine-grained temporal properties are analyzed optimally
in dorsal regions (Schönwiesner and Zatorre, 2009; Santoro et al.,
2014). It is, however, unlikely that the neural processing of
spectral and temporal properties of sounds is carried out through
completely independent mechanisms. Several psychophysical
phenomena such as pitch perception based on temporal cues
(Houtsma and Smurzynski, 1990; Bendor et al., 2012) or the
frequency dependence of amplitude modulation (AM) detection
thresholds (Sek and Moore, 1995; Kohlrausch et al., 2000) suggest
an interdependence between neural processing mechanisms for
spectral and temporal properties.

Therefore, in this study, we aim to introduce a simple,
stimulus-driven computational framework for modeling the
spectral and temporal processing of sounds in AC and examine
the role of the different processing streams. We use the firing
rate model of Wilson and Cowan (Wilson Cowan Cortical
Model, WCCM; Wilson and Cowan, 1972, 1973; Cowan
et al., 2016) which simulates complex cortical computations
through the modeling of dynamic interactions between excitatory
and inhibitory neuronal populations. Over the years, WCCM

has been successfully implemented for simulating neuronal
computations in the visual cortex (Ermentrout and Cowan,
1979; Wilson and Kim, 1994; Wilson, 1997). More recently,
WCCM has been applied to the AC as well to describe
the propagation of activity in the interconnected network of
cortical columns and to generate predictions about the role
of spontaneous activity in the primary AC (Loebel et al.,
2007), and the role of homeostatic plasticity in generating
traveling waves of activity in the AC (Chrostowski et al.,
2011). Furthermore, WCCM has been proposed for modeling
stimulus-specific adaptation in the AC (May et al., 2015; Yarden
and Nelken, 2017) and to generate experimentally verifiable
predictions on pitch processing (Tabas et al., 2019), etc. While
WCCMs are less detailed than models of interconnected neurons,
they may provide a right level of abstraction to investigate
functionally relevant neural computations, probe their link with
psychophysical observations, and generate predictions that are
testable using invasive electrocorticography (ECoG) as well
as non-invasive electro- and magneto-encephalography (EEG,
MEG) and functional MRI (fMRI) in humans.

Here, we used the WCCM to simulate the dynamic cortical
responses (population firing rates) in the AC to both synthetic
and natural (speech) sounds. After filtering from the periphery,
the proposed model processes the spatiotemporally structured
(i.e., tonotopic) input in two primary auditory core areas. The
output of the core areas is then fed forward to two secondary
auditory belt areas, which differ in terms of their processing
of spectral and temporal information and thereby represent the
dorsal and ventral auditory processing streams. In a number
of simulations, we used this model to examine the coding of
amplitude modulated (AM) broadband noise and tones using
metrics derived from the electrophysiology (firing rate and
temporal synchronization with the stimulus). We also simulated
three psychoacoustic experiments to study the role of the multiple
information streams that may underlie behavioral AM detection
thresholds observed for noise (Bacon and Viemeister, 1985) and
tones (Kohlrausch et al., 2000), as well as pitch perception with
missing fundamental stimuli (Houtsma and Smurzynski, 1990).
Lastly, we investigated the processing of speech stimuli in the
model in order to generate predictions on how this cortical
spectro-temporal specialization (represented by the four areas)
may encode the hierarchical structure of speech.

MATERIALS AND METHODS

Model Design and Architecture
Figure 1A provides an anatomical schematic of the modeled
cortical areas with approximate locations shown on the
left supratemporal plane. Figure 1B illustrates the overall
architecture of the model, consisting of a peripheral processing
stage and a cortical processing stage. The peripheral processing
stage simulates the peripheral auditory processing in two steps.
First, the tonotopic response of the cochlea is estimated using
a set of band-pass filters (Gammatone filterbank, N = 100)
(Patterson, 1986; Patterson et al., 1992). The gains of the
filters represent the transfer function of the outer and middle
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FIGURE 1 | Model design and architecture. (A) Anatomical schematic of the modeled areas shown on top view of the left supratemporal plane (with the parietal
cortex removed). Heschl’s sulcus (HS) and first transverse sulcus (FTS) are marked to provide anatomical references while Heschl’s Gyrus is highlighted in blue.
(B) The sound waveform is filtered with a Gammatone filterbank and passed through a Lateral Inhibitory Network (LIN) in the peripheral processing stage, which
serves as input to the cortical stage. The neural responses of the simulated core areas (A1, R) are fed forward as input to two simulated belt areas (Slow and Fast),
which differ from each other in their spectral and temporal properties. (C) Connections between model stages are shown. The output of Lateral Inhibitory Network
(LIN) projects to excitatory units of A1 and R, which in turn project to excitatory units of Fast and Slow, respectively. While the convergence through A1 to the Fast
area is high (i.e., many excitatory units of A1 provide input to a single unit of the Fast area), convergence through R to the Slow area is low (i.e., the units in areas R
and Slow receive input from only one unit). (D) Model output for a sample speech sound is shown at different stages of processing as a spectrogram. The panels at
right and bottom of the output of cortical processing stage show mean firing rates across time and tonotopic axis respectively.

ear (4th order Gammatone filterbank implementation by Ma
et al., 2007). Following the results from psychoacoustics,
the center frequencies of the filters are equally spaced on
an ERBN number scale and their bandwidth increases with
center frequency, so as to have a constant auditory filter
bandwidth (Glasberg and Moore, 1990). Thus, bandwidth of the
100 rectangular filters is set as 1 ERB (Equivalent Rectangular
Bandwidth, based on psychoacoustic measures; for a review of

critical bandwidth as a function of frequency, see Moore, 2003).
The filter frequencies are centered from 50 to 8000 Hz, equally
spaced with a distance of 0.3 Cams (on the ERBN number scale,
ERBN is the ERB of the auditory filters estimated for young people
with normal hearing; Glasberg and Moore, 1990).

Second, the basilar response of the Gammatone filterbank is
spectrally sharpened using a Lateral Inhibitory Network (LIN)
implemented in three steps by taking a spatial (tonotopic)

Frontiers in Computational Neuroscience | www.frontiersin.org 3 January 2020 | Volume 13 | Article 95

https://www.frontiersin.org/journals/computational-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-13-00095 January 13, 2020 Time: 16:56 # 4

Zulfiqar et al. A Two-Stream Computational Model of Auditory Cortex

derivative, half-wave rectification and temporal integration (Chi
et al., 2005). The output of extreme filters (i.e., first and last
filter) is removed to avoid any boundary effects of filtering, thus
reducing the output of the peripheral processing stage to 98
units (60–7723 Hz).

For the cortical processing stage, the filtered tonotopic
cochlear input is processed in two primary auditory core areas
(A1 and R) and then fed forward to two secondary auditory belt
areas (Slow and Fast; Figure 1). These four areas approximate
the known architecture of human (Galaburda and Sanides, 1980;
Rivier and Clarke, 1997; Wallace et al., 2002) and non-human
primates (Hackett et al., 1998; Kaas and Hackett, 2000; Read
et al., 2002) AC. Simulated areas primarily differ in their temporal
and spectral (spatial) response properties. Specifically, neuronal
units in the Fast area (approximating caudomedial-caudolateral
areas) are characterized by fast temporal dynamics and coarse
spectral tuning, whereas units in the Slow area (approximating
middle lateral-anterolateral areas) are characterized by slow
temporal dynamics and fine spectral tuning. It is important to
note that these units represent an abstraction at the level of
neural population behavior and are not always indicative of
single-neuron properties.

In addition, we introduce an interdependence between
temporal and spatial (tonotopic) processing within the two belt
areas, as the variable that determines the temporal dynamics
of the responses varies with frequency. Consequently, the units
corresponding to lower frequencies in the tonotopic axis respond
more slowly than those corresponding to higher frequencies (see
Scott et al., 2011; Simpson et al., 2013; Heil and Irvine, 2017).
Each simulated area comprises 98 units, which are modeled by
excitatory and inhibitory unit pairs. Each of the excitatory core
units receives tonotopic input from the corresponding frequency-
matched peripheral stage. This input only targets the excitatory
units of A1 and R. Excitatory responses of A1 and R act as
tonotopic input for Fast and Slow areas, respectively (Figure 1C).
The output (excitatory responses) at different stages of the model
is shown in Figure 1D.

The WCCM
Neuronal units of the cortical areas were simulated using the
WCCM in MATLAB (The MathWorks, Inc.). The WCCM is a
recurrent firing rate model where neural population processes are
modeled by the interaction of excitatory and inhibitory responses.
The model dynamics are described by Wilson (1999):

τ
dEn(t)

dt
= −En(t) + SE

(∑
m

wEEmn En (t)

−

∑
m

wIEmn In (t) + Pn (t)
)

(1)

τ
dIn(t)

dt
= − In(t) + SI

(∑
m

wEImn En (t) −
∑

m
wIImn In (t)

)
(2)

where En and In are the mean excitatory and inhibitory firing
rates at time t at tonotopic position n, respectively. Pn is the

external input to the network and τ is the time constant. The
sigmoidal function S, which describes the neural activity (Sclar
et al., 1990), is defined by the following Naka-Rushton function:

S(P) =
MP2

θ2 + P2 (3)

θ is the semi-saturation constant and M is the maximum
spike rate for high-intensity stimulus P. The excitatory and
inhibitory units are connected in all possible combinations
(E–E, E–I, I–E, I–I). The spatial spread of synaptic connectivity
between the units m and n is given by the decaying exponential
wij (i, j= E, I) function:

wijmn = bij exp
(
− |m− n|

σij

)
(4)

In Equation (4), bij is the maximum synaptic strength and σij is
a space constant controlling the spread of activity. The equations
were solved using Euler’s method with a time step of 0.0625 ms.

Parameter Selection and Optimization
Model parameters were selected and optimized based on the
following procedure. First, the stability constraints of the model,
as derived and implemented by Wilson (1999) were applied.
Second, parameters range were chosen so that the model operates
in active transient mode, which is appropriate to simulate activity
in sensory areas (Wilson and Cowan, 1973). In active transient
mode, recurrent excitation triggers the inhibitory response,
which in turn reduces the network activity. The balance of
excitation and inhibition was achieved by fixing the parameters
as described in Table 1 (for the derivation of these parameters
see Wilson, 1999). As shown in previous modeling endeavors
(Loebel et al., 2007; May et al., 2015), it is crucial to understand
the behavior generated through the interaction of various model
properties rather than the exact values of the parameters. In our
case, we are interested in the interaction of spectral selectivity and
temporal dynamics in neural populations constrained by known
physiological response properties of the AC. Thus, while most
of the parameters were fixed, further tuning was performed to
find the combination of spatial spread (σ), connectivity between
areas and time constant (τ) such that the areas reflected the
general spectral and temporal constraints, as derived from the
electrophysiology literature (see following subsections).

Spatial Resolution of the Model
Model parameters, spatial spread (σ) and connectivity between
areas, were determined by matching the sharpness of the model’s
resulting frequency tuning curves (FTCs) with values reported
in the literature. FTCs represent the best frequency of auditory
cortical neurons as well as their frequency selectivity (i.e., the
sharpness of frequency tuning; Schreiner et al., 2000). In primate
AC, the sharpness of neuronal FTCs varies from sharp to broad.
Quality factor (Q) has been used to express the sharpness of the
FTCs

(
Q = Best Frequency

Bandwidth

)
. The Q-values for sharply and broadly

tuned auditory cortical neurons have been reported to be around
12 and 3.7, respectively (Bartlett et al., 2011). Also, the core areas
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TABLE 1 | Fixed parameters of the model.

Parameters Values

M 100

θ inhibition 60

θ excitation 80

bEE 1.5

bEI = bIE 1.3

bII 1.5

σII 10

M is the maximum spike rate, θ the is semi-saturation constant. Parameters bEE,
bII bEI, and bIE, represent the maximum synaptic strength between excitatory
units, between inhibitory units, from excitatory to inhibitory units, and vice versa,
respectively. All the listed parameter values are same across the four simulated
areas.

TABLE 2 | Model parameters across the four simulated areas.

Parameters Values

A1 R Slow Fast

τ (ms) 10 20 300–200 3–1

σEE 40 40 20 200

σEI = σIE 160 160 80 300

For the four simulated areas, the values for varying parameters, time constant τ

(reported over the tonotopic axis from low to high best frequencies of the units),
spatial spread parameter σ (EE, EI/IE) are listed.

have been described as having narrower tuning bandwidths than
belt regions (Recanzone et al., 2000). In order to generate narrow
FTCs of A1, R, and Slow areas and broad FTCs for Fast area, we
iteratively changed spread of activity within the simulated area
(final values are listed in Table 2). When changing the spread of
activity (σ) within an area did not affect the Q of the area, the
connectivity across the areas was manipulated. It should be noted
that the projections act as a filter, which is then convolved with
the spatial input per unit time. To avoid any boundary effects,
symmetric kernel filters (odd number of elements) were used
and the central part of the convolution was taken as a result.
Final connectivity across regions (i.e., distribution of input units
projecting from one area to another) is shown in Figure 1C.

The narrower tuning in the Slow area results from the smaller
spread of excitation (σEE, see Table 2), and from the one-to-
one projection from R units (Figure 1C). The broader tuning
in the Fast area is simulated by a many-to-one projection from
the Gammatone filterbank to a single unit of A1 (three to one)
and from A1 to the Fast areas (nine to one). The strength of
these connections is shown in Figure 1C. The FTCs across areas
are quantified using Q at half-maximum bandwidth. The units
tuning in the simulated A1 and R areas have mean Q = 6.32
(std = 1.43), units in the Fast area have mean Q = 4 (std = 0.87),
while units in the Slow have Q = 8.35 (std = 2.1). In line with the
experimental observations (Kuśmierek and Rauschecker, 2009),
the Q-values increased with increasing center frequencies, while
maintaining the general trend of broad tuning in Fast and
narrow tuning in Slow area. Figure 2 shows FTCs across the four
simulated areas for a single unit with best frequency at 4.3 kHz.

FIGURE 2 | Frequency tuning curves (FTCs) of the unit with best frequency at
4.3 kHz across simulated areas. Areas A1 (blue line) and R (red line) are
sharply tuned, with Q of 7.3 and 7.7, respectively. The Slow area (yellow line)
has the sharpest tuning curves with Q of 10.3, while Fast (purple line) has the
broadest tuning with Q of 4.9. Q is measured as the ratio of the best
frequency and the half-maximum bandwidth in Hz.

Temporal Resolution of the Model
Temporal structure represents an important aspect of natural
acoustic signals, conveying information about the fine structure
and the envelope of the sounds (Giraud and Poeppel, 2012).
In several species, a gradient of temporal responses has been
observed in AC, with higher stimulus-induced phase locking
(synchrony) and lower latencies in area AI compared to adjacent
areas (AI vs. AII in cats: Bieser and Müller-Preuss, 1996;
Eggermont, 1998; AI vs. R and RT in monkeys: Bendor and
Wang, 2008). Correspondingly, model parameters determining
the temporal properties of population responses in the simulated
areas were adjusted to match such electrophysiological evidence.
Table 2 shows the resulting time constant τ for the simulated
areas. Note that the values of parameter τ do not represent the
latency of the first spike measured for single neurons but affect
the response latencies and dynamics at a population level.

Temporal latencies
As neurons in core area R have longer latencies than A1 (Bendor
and Wang, 2008), we selected a higher value of τ for simulated R
than A1. Based on the evidence of the caudomedial field showing
similar latencies to A1 (Recanzone et al., 2000; Kuśmierek and
Rauschecker, 2014), we adjusted τ of the Fast area so that the area
is as fast as A1. In contrast, we set τ of the Slow area such that
this region generates a more integrated temporal response, with
the firing rate taking longer to reach the semi-saturation point.
These τ values, in combination with the spatial connectivity
constraints, cause the simulated belt area to display a spectro-
temporal tradeoff. Additionally, in both Slow and Fast areas τ

decreases linearly along the spatial axis (maximum and minimum
values are reported in Table 2) with increasing best frequency,
following electrophysiological evidence of interaction of the
temporal and frequency axis where shorter latencies have been
found to be correlated with high best frequencies in macaques
(Scott et al., 2011).
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Temporal synchrony
To further refine parameter τ, next we examined stimulus-
driven phase locking of the simulated neural activity.
Electrophysiological measurements report synchronization
in the neural response to the sound carrier and envelope for a
limited range of frequencies, and the upper limit of this phase
locking has been found to decrease along the auditory pathway
(Joris et al., 2004). At the level of cortex, while the strongest
synchronization is reported for modulation rates up to 50 Hz
(AM stimuli: Liang et al., 2002, Clicks: Nourski et al., 2013),
weaker synchronization to even higher rates (up to 200 Hz) has
been observed for a subset of units (Steinschneider et al., 1980;
Bieser and Müller-Preuss, 1996; Lu et al., 2001; Nourski et al.,
2013). In light of the evidence above, we adjusted τ to mimic this
behavior and have strongest temporal synchronization for the
low range of modulation rates (up to 50 Hz), with some residual
synchronization to higher rates.

Model Evaluation
The model performance was evaluated in three stages. First,
we simulated the electrophysiological coding of AM (for both
noise and tone carriers). Second, we evaluated the model’s ability
to predict results of human psycho-acoustical tasks, including
the determination of amplitude modulation detection threshold
functions, tMTFs and perception of missing fundamental. Lastly,
we used speech stimuli to investigate the representation of pitch
and AM features of a complex sound across the simulated
areas. All artificial stimuli (AM noise, AM tones and missing
fundamental complex tones) were generated using MATLAB
with a sampling rate of 16 kHz and 1 s duration). Speech stimuli
were taken from LDC TIMIT database (Garofolo et al., 1993). In
all cases, the key readouts of the model were synchronization to
stimulus features and firing rates. The pitch estimates matched
against model output, where relevant, were computed using the
YIN algorithm (de Cheveigné and Kawahara, 2002).

Coding of AM Stimuli: Evidence From
Electrophysiology
To evaluate the model’s coding of AM, sinusoidally amplitude
modulated (sAM) stimuli were used. AM sounds were defined
by (1+m sin 2πgt)∗carrier, where m is the modulation depth,
g is the modulation rate and t is time. The modulation rates
were chosen to be 2–9 Hz (linearly spaced), and 10–1000 Hz
(logarithmically spaced). Broadband noise was used as carrier to
study the response of all units working together while pure tones
(500 Hz–3 kHz–5 kHz) were employed to evaluate carrier-specific
effects on amplitude modulation coding.

To quantify synchronization of responses to the temporal
structure of AM sounds, we employed two measures from
the electrophysiology literature (Eggermont, 1991; Joris
et al., 2004; Bendor and Wang, 2008): vector strength(

VS = Strength of Fourier Component at the Modulation Rate
Average Firing Rate

)
(Goldberg

and Brown, 1969), and rate modulation transfer function
(rMTF), which is the average firing rate as a function of
modulation rate. VS was computed for all modulation rates (and
three harmonics), for both tone and noise carriers, across the

four simulated areas. We considered a simulated area as being
synchronized to a modulation rate when VS was greater than 0.1
(this is an arbitrary threshold chosen to compare phase-locking
across conditions and areas).

rMTFs were calculated from the average firing rates (i.e., the
Fourier component at 0 Hz) and normalized for all areas. For the
computation of rMTFs, the modulation depth is fixed at 100%
across all AM stimuli. For noise carriers, the computation of
the VS and rMTF is based on the mean across all 98 excitatory
channels. For the tone carriers, only the channel maximally tuned
to the carrier frequency is considered.

Simulating Psychoacoustical Observations
The model was tested using three paradigms approximating
human psychoacoustic studies. The first two experiments
simulated temporal modulation transfer functions (tMTFs:
quantifying the modulation depth required to detect different
modulation rates) for broadband noise (Bacon and Viemeister,
1985) and tones (Kohlrausch et al., 2000). The third experiment
simulated pitch identification with missing fundamental stimuli
(Houtsma and Smurzynski, 1990).

For the simulated tMTFs, AM sounds with incremental
modulation depths (from 1 to 100%) were presented to the
model and the oscillations in the model’s output were measured.
In the psychoacoustic measurements, the lowest modulation
depth at which subjects can detect the modulation is considered
the detection threshold. In the model, using synchronization
as output measure, the lowest value of modulation depth at
which the output is synchronized to the modulation rate (i.e.,
the strongest Fourier component was at the modulation rate)
is considered as the detection threshold for that AM rate. This
procedure was repeated for all the modulation rates and, for
all simulated areas. For noise carriers, the mean across the
excitatory units across each area is analyzed and compared to data
collected by Bacon and Viemeister (1985). The model response
was simulated for modulation rates at 2–9 Hz (linearly spaced),
and 10–1000 Hz (logarithmically spaced).

For AM tones, the analysis of the waveform shows
spectral energy at the carrier frequency and at the carrier
frequency ± modulation rate. These accompanying frequency
components are called “spectral sidebands” of the carrier
frequency. If the modulation rate is high enough, these sidebands
activate distinctively different auditory channels than the carrier
frequency and can be detected audibly apart from the carrier
frequency. Thus, for the tone carriers (1 and 5 kHz) the active
part of the population (comprising the best frequency channel
and spectral sidebands) was used to compute tMTFs based on
temporal synchronization to the modulation rate (temporal code)
and detection of sidebands (spatial code). As before, for the
temporal code, the lowest value of modulation depth at which the
output is synchronized to the modulation rate (i.e., the strongest
Fourier component was at the modulation rate) is considered as
the detection threshold for that AM rate. For the spatial code,
the modulation depth at which the side-band amplitude (mean
firing rate over time) is at least 5, 10, 15, or 20% of the peak
firing rate (firing rate of the channel with CF closest to carrier
frequency) are calculated. The best (lowest) value of modulation
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depth is chosen from both coding mechanisms. The combination
of these coding mechanisms is then compared to tMTFs (at 30 dB
loudness) reported by Kohlrausch et al. (2000). The modulation
rates tested were 10–1600 Hz (logarithmically spaced).

Pitch of missing fundamental complex tones has been shown
to be coded by temporal and spatial codes, depending on
the order of harmonics and frequency of missing fundamental
(Bendor et al., 2012). Here we replicated this finding by
simulating the model response to complex tones with low order
(2–10) and high order harmonics (11–20) and varying missing
fundamental frequency from 50 to 800 Hz. The synchronization
to the missing F0, measured in VS, is computed from the
mean responses over time in each of the four simulated
areas. Furthermore, to evaluate the role of synchronization in
pitch perception, we simulated model responses to complex
tones with unresolved harmonics of a missing fundamental
frequency by approximating a pitch identification experiment
by Houtsma and Smurzynski (1990). The missing fundamental
tone complexes vary in two aspects: the number of harmonic
components (2–11) and the lowest harmonic component (10
and 16) while the fundamental frequency (F0) is fixed at 200
Hz. For each combination of lowest harmonic component and
number of components in the harmonic complex, we computed
the synchronization to the F0 (in VS) and mean firing rates for
all four regions.

Model Responses to Speech
Model responses to the speech stimuli were analyzed in two
stages. The speech stimuli (630 sentences, all spoken by different
speakers; mean duration 3.4 s) were randomly selected from the
LDC TIMIT database (Garofolo et al., 1993). To study how key
temporal features of speech waveforms are represented in the
modeled areas, we compared the temporal modulations in the
output of all four simulated areas to the temporal modulations
of the input signals. To this end, we computed the input-output
magnitude spectrum coherence (mscohere in MATLAB with a
2048 point symmetric hamming window and overlap of 1500
samples) between the input speech signal (after LIN) and the
output of all four areas. The coherence values are then scaled
across the four areas using the mean spatial activity along the
tonotopic axis (i.e., the mean firing rate over time for all sounds).
To highlight the difference in spectrum coherence between the
spectro-temporal processing streams in the model, the difference
between the scaled input-output coherence is computed to
compare the two core (R–A1) regions to each other and the two
belt areas (Slow–Fast).

RESULTS

Coding of AM Stimuli
We investigated the model’s AM coding using both broadband
noise and tone carriers. By using broadband noise as carrier,
we simulated general responses for each of the four areas, and
then used pure tone carriers to study the dependence of the
synchronization and rate coding on the tonotopic location (i.e.,
the best frequency of the units).

Sinusoidal AM Noise
Figure 3 shows the response of the four simulated cortical areas
(A1, R, Fast, and Slow) as a function of the modulation rate
of sinusoidally amplitude modulated (sAM) noise. We analyzed
the mean response of all units for each area. Across regions,
the response synchronization (measured as VS) decreases with
increasing modulation rate (solid lines in Figures 3A–D for
A1, R, Fast, and Slow areas respectively). The decrease in
synchronization is observed to be rapid above an area-specific
modulation rate (8 Hz for A1, R and Fast areas, 2 Hz for Slow).
Taking the lower limit for synchronization as VS = 0.1, the highest
AM rate to which the areas synchronize is 54 Hz in A1, 33 Hz in
R, 4 Hz in Slow and 54 Hz in Fast. Overall, the observed responses
to modulation rates show a low-pass filter profile.

Instead, the firing rate [rate Modulation Transfer Functions
(rMTFs), dash-dotted lines] shows different behavior across the
four areas in response to AM noise. For A1, R and Fast areas
(Figures 3A,C respectively), the firing rate does not change for
lower modulation rates (until 10 Hz for A1 and Fast, until 6 Hz
for R) and then rapidly increases until a maximum limit (54 Hz
for A1, R and Fast) and does not further change in response to
higher modulation rates. In contrast, the firing rate in the Slow
area (Figure 3D) shows a band-pass profile between 6 and 100
Hz, peaking at∼20 Hz.

Sinusoidal AM Tones
Next, we explored the frequency dependence of AM processing.
As the use of broadband noise as a carrier provides no
information about the temporal properties of different frequency
channels along the tonotopic axis, we simulated model
responses to AM pure tone carriers. Figure 4 shows response
synchronization (VS, left column) and firing rate (rMTFs,
right column) across cortical areas as a function of AM rate,
separately for units best responding to a low (solid lines), middle
(dashed lines), and high (dash-dotted lines) frequency pure tone
carriers (500, 1k and 3k Hz respectively). For each area, the
responses in the model’s frequency channel matching the tone
carrier are shown. The synchronization shows a low-pass filter
profile consistently for all three carriers. With increasing carrier
frequency, the A1, R, and Slow areas (Figures 4A,C,E) are
synchronized (VS cut-off at 0.1) to higher modulation rates (A1:
33 Hz for 500 Hz, 54 Hz for 1 kHz and 3 kHz, R: 26 Hz for
500 Hz, 33 Hz for 1 kHz and 3 kHz, Slow: 3 Hz for 500 Hz,
4 Hz for 1 and 3 kHz). This behavior is consequence of the
relationship between the temporal and spatial axis (a property
of the model), with temporal latencies reducing with increasing
center frequencies of the units allowing phase-locking to higher
modulation. The Fast area (Figure 4G) shows a similar cutoff for
all carriers at 54 Hz. The rMTFs (Figures 4B,D,F,H for areas A1,
R, Slow, and Fast respectively), however, show more complex and
varied behavior for different carriers (including monotonically
increasing, band-pass, and band-stop behavior). This behavior
is in line with rMTFs from electrophysiological studies, where
instead of singular behavior (like low-pass filter profile reported
for tMTFs), rMTFs show variety of response profiles (Schreiner
and Urbas, 1988; Bieser and Müller-Preuss, 1996; Liang et al.,
2002; Bendor and Wang, 2008).
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FIGURE 3 | Model responses to sAM noise across simulated areas. A dual coding mechanism for modulation rates, i.e., temporal (measured as Vector Strength, VS,
solid lines) and rate codes (quantified as the rate Modulation Transfer Functions, rMTFs, dash-dotted lines), are shown for A1, R, Fast, and Slow areas in (A–D)
respectively. In A1, R, and Fast areas, the synchronization decreases for higher modulation rates and is complimented by increasing firing rate. While very little
synchronization is observed in the Slow area, the respective rMTF shows an interesting band-pass profile.

Simulating Psychoacoustic Observations
Next, the model was tested using three experimental paradigms
similar to those employed in human behavioral studies. The
first two experiments tested the temporal modulation transfer
functions (tMTFs characterizing the modulation depth required
to detect different modulation rates) for broadband noise (Bacon
and Viemeister, 1985) and tones (Kohlrausch et al., 2000).
The third experiment examined the effects of the number of
harmonics in pitch identification with missing fundamental
stimuli (Houtsma and Smurzynski, 1990).

Temporal Modulation Transfer Functions for
Broadband White Noise
Similar to the behavioral task of Bacon and Viemeister (1985),
we measured responses of the model to AM sounds with variable
modulation depth and recorded the minimum modulation depth
where the output signal was synchronized to the modulation rate
(i.e., the strongest Fourier component was at the modulation
rate) of the AM noise. Figure 5 illustrates the simulation results
(solid colored lines), along with human psychoacoustic data

(dash-dotted black lines with circles, adapted from Bacon and
Viemeister, 1985). Lower values depict higher sensitivity to the
modulation rates. A1 and R show lower thresholds for slower
than for faster modulation rates. In the Fast area, the detection
profile is similar to A1 and R, but the minimum detection depth
is higher than in the other areas. The broad tuning of the Fast
area reduces the precision of the temporal structure of the input
signal. Thus, the Fast area performs worse than the other areas
across modulation rates. In the Slow area, modulation detection
is observed to be limited to rates below 10 Hz. Thus, the core
areas outperformed the belt areas in the detection of amplitude
modulations. The modulation depth detection profile of the core
areas resembles the results from human psychophysics suggesting
that primary auditory cortical processing may underlie tMTFs
reported in psychophysics. In comparison with synchronization,
rate coding is difficult to quantify as observed before with
varying response profiles for rMTFs along the frequency axis
(Figures 4F,H). The difference between our simulations and
psychophysical findings at faster rates may be explained by
the fact that our simulations only considered coding through
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FIGURE 4 | Model responses to sAM tones across simulated areas. A dual coding mechanism for modulation rates, i.e., temporal (measured as Vector Strength,
VS, left panels) and rate codes (quantified as the rate Modulation Transfer Functions, rMTFs, right panels), are shown for A1, R, Fast and Slow areas in respective
panels (A1: A,B, R: C,D, Slow: E,F, Fast: G,H). For the three different carriers, synchronization to higher modulation rates is observed with increasing carrier
frequencies across areas (A,C,E,G). Rate coding, however, shows more varied profiles with different carriers (B,D,F,H).

response synchronization and ignored the contribution of rate
coding contributing to the detection of higher modulation rates.

Temporal Modulation Transfer Functions of
Sinusoidal Carriers
We then investigated the model’s detection threshold function
of sAM tones. Psychoacoustic studies have shown that human
performance does not change across the lower modulation rates,
becomes worse for a small range and then improves after the side-
bands introduced by the modulation become detectable (Sek and
Moore, 1995; Kohlrausch et al., 2000; Moore and Glasberg, 2001;

Simpson et al., 2013). We obtained model responses to sAM tones
as a combination of temporal and spatial codes. To characterize
an area’s modulation detection threshold represented by temporal
code, the lowest modulation depth at which the best frequency
unit or the spectral sideband synchronized to the modulation
rate was chosen. Additionally, the spatial code was quantified
by detection of spectral sideband. Figure 6 shows the lowest
modulation depth for which A1 (solid lines in Figures 6A,C) and
R (solid lines Figures 6B,D) code modulation rates of sAM tones
and the psychoacoustic data for 1 and 5 kHz sinusoidal carriers
at 30 dB (dash-dotted lines with circles, Kohlrausch et al., 2000).
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FIGURE 5 | Modulation detection with sAM noise. The temporal Modulation
Transfer Functions (tMTFs), illustrating the minimum depth required to detect
the amplitude modulation in sAM noise, are shown for the four model areas
(in colored lines) and for a psychoacoustic study (black line and circles;
adapted from Bacon and Viemeister, 1985). Lower values depict higher
sensitivity to modulation rate. Modulation depth, m (dB) of the signal is plotted
on y-axis.

The initial increase in depth values indicates the contribution
of temporal coding of the modulation rates that gets worse
with higher modulation rates. With increasing modulation rates,
however, the spectral sidebands dissociate from the carrier
channel and the contribution of spectral coding is observed.
The modulation depths at which the sideband amplitude (mean
firing rate over time) is detectable (multiple threshold cut-offs
are shown where sideband activity is 5, 10, 15, and 20% of the
firing rate of the channel with CF closest to carrier frequency)
are also shown in Figure 6. No synchronization is observed in
the Slow and Fast areas. Overall, model results show a clear
frequency dependence as detection of higher rates was observed
for the higher carrier (maximum for A1: 500 Hz for 1 kHz
carrier, 1.2 kHz for 5 kHz carrier; R: 1.2 kHz for 1 kHz carrier,
1.6 kHz for 5 kHz carrier). The modulation detection by the
model slightly worsened with increasing modulation rate but
improved (lower m values) as the sidebands introduced by the
modulation became detectable (after 100 Hz for the 1 kHz carrier
in A1 and R, after 400 Hz for 5 kHz carrier in A1). This
improvement of AM detection threshold for high AM rates is
in accordance with human psychophysics, where observations
show a decrease in performance with increasing modulation
rates is followed by a performance increase accompanied
with side-band detection (Sek and Moore, 1995; Kohlrausch
et al., 2000; Moore and Glasberg, 2001; Simpson et al., 2013).
Additionally, matching the model results, human psychophysics
show improved performance (i.e., detection of higher rates) with
increasing carrier frequencies.

Pitch of Missing Fundamental Sounds
Missing fundamental sounds are harmonic complexes that,
despite lacking energy at the fundamental frequency (F0), induce

the percept of a pitch corresponding to F0 (Yost, 2010; Oxenham,
2012). If the harmonic components in the missing fundamental
sound are resolved (i.e., each component produces a response on
the basilar membrane that is distinct from that of neighboring
harmonic components), the pitch information can be extracted
through a spectral (spatial) mechanism, or a temporal mechanism
if harmonics are unresolved, or a combination of the two (Yost,
2009). Bendor et al. (2012) have shown that low F0 sounds with
higher-order harmonics are primarily represented by temporal
mechanisms. Thus, we tested the effect of harmonic order on
the detection of missing F0 through temporal synchrony across
simulated areas. Figure 7 shows synchronization (temporal
code, measured as VS) to missing F0 of complex tones with
lower-order and higher-order harmonics in panels A and B
respectively. Stronger synchronization is observed for higher-
order harmonics compared to lower-order harmonics for lower
missing F0 complex tones in A1, R, and Fast areas. The effect is
most pronounced in the Fast area. However, the synchronization
drops with increasing missing F0, and very little to none
synchronization is observed after 400 Hz irrespective of the order
of harmonics in the complex tone.

For low pitch missing fundamental sounds, psychophysics
experiments employing sounds with unresolved harmonics
have shown that humans are better at identifying a missing
fundamental pitch when the sound consisted of lower (lowest
harmonic = 10) compared to higher unresolved harmonics
(lowest harmonic = 16), yet the performance reaches a
plateau as more harmonics components are included for the
sound consisting of lower but not higher-order harmonics
(Houtsma and Smurzynski, 1990). To evaluate whether temporal
mechanisms play a role in these findings we simulated a pitch
identification experiment (Houtsma and Smurzynski, 1990) and
explored the effects of the number of harmonic components
and lowest order harmonic in the missing fundamental complex
tone on the model’s behavior. As already established, simulated
populations could only successfully synchronize to lower missing
F0 (Figure 7), thus the task employed complex tones with low
missing F0 (200 Hz). Figure 8 shows the model’s synchronization
(VS) to the missing F0 (200 Hz and the first three harmonics)
across the simulated regions (in blue lines), along with the results
from the psychophysics experiment (in red lines, data adapted
from Houtsma and Smurzynski, 1990).

While we did not observe any differences due to harmonic
order in VS measured in A1, R, and Slow areas (Figures 8A,B,D),
the Fast area (Figure 8C) showed clear dissociation in
synchronization code when the lowest order harmonic changed
from 10 to 16. That is, the synchronization to the missing F0 in the
Fast area was stronger when the lowest order harmonic was 10.
Additionally, for both complex tones, the performance of the Fast
area improved with an increasing number of components. The
improvement in synchronization was rapid when the number of
components changed from 2 to 4 for the lowest order harmonic
at 10. These observations are in line with the pitch identification
data shown in the red lines. Thus, neural response properties
similar to those of the Fast area are optimized to temporally detect
the F0 from missing fundamental sounds, and responses in the
Fast area follow human behavior.
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FIGURE 6 | Modulation detection with sAM tones. The solid lines show the temporal Modulation Transfer Functions (tMTFs), illustrating the minimum depth required
to detect the amplitude modulation in sAM tones (1 kHz in top panels, 5 kHz in bottom panels), are shown for the two core areas (A1 in A,C, R in B,D). The model
output is a combination of temporal and spatial codes for modulation detection. Variation in the spatial code is shown at four different cut-off values, represented by
the solid lines in different gray-scales. Data from a psychoacoustic study are shown in dash-dotted lines with circles (adapted from Kohlrausch et al., 2000). Lower
values depict higher sensitivity to modulation rate. Modulation depth, m (dB) of the signal is plotted on y-axis.

FIGURE 7 | Synchronization to missing fundamental frequency across harmonic order. The model performance in detecting missing fundamental of complex tones
(measured as vector strength) with (A) low-order harmonics, and (B) high-order harmonics. Simulated responses in the four areas are shown in different colors.

Unlike synchronization, the simulated firing rate
(Supplementary Figure S1) did not show a pattern that
matched the behavioral data. Specifically, the simulated firing
rate increased monotonically as a function of the number
of components in the complex tone, irrespective of the
lowest order harmonic.

Model Responses to Speech
Speech signals encode information about intonation, syllables,
and phonemes through different modulation rates. We explored
the processing of speech sounds across simulated cortical areas

to study the importance of simple spectro-temporal cortical
properties, as reported by electrophysiology and represented
by the model, in coding these temporal features of speech.
To this end, we analyzed model output in response to
630 speech stimuli by computing the magnitude spectrum
coherence between these sounds (the output of the LIN
stage) and the simulated model responses for each of the
four areas. Figure 9 shows the normalized coherence plots
(scaled by the normalized time-averaged activity). In all regions,
we observed model synchronization to slow changes in the
stimuli (<20 Hz).
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FIGURE 8 | Model performance on a missing fundamental task. The model performance in detecting missing fundamental of complex tones (synchronization to
missing fundamental frequency at 200 Hz, measured as Vector Strength) is shown for areas A1, R, Fast, and Slow (blue lines in A–D, respectively). Human
behavioral data on pitch identification (%) task (Houtsma and Smurzynski, 1990) is plotted in orange lines. Solid lines show complex tones with lowest harmonic at
10 while the dash-dotted lines show the lowest harmonic component at 16.

Next, in order to highlight differences in the temporal
response properties between regions, we computed difference
plots for the simulated core and belt areas. While we observed
no differences in coding of temporal features between A1 and
R, Figure 10 shows that differences are present in the belt
stream (comparing the coding of temporal features in the Fast
to those in the Slow area). The difference between the coherence
(Slow–Fast) across 630 stimuli (mean: -0.0332, SEM: 0.0041)
was used to compute the data distribution in four percentiles
(65, 75, 85, and 95%). These percentiles are shown along the
color bar in Figure 10 (with the distribution) to provide a
threshold for the significance to the difference between input-
output coherence of the Slow and Fast area. Shades of blue
show stronger input-output coherence in the Slow area, while the
warmer colors indicate stronger input-output coherence in the
Fast stream. The Slow area represents the slower changes (4–8
Hz) in the speech envelope better than the Fast area. The Fast
area, on the other hand, highlights faster changes in the temporal
structure of speech in two frequency ranges (30–70 Hz, and
around 100–200 Hz).

We hypothesized that the higher of these two frequency
ranges (100–200 Hz) may reflect the presence of temporal pitch
information in the Fast area. The temporal code for pitch in
the simulated areas was estimated by computing short-time the
Fourier Transform (window length: 300 ms, overlap: 200 ms)
over length of the signal. The resulting power spectral density

estimates showed temporal synchronization to the frequencies
approximating the pitch in A1, R and Fast areas over time. For the
purpose of comparison across simulated areas, the pitch estimates
and contour obtained for voiced portions of the sounds (using
the YIN algorithm) were correlated with the oscillatory activity
of individual simulated areas for all 630 speech stimuli. Mean
correlation values were A1: 0.46 (SEM: 0.02), R: 0.47 (SEM: 0.02),
Slow: -0.14 (SEM 0.01), Fast: 0.59 (SEM 0.01), and showed that
the Fast area best represented the pitch information through
synchronization to instantaneous F0.

Figure 11 highlights the presence of a dual mechanism for
coding pitch, as pitch information is present in both spectral
(i.e., spatially, by different units) and temporal (by different
oscillatory activity) model responses for a sample sound (male
speaker, sentence duration 3.26 s; selected from LDC TIMIT
database; Garofolo et al., 1993). In Figure 11A, the time-averaged
response to the speech sentence across the tonotopically-
organized channels in the four simulated areas is shown. In all
the areas, a peak in the response profile can be observed in
those frequency channels that matched the F0 of the speaker
(best estimate computed using YIN algorithm: 109 Hz). This
spectral (i.e., spatial) representation of the speech signal’s pitch is
strongest in the Slow area and weakest in the Fast area. A1 and R
show similar profiles with respect to each other. Contour tracking
of pitch in the Fast area with the sample sound (correlation
0.74) is shown in Figure 11B (pitch contour of the speech signal
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FIGURE 9 | Mean magnitude spectrum coherence between speech sounds and model output. The coherence values in A1, R, Fast, and Slow areas are shown in
(A–D), respectively (scaled by the normalized mean spatial response of the model to 630 speech sounds). All areas show high coherence with the slow oscillations
present in the input signal (indicated by red and yellow colors).

measured by YIN algorithm is shown as the white boxes). The
simulated belt regions show functional specialization to represent
pitch spectrally (in the Slow area) and temporally (in the Fast
area) in parallel streams.

Overall, the model responses to speech sounds highlight the
presence of a distributed code for representing different temporal
features of speech signals at the level of belt regions, but not for
the core regions. Each belt area showed a functionally relevant
specialization, as the temporal features highlighted by Slow and
Fast areas are key structures of speech signals.

DISCUSSION

In this study, we presented a computational model of the AC
that consists of information processing streams optimized for
processing either fine-grained temporal or spectral information.
The model is employed to investigate the contribution of the
different cortical streams in the representation and processing of
basic acoustic features (i.e., temporal modulation, pitch) in the
context of artificial and natural (speech) stimuli.

We started by simulating responses to artificial AM sounds.
Electrophysiological studies have characterized AM coding by a
dual mechanism of temporal (synchronization) and rate coding

(Joris et al., 2004). In comparison with the phase-locking in
the auditory nerve (reported up to 1.5–8 kHz in humans;
Verschooten et al., 2019), the synchronization code has been
measured to be comparatively diminished at the level of the
cortex for human and non-human primates. The preferred AM
rates have been reported as ranging from 1 to 50 Hz in monkeys
(Steinschneider et al., 1980; Bieser and Müller-Preuss, 1996; Lu
et al., 2001), despite neurons have been shown to synchronize
as high as 200 Hz in monkeys (Steinschneider et al., 1980)
and similar weak synchronization could be detected in humans
with electrocorticography (Nourski et al., 2013). In agreement
with these electrophysiology studies, our model exhibited a
dual coding mechanism. While the contribution of a temporal
code (synchronization) was strong up to a maximum of 50 Hz,
synchronizations became weaker for higher modulation rates and
were complemented with a rate code mechanism.

Furthermore, in electrophysiology, the maximum AM rate
for which a temporal code is present has been reported to
differ across fields of the AC (Liang et al., 2002). Caudal fields
(i.e., regions belonging to the dorsal processing stream) are
reported to be as fast as or even faster than the primary AC
and synchronize with the stimulus envelope up to high AM
rates. Instead the rostral field (i.e., part of the ventral processing
stream) does not show a temporal code for AM sounds but
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FIGURE 10 | Mean difference in magnitude spectrum coherence between belt regions. The Slow area showed higher coherence with slow oscillations in speech
(4–8 Hz, indicated by blue colors). Instead, the Fast area showed greater coherence to faster oscillations of speech (30–70 Hz, around 100 and 150–200 Hz,
indicated by the warmer colors). The distribution of difference in magnitude spectrum coherence between Slow and Fast area for all 630 sounds is shown in gray,
adjacent to the color bar, with percentiles marked to indicate the statistical significance.

FIGURE 11 | A dual code for pitch estimation. For a sample sound, (A) Mean firing rate of all units in the four simulated areas (A1, R, Slow, and Fast, colored lines) is
shown. Sound frequency profile (scaled) is plotted in black dashed line for reference. The gray highlighted portion of the plot indicates estimates of pitch by YIN
algorithm (distribution over time, with best estimate of F0 plotted with dash-dotted line; de Cheveigné and Kawahara, 2002). A spectral code is observed in model
outputs with firing rate peaks overlapping with YIN estimates. (B) Temporal code for pitch is observed as weak synchronization to pitch contour in oscillatory activity
(measured as Vector Strength) of the Fast area unit corresponding to spectral peak corresponding to best pitch estimate by YIN algorithm. The pitch contour
estimates over time computed by YIN algorithm are depicted by white boxes. The correlation between YIN estimates and the temporal profile of the Fast area is 0.74.

instead codes AM with changes in firing rate (i.e., a rate code)
(Bieser and Müller-Preuss, 1996). In the simulated responses, the
relative contribution of the temporal and rate coding mechanisms
also varied across the simulated cortical areas, depending upon
the areas’ temporal and spectral processing properties. While
the temporal code displayed a low-pass filter profile, the shape
of the rate code varied from low-pass to band-pass and band-
stop patterns. Evidence for such variation in rate coding pattern
has been reported in electrophysiological studies as well with

sAM stimuli (Schreiner and Urbas, 1988; Bieser and Müller-
Preuss, 1996; Liang et al., 2002; Bendor and Wang, 2008). In
our model, this observation was highlighted when the firing
rate was examined within carrier-matched frequency channels.
The interaction of spectral and temporal response properties
underlies these observations.

In order to assess the relationship between neural
population activity (i.e., synchronization and firing rate)
with human behavior, we next used the model to simulate
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psychoacoustic experiments. We were able to successfully predict
psychoacoustically-determined modulation detection thresholds
(i.e., modulation detection transfer functions, tMTFs) for AM
noise and tones (Bacon and Viemeister, 1985; Kohlrausch et al.,
2000). The model suggested a role for auditory core areas, rather
than belt areas, in coding modulation detection with simple AM
stimuli. The tMTF for AM noise was replicated by computing
temporal synchronization. However, for AM tones, we observed
the best prediction of the psychoacoustical tMTF by using a
combination of synchronization and spatial (sideband detection)
code. Additionally, we observed that compared to low-frequency
carriers, high carriers allowed modulation detection up to faster
rates. This replicated psychoacoustic observations of detection
up to faster modulation rates with a higher carrier frequency (Sek
and Moore, 1995; Kohlrausch et al., 2000; Moore and Glasberg,
2001; Simpson et al., 2013). Our simulations indicate that these
frequency-specific responses, which arise at the periphery, are
inherited by the cortex, especially in the core areas.

We further evaluated the contribution of temporal coding
mechanisms to psycho-acoustical phenomena. While current
views on pitch perception suggest that the role of synchronization
is limited to auditory periphery and cortex might use information
from individual harmonics (Plack et al., 2014), there is evidence
of temporal cues being used especially for unresolved harmonics
for low pitch sounds (Bendor et al., 2012). The model successfully
decoded the low frequency missing fundamentals of complex
tones and showed dependence of strength of synchronization
on the order of harmonics. By simulating a psychoacoustic task
employing missing fundamental complex tones with varying
unresolved harmonics, we further investigated the role of
synchronization and its dependence on number and order of
harmonics. The model output matched the previously reported
human behavior performance through synchronization in the
simulated neural responses, but not by a rate coding mechanism.
That is, we could successfully replicate three key findings from
Houtsma and Smurzynski (1990). First, the synchronization
to the missing F0 was stronger for the lower compared to
higher-order harmonic sounds and second, it improved with
an increasing number of components of complex tone. Third,
only for the lower order harmonic sounds, the improvement in
model performance was sharp when the number of components
was increased from two to four and displayed a plateau
when further components were added. Interestingly, the match
between psychoacoustics and the model output was limited to
the Fast area, suggesting a role for this fine-grained temporal
processing stream in the extraction of the pitch using temporal
cues. Additionally, using speech sounds, we further observed a
strong spatial (spectral) pitch correlate (observed in all areas,
strongest in Slow area) along with weaker oscillations tracking
pitch contour (only in Fast area). However, the spatial code is not
observable in model output for pitch with missing fundamental
complex tones and suggests need for a more complex network
to effectively detect pitch just from harmonic information in
space. Moreover, the temporal code for pitch can benefit from
feedback connectivity (Balaguer-Ballester et al., 2009) while
precise interspike intervals can shed light on phase sensitivity of
pitch perception (Huang and Rinzel, 2016). Thus, future model

modifications can move from general (current) to more specific
hypotheses of auditory processing.

Coding of pitch in the AC has been extensively investigated
with fMRI, resulting in somewhat conflicting findings. While
some studies pointed to lateral Heschl’s Gyrus (HG) as a pitch
center (Griffiths and Hall, 2012; Norman-Haignere et al., 2013;
De Angelis et al., 2018), other studies showed that pitch-evoking
sounds produced the strongest response in human planum
temporale (PT) (Hall and Plack, 2009; Garcia et al., 2010).
This disagreement may be due to differences between studies
in experimental methods and stimuli. Our computational model
provides an opportunity to merge these fMRI-based findings, as
it allows for the efficient and extensive testing of model responses
to a broad range of sounds. Based on the sounds we tested,
observations of a pitch center in PT, part of the Fast stream, may
be dominated by temporal pitch. Instead, human fMRI studies
reporting a pitch area in lateral HG (Griffiths and Hall, 2012;
Norman-Haignere et al., 2013; De Angelis et al., 2018), which
is part of the Slow stream), maybe reflecting the spectral rather
than the temporal processing of pitch. Our simulations suggest a
functional relevance for temporal representations albeit through
weak synchronization. These predictions are in line with evidence
of synchronization in the AC contributing to the percept of
pitch (up to 100 Hz) observed with MEG (Coffey et al., 2016)
and require future studies with both high spectral and temporal
precision data from the AC.

The distributed coding pattern shown by the different regions
(i.e., coding of modulation detection thresholds by the core
regions, coding of temporal pitch by the Fast area and spectral
acuity by the Slow area of the belt stream) reflected a hierarchical
processing scheme based on varying spectro-temporal properties
of the neural populations. We then applied this modeling
framework to the analysis of (continuous) speech with the aim
of exploring the influence of basic neural processing properties
on the representation and coding of speech. All modeled areas
represented the slow oscillations present in speech (<20 Hz).
In the belt areas, an additional distributed coding of temporal
information was observed. That is, the optimization for coding
slow temporal changes with high spectral precision in the Slow
stream resulted in the coding of temporal oscillations in the lower
4–8 Hz frequency range. Processing properties similar to those of
the Slow stream may thus be suited for coding spectral pitch and
prosody in speech signals. Instead, optimization for processing
fast temporal changes with low spectral precision in the Fast
stream resulted in coding of temporal oscillations in the higher
30–70 and 100–200 Hz frequency ranges. Processing properties
similar to those of the Fast stream may therefore instead be
optimal for coding phonemes (consonants), and temporal pitch.
In sum, we showed that the hierarchical temporal structure
of speech may be reflected in parallel and through distributed
mechanisms by the modeled areas, especially by simulated belt
areas. This is in line with the idea that the temporal response
properties of auditory fields contribute to distinct functional
pathways (Jasmin et al., 2019).

The “division of labor” observed between the simulated
processing streams provides predictions regarding cortical speech
processing mechanisms. Specifically, the slowest oscillations,
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representing the speech envelope, were coded in parallel across
regions with different processing properties and may serve to
time stamp the traces of different speech aspects belonging
to the same speech utterance across streams. This may serve
as a distributed clock: A binding mechanism that ensures the
unified processing of different components of speech (Giraud
and Poeppel, 2012; Yi et al., 2019) that are instead coded
in a distributed fashion. Such a temporal code can also
underlie binding of auditory sources in stream segregation
(Elhilali et al., 2009). While in the current implementation
of the model the responses are driven by stimuli, the model
could be extended to include stimulus-independent oscillatory
cortical activity. As the oscillations inherent to AC processing
that occur on multiple timescales are known to decode
complimentary informational structures in speech processing
(Overath et al., 2015) and auditory scene analysis, such a model
extension may in the future be used to study the effects on
these ‘inherent’ oscillations on responses to speech and other
structured inputs.

To summarize, we have presented a recurrent neural
model built on simple and established assumptions on general
mechanisms of neuronal processing and on the auditory cortical
hierarchy. Despite its simplicity, the model was able to mimic
results from (animal) electrophysiology and was useful to link
these results to those of psychophysics and neuroimaging
studies in humans. As the response properties of the AC
(tonotopic organization, phase-locking, etc.) are inherited from
the periphery, it remains possible that the model actually depicts
earlier stages in the auditory pathway rather than AC. In future
implementations of the model, the distinction between peripheral
and cortical stages can benefit from a more detailed peripheral
model (Meddis et al., 2013; Zilany et al., 2014). Ultimately,
establishing a clear distinction between peripheral and cortical
contribution would require simultaneous high-resolution (spatial
and temporal) recordings across multiple locations of the
auditory pathway and cortex. Furthermore, how the model
dynamics shape up in presence of intrinsic noise in the system
can also provide interesting insights into sound processing.

Nonetheless, the model is valuable for generating hypotheses
on how the different cortical areas/streams may contribute
toward behaviorally relevant aspects of acoustic signals. The
presented model may be extended to include a physiological
model of neurovascular coupling (Havlicek et al., 2017) and thus
generate predictions that can be directly verified using functional
MRI. Such a combination of modeling and imaging approaches
is relevant for linking the spatially resolved but temporally
slow hemodynamic signals to dynamic mechanisms of neuronal
processing and interaction.
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