
ORIGINAL RESEARCH
published: 17 January 2020

doi: 10.3389/fncom.2019.00097

Frontiers in Computational Neuroscience | www.frontiersin.org 1 January 2020 | Volume 13 | Article 97

Edited by:

Wulfram Gerstner,

École Polytechnique Fédérale de

Lausanne, Switzerland

Reviewed by:

Maurizio Mattia,

Istituto Superiore di Sanit (ISS), Italy

Paolo Del Giudice,

Istituto Superiore di Sanit (ISS), Italy

*Correspondence:

Nicolas Brunel

nicolas.brunel@duke.edu

Received: 03 October 2018

Accepted: 23 December 2019

Published: 17 January 2020

Citation:

Pereira U and Brunel N (2020)

Unsupervised Learning of Persistent

and Sequential Activity.

Front. Comput. Neurosci. 13:97.

doi: 10.3389/fncom.2019.00097

Unsupervised Learning of Persistent
and Sequential Activity
Ulises Pereira 1 and Nicolas Brunel 1,2,3,4*

1Department of Statistics, The University of Chicago, Chicago, IL, United States, 2Department of Neurobiology, The

University of Chicago, Chicago, IL, United States, 3Department of Neurobiology, Duke University, Durham, NC,

United States, 4Department of Physics, Duke University, Durham, NC, United States

Two strikingly distinct types of activity have been observed in various brain structures

during delay periods of delayed response tasks: Persistent activity (PA), in which

a sub-population of neurons maintains an elevated firing rate throughout an entire

delay period; and Sequential activity (SA), in which sub-populations of neurons are

activated sequentially in time. It has been hypothesized that both types of dynamics

can be “learned” by the relevant networks from the statistics of their inputs, thanks

to mechanisms of synaptic plasticity. However, the necessary conditions for a synaptic

plasticity rule and input statistics to learn these two types of dynamics in a stable fashion

are still unclear. In particular, it is unclear whether a single learning rule is able to learn

both types of activity patterns, depending on the statistics of the inputs driving the

network. Here, we first characterize the complete bifurcation diagram of a firing rate

model of multiple excitatory populations with an inhibitory mechanism, as a function of

the parameters characterizing its connectivity. We then investigate how an unsupervised

temporally asymmetric Hebbian plasticity rule shapes the dynamics of the network.

Consistent with previous studies, we find that for stable learning of PA and SA, an

additional stabilization mechanism is necessary. We show that a generalized version of

the standard multiplicative homeostatic plasticity (Renart et al., 2003; Toyoizumi et al.,

2014) stabilizes learning by effectively masking excitatory connections during stimulation

and unmasking those connections during retrieval. Using the bifurcation diagram derived

for fixed connectivity, we study analytically the temporal evolution and the steady state of

the learned recurrent architecture as a function of parameters characterizing the external

inputs. Slow changing stimuli lead to PA, while fast changing stimuli lead to SA. Our

network model shows how a network with plastic synapses can stably and flexibly learn

PA and SA in an unsupervised manner.

Keywords: unsupervised learning, persistent activity, sequential activity, synaptic plasticity, Hebbian plasticity,

homeostatic plasticity

INTRODUCTION

Selective persistent activity (PA) has been observed in many neurophysiological experiments in
primates performing delayed response tasks, in which the identity or spatial location of a stimulus
must be maintained in working memory, in multiple cortical areas, including areas in the temporal
lobe (Fuster et al., 1982; Miyashita, 1988; Miyashita and Chang, 1988; Sakai and Miyashita, 1991;
Nakamura and Kubota, 1995; Miller et al., 1996; Naya et al., 1996; Erickson and Desimone, 1999),
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parietal cortex (Koch and Fuster, 1989; Chafee and Goldman-
Rakic, 1998), and prefrontal cortex (Fuster and Alexander, 1971;
Funahashi et al., 1989, 1990, 1991; Miller et al., 1996). More
recently, selective persistent activity has also been observed in
mice (Guo et al., 2014; Liu et al., 2014; Inagaki et al., 2019)
as well as flies (Kim et al., 2017). It has been hypothesized
that PA represents the mechanism at a network level of the
ability to hold an item in working (active) memory for several
seconds for behavioral demands. Theoretical studies support
the hypothesis that persistent activity is caused by recurrent
excitatory connections in networks of heavily interconnected
populations of neurons (Amit et al., 1994; Durstewitz et al., 2000;
Wang, 2001; Brunel, 2005). In these models, PA is represented
as a fixed point attractor of the dynamics of a network that
has multiple stable fixed points. The connectivity matrix in such
models has a strong degree of symmetry, with strong recurrent
connections between sub-groups of neurons which are activated
by the same stimulus. This connectivity matrix can be learned
by modifying recurrent connections in a network according to
an unsupervised Hebbian learning rule (Mongillo et al., 2005;
Litwin-Kumar and Doiron, 2014; Zenke et al., 2015).

Sequential activity (SA) has been also observed across
multiples species in a number of behaviors such as spatial
navigation (Foster and Wilson, 2006; Harvey et al., 2012;
Grosmark and Buzsáki, 2016) and bird song generation
(Hahnloser et al., 2002; Amador et al., 2013; Okubo et al.,
2015). Furthermore, a large body of experimental evidence
shows that SA can be learned throughout experience (Okubo
et al., 2015; Grosmark and Buzsáki, 2016). Several theoretical
network models have been able to produce SA (Amari, 1972;
Kleinfeld and Sompolinsky, 1988; Abeles, 1991; Diesmann et al.,
1999; Izhikevich, 2006; Liu and Buonomano, 2009; Fiete et al.,
2010; Waddington et al., 2012; Cannon et al., 2015). In these
models, the connectivity contains a feedforward structure—
neurons active at a given time in the sequence project in a
feedforward manner to the group of neurons which are active
next. From a theoretical stand point, the mechanism to generate
SA is fundamentally different from the one that generates PA.
While SA usually corresponds to a path in the state space of the
network, PA is identified as a fixed point attractor. Thus, SA has
an inherent transient nature while PA is at least linearly stable in
a dynamical system sense.

The question of how sequential activity can be learned
in networks with plastic synapses has received increased
interest in recent years. The models investigated can be
roughly divided in two categories: models with supervised
and unsupervised plasticity rules. In models with supervised
plasticity rules, the synapses are updated according the activity
of the network and an error signal that carries information
about the difference between the current network dynamics and
the one that it is expected to learn by the network (Sussillo
and Abbott, 2009; Laje and Buonomano, 2013; Memmesheimer
et al., 2014; Rajan et al., 2016). In models with unsupervised
plasticity rules, sequential dynamics is shaped by external
stimulation without an error signal (Jun and Jin, 2007; Liu
and Buonomano, 2009; Fiete et al., 2010; Waddington et al.,
2012; Okubo et al., 2015; Veliz-Cuba et al., 2015). In those
models SA is generated spontaneously, and the temporal

statistics of the stimulation shapes the specific timing of
the sequences.

Both experimental and theoretical work therefore suggest that
neural networks in the brain are capable to learn PA and SA.
One unresolved issue is whether the learning rules used by
brain networks to learn PA are fundamentally different than the
ones used to learn SA, or whether the same learning rule can
produce both, depending on the statistics of the inputs to the
network. Learning rules employed in theoretical studies to learn
PA typically do not contain any temporal asymmetry, while rules
used to learn SA need to contain such a temporal asymmetry.

Here, we hypothesize that a single learning rule is able
to learn both, depending on the statistics of the inputs. We
investigate what are the conditions for the plasticity mechanisms
and external stimulation to learn PA or SA using unsupervised
plasticity rules. We consider a model composed of multiple
populations of excitatory neurons, each activated by a distinct
stimulus. We consider a sequential stimulation protocol in which
each population of neurons is stimulated one at a time, one after
the other. This protocol is characterized by two parameters, the
duration of stimulus presentations and the time interval between
stimulations. This simple setting allows us to explore between
the extremes of isolated stimulations with short or large duration
and sequential stimulations close or far apart temporally. We use
a rate model to describe the activity of populations of neurons
(Wilson and Cowan, 1972). The connectivity in this model
represents the average of the synaptic connections between
populations of neurons, allowing to investigate at a mesoscopic
level the learning mechanisms of PA and SA. This model has the
advantage of analytical tractability.

This paper is organized as follows: We first characterize
the types of possible dynamics observed in network with both
feedforward and recurrent connections, in the space of possible
(fixed) connectivities. We then show that a network with plastic
connections described by a unsupervised temporally asymmetric
Hebbian plasticity rule stimulated sequentially does not stably
learn PA and SA. We then explore two types of stabilization
mechanisms: (1) synaptic normalization; (2) a generalized
version of the standard multiplicative homeostatic plasticity
(Renart et al., 2003; Toyoizumi et al., 2014). We show that when
a synaptic normalization mechanism is included, PA and SA
cannot be learned stably during sequential stimulation. However,
the addition of a generalized homeostatic learning rule leads to
successful learning of PA or SA by weakening the excitatory
synaptic weights during stimulation, effectively masking the
connectivity shaped by Hebbian learning. After stimulation, the
learned connectivity structure is unmasked by the strengthening
of the synaptic connections in a multiplicative fashion. PA
or SA is learned depending on the temporal parameters of
external inputs, and the learning can be characterized analytically
as a dynamical system in the space of fixed connectivities
parametrized by the stimulus parameters.

1. METHODS

1.1. Networks With Fixed Connectivity
We first consider two different n population rate models
that share in common two connectivity motifs that have
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FIGURE 1 | Network models with fixed connectivity. (A) Two models of recurrent and feedforward connected populations: (I) pure excitatory; (II) excitatory with shared

inhibition. (B) Transfer Functions: piecewise linear (PL), sigmoidal (S), and piecewise non-linear (PNL).

been classically considered a distinctive feature of PA and SA
respectively: recurrent and feedforward connections. The two
network models considered are: (1) n excitatory populations; (2)
n excitatory populations with shared inhibition. The strength
of the recurrent and feedforward connections are w and s,
respectively.We used the current based version of the widely used
firing rate model, which is equivalent to its rate based version
(Miller and Fumarola, 2012) with three different non-linear
transfer functions.

1.1.1. Network of Excitatory Neurons
The network consists in n excitatory populations connected by
recurrent and feedforward connections with strength w and
s, respectively as it is shown in Figure 1AI. The dynamics is
given by:

τ
du1

dt
= I1 − u1 + wφ(u1)

τ
dui

dt
= Ii − ui + wφ(ui)+ sφ(ui−1) i = 2, . . . , n (1)

where ui and Ii correspond to the synaptic and the external input
to population i respectively, τ is the characteristic time scale for
excitatory populations, and φ(u) is the current to average firing
rate transfer function (or f-I curve). The resulting average firing
rates are denoted by ri ≡ φ(ui).

1.1.2. Network of Excitatory Neurons With Shared

Inhibition
The network consists in n excitatory populations connected
as in section 1.1.1, and a single inhibitory population fully
connected with the excitatory populations. A schematic of the
network architecture is shown in Figure 1AII. Assuming a linear
inhibitory transfer function, the dynamics of the network is
given by:

τ
du1

dt
= I1 − u1 + wφ(u1)− wEIuI

τ
dui

dt
= Ii − ui + wφ(ui)+ sφ(ui−1)− wEIuI i = 2, . . . , n

τI
duI

dt
= −uI + wIE

n
∑

j=1

φ(uj), (2)

where wEI is the average inhibitory synaptic strength from
inhibitory to excitatory populations, wIE the average inhibitory
synaptic strength from excitatory to inhibitory populations and
τI the characteristic time scale of the inhibitory population.When
τI ≪ τ , then uI ≈ wIE

∑N
i=1 φ(ui) and Equation (2) becomes

τ
du1

dt
= I1 − u1 + wφ(u1)−

wI

n

n
∑

j=1

φ(uj)

τ
dui

dt
= Ii − ui + wφ(ui)+ sφ(ui−1)

−
wI

n

n
∑

j=1

φ(uj) i = 2, . . . , n, (3)

where wI ≡ nWEIWIE. See Figure S1 for the agreement between
the full model described in Equation (2) and its approximation in
Equation (3).

1.2. Transfer Functions
For the fixed connectivity part of this study we used three
different families of transfer functions. The sigmoidal transfer
function is described by

φ(u) =
1

2

(

1+ tanh[a(u+ b)]
)

. (4)

This is a saturating monotonic function of the total input, and
represents a normalized firing rate. This transfer function has
been widely used in many theoretical studies in neuroscience
(Ermentrout and Terman, 2010; Gerstner et al., 2014), and has
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the advantage to be smooth. Furthermore, we have recently
shown that such transfer functions provide good fits to in vivo
data (Pereira and Brunel, 2018).

The second transfer function considered is piecewise linear:

φ(u) =











0 if θ > u

ν(u− θ) if θ ≤ u ≤ uc

ν(uc − θ) uc < u.

(5)

This is a piecewise linear approximation of the sigmoidal transfer
function. The main advantage of this transfer function is its
analytical tractability—the non-linear dynamics of a network
with such a transfer function can be analyzed as a piecewise linear
dynamical system.

The third transfer function used in this work is piecewise
non-linear (Brunel, 2003)

φ(u) =



















0 if θ̃ > u

ν̃

(

u−θ̃

ũc−θ̃

)2
if θ̃ ≤ u ≤ ũc

2ν̃

√

u−θ̃

ũc−θ̃
− 3

4 ũc < u.

(6)

This transfer function combines several features that are present
in more realistic spiking neuron models and/or real neurons:
a supralinear region at low rates, described by a power law
(Roxin et al., 2011), and a square root behavior at higher rates,
as expected in neurons that exhibit a saddle-node bifurcation
to periodic firing (Ermentrout and Terman, 2010). Examples of
these three transfer functions are shown in Figure 1B.

1.3. Sequential Stimulation
During the learning protocol excitatory populations are
stimulated sequentially once at a time for a period T and a time
delay 1. The stimulation can be implemented as a sequence of
vectors presented to the entire the network (i.e., IEe1, IEe2, . . . , IEen),
each vector corresponds to the canonical base in R

n scaled by a
stimulation amplitude I. This sequence of stimulation is repeated
k times. To prevent a concatenation between the first and the last
population stimulated, the period between each repetition k is
much longer than T and1 and any time constant of the network.
Each stimulus in the sequence has the same magnitude, that is
larger than the learning threshold (i.e., rw < I). A schematic
diagram of the stimulation protocol is described in section 2.2.

1.4. Temporally Asymmetric Hebbian
Plasticity Rule
When a temporally asymmetric Hebbian plasticity rule is
included (see sections 2.2–2.5 in Results), the dynamics of
excitatory-to-excitatory connectivity obeys

dWi,j

dt
=

wmaxf [ri(t)]g[rj(t − D)]−Wi,j

τw[ri(t), rj(t − D)]
, (7)

where f (r) and g(r) are sigmoidal functions given by

g(r) =
1

2

(

1+ tanh
[

apre(r − bpre)
])

(8)

f (r) =
1

2

(

1+ tanh
[

apost(r − bpost)
])

. (9)

They describe the dependence of the learning rule on post- and
pre-synaptic firing rates, respectively [i.e., their dependence on
φ(ui) and φ(uj)], and are bounded by zero for small or negative
values of the population synaptic current, and by one for large
values (see Figures 4A,B). Here wmax is the maximal synaptic
efficacy; D is a temporal delay; and τw is an activity-dependent
time constant of the plasticity rule. The learning time scale is
given by

τw[ri(t), rj(t − D)] =

{

∞ if ri < rw and rj < rw

Tw if rw ≤ ri or rw ≤ rj.
(10)

(see dashed line in Figures 4A–C) and time scale respectively.
The time scale Tw is chosen to be several order of magnitude
slower than the population dynamics (see Table S3). When pre-
and post-synaptic firing rates are below a plasticity threshold rw,
the activity-dependent time constant τw becomes infinite, and
therefore no plasticity occurs. When pre and/or post-synaptic
firing rates are above rw, then the activity-dependent time
constant τw is equal to Tw, and plasticity is ongoing. Thus, with
this rule strong, long (i.e., large T) and/or frequent enough (i.e.,
short 1) stimuli produce lasting modifications in the synaptic
weights.Whenwmaxf [ri(t)]g[rj(t−D)] < Wi,j, the corresponding
synaptic weight tend to decrease, and therefore LTD takes place.
For a fixed high pre-synaptic firing rate, LTD occurs when post-
synaptic firing rates are low, similar to learning rules such as the
BCM rule (Bienenstock et al., 1982) and Hebbian rules used in
recurrent networks (Mongillo et al., 2003). Likewise, for a fixed
high post-synaptic firing rate, LTD also occurs in an intermediate
and low region of pre-synaptic firing rates. Conversely, when
Wi,j < wmaxf [ri(t)]g[rj(t − D)], the corresponding synaptic
weight tend to increase, and LTP takes place.

In our model, we assume the activity of each population
represents the average activity over many neurons (of the
order of tens of thousands). Likewise, synaptic couplings are
assumed to represent averages over very large numbers of
synapses connecting two populations (or one population to
itself). Therefore, the learning parameters (e.g., D and Tw)
represent average quantities over a large number of synapses. We
expect the variability of these parameters to disappear in the limit
of large number synaptic couplings.

1.5. Synaptic Normalization
When a synaptic normalization mechanism is included (see
section 2.3 in Results), in addition to the Hebbian plasticity rule
described in section 1.4, in our network simulations, at each time
step we subtracted the average synaptic change to each incoming
synapse to a given population. This average is taken over all
the incoming synapses to a particular neuron. This simulation
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scheme ensures that the sum of the incoming synaptic weights to
each population remains constant, i.e.,

n
∑

j=1

Wi,j = C i = 1, 2, . . . , n. (11)

1.6. Generalized Homeostatic Plasticity
Rule
We implement a modified version of the multiplicative
homeostatic rule proposed in Renart et al. (2003) and Toyoizumi
et al. (2014) (see sections 2.4 and 2.5 in Results). The rule is
implemented in addition to the Hebbian plasticity rule described
in the section 1.4. In this rule a homeostatic variable Hi slowly
controls the firing rate of neuron i by scaling its synaptic weights
multiplicatively. The synaptic weights will be given by

Wi,j(t) = Hi(t)Wi,j(t). (12)

The variable Wi,j(t) is governed by the Hebbian plasticity rule
described by Equations (7–10). The dynamics for Hi is given by

τHḢi =

(

1−
ri(t)

r0

)

Hi −H2
i , (13)

where r0 = φ(u0) is a parameter that controls the average firing
rate of population i and τH is the characteristic time scale of
the learning rule. Note that because of the quadratic term in the
r.h.s. of Equation (13), this rule does not in general keep the
firing rates at a fixed value, and therefore this rule is not strictly
speaking homeostatic. Therefore, we term this rule generalized
homeostatic plasticity rule, since this rule is a generalization of
the standard multiplicative homeostatic plasticity rule in Renart
et al. (2003) and Toyoizumi et al. (2014). As in the standard rule,
for strong inputs, the homeostatic variables of this rule decrease
to values that are smaller than 1, scaling down the excitatory
connections and masking synaptic changes learned via Hebbian
plasticity. However, unlike the standard rule, after stimulation,
the homeostatic variables return to values Hi ∼ O(1), and the
synaptic changes learned via Hebbian plasticity are unmasked.
See section 2.4 and section 5 in the Supplementary Material for
a detailed analysis of this rule.

1.7. Learning Dynamics Under Noisy
Stimulation
In the last section of the Results, we include noise in the
population dynamics in order to asses the robustness of the
learning process (see section 2.5 in Results). The equations used
to describe the dynamics of the network with Hebbian and
generalized homeostatic plasticity are given by

τ u̇i = −ui + σηi + Ii +

n
∑

j=1

HiWi,jrj −
WI

n

n
∑

i=1

φ(ui)

Ẇi,j =
wmaxf [ri(t))]g[rj(t − D)]−Wi,j

τw(ri(t), rj(t − D))

τHḢi =

(

1−
ri(t)

r0

)

Hi −H2
i , (14)

where ri(t) = φ(ui(t)) for i = 1, 2, . . . , n and ηi is a Gaussian
white noise.

1.8. Code
Simulations were performed using code written in Python.
A self-contained version of the code that reproduces all the
figures in this paper is available in the GitHub repository:
https://github.com/ulisespereira/Unsupervised.

2. RESULTS

2.1. Persistent and Sequential Activity in
Networks With Fixed Connectivity
To better understand the dependence of PA and SA generation
on network connectivity, we consider first a simple n population
rate model with fixed feedforward and recurrent connectivity
(see Figure 1A). This architecture possesses the two connectivity
motifs that have been classically considered the hallmarks of PA
and SA—recurrent and feedforward connections—in a space of
parameters that is low dimensional enough to be suitable for full
analytical treatment. In this model, the dynamics of the network
is characterized by the synaptic inputs ui to each population of
the network (i = 1, . . . , n) whose dynamics obey the system
of ordinary differential equations in Equation (1). Note that
we use here the current based formulation of the firing rate
equations, that has been shown to be equivalent to the rate based
formulation (Miller and Fumarola, 2012).

In this model, we identify the regions in the connectivity
parameter space where SA, PA, or decaying sequences of activity
(dSA) are generated. We start with a piecewise linear transfer
function with slope ν, and compute the bifurcation diagram
that gives the boundaries for qualitatively different dynamics
in the parameter space (see Figure 2A and section 2 in the
Supplementary Material for mathematical details). We find that
robust SA can be generated provided recurrent connections are
smaller than the inverse of the slope ν, and the feedforward
connections are strong enough, w < 1/ν < w + s. For large
values of w (w > 1/ν), the dynamics converge to a fixed point
where 0 ≤ p ≤ n populations are in a high rate state, where
p depends on the initial conditions. When both recurrent and
feedforward connections are weak enough (i.e., w+ s < 1/ν) the
activity decays to zero firing rate fixed point, after a transient in
which different populations are transiently activated—a pattern
which we term decaying sequence of activity or dSA.

This picture is qualitatively similar when other types of non-
linear transfer functions are used (see Methods and Figure 1B

for the transfer functions used in this paper). The saturation
non-linearity of the transfer function is key to generate
long lasting (non-attenuated) SA even when the number of
populations is large. In a linear network, sequential activity
would increase without bound for an increasing number of
populations participating in the SA (see Figure 2A, dashed lines
and section 2 in the Supplementary Material for mathematical
details). During sequential activity, each population is active for
a specific time interval. We used the analytical solution of the
linearized system (see Equation S3) to show that the duration of
this active interval scales as the squared root of the position of the
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FIGURE 2 | PA and SA generation in a network with fixed connectivity. (A) Phase diagram for model (I) using a piecewise linear transfer function (top-left plot) and

examples of the dynamics corresponding to the three phases. Dashed lines correspond to the dynamics for the same network but using a linear transfer function. (B)

SA generation for models (I) and (II) using sigmoidal (first row), piecewise non-linear (second row), and piecewise linear (third row) transfer functions. The parameters

for the transfer functions are the same as the ones used in Figure 1B. Firing rates of excitatory populations are colored according to their position in the

feedforward-recurrent connected excitatory network. Parameters used in (A,B) can be found in Table S1.

population along the sequence. This implies that for long lasting
SA the fraction of active populations will increase with time
(see Figure 2A). This feature is not consistent with experimental
evidence that shows that the width of the bursts of activity along
the sequence is approximately constant in time (Hahnloser et al.,
2002; Harvey et al., 2012). In the model, we can prevent this
phenomenon by including negative feedback mechanisms to our
network architecture as global inhibition (see Figure 1AII). We
found that in both cases the network robustly generates PA and
SA in which the fraction of active populations is approximately
constant in time. These results were also qualitatively similar
when different saturation non-linearities in the transfer function
were considered (see Figure 2B).

We now turn our attention to the network of excitatory
neurons with global inhibition (Figure 1AII), since inhibition
is likely to be the dominant source of negative feedback in
local cortical circuits. Inhibitory interneurons are typically faster
than excitatory neurons (McCormick et al., 1985). For the
sake of simplicity we set the inhibitory population dynamics
as instantaneous compared with the excitatory timescale. Our
numerical simulations confirm that this approximation preserves
all the qualitative features of the dynamics with finite inhibitory
time constants, up to values of τI = 0.5τ (see Figure S1). Using
this approximation, the connectivity of the network is equivalent
to a recurrent and feedforward architecture plus a uniform
matrix whose elements are wI ≡ nwEIwIE. We obtained the
bifurcation diagram for such a network with a piecewise linear
transfer function (see section 4 in the Supplementary Material).
This new bifurcation diagram shows qualitative differences with
the pure excitatory network bifurcation diagram (see Figure 3).
First, a qualitatively different behavior arises, where SA ends in

persistent activity (region SA/PA). Second, the PA region breaks
down in n(n + 1)/2 square regions of size wI/n × wI/n. Each
region is characterized by a minimum and maximum number
of populations active during PA. The lower left corner of each
squared region is (imin

(

wI
n

)

, 1 + imax

(

wI
n

)

) with imin, imax =
1, 2, . . . , n (see Figure 3, different regions in graded blue), where
imin and imax correspond to theminimum andmaximumnumber
of population active during PA within this squared region when
just the first population is initialized in the active state (Figure 3
top and middle right plots). Therefore, the number of possible
patterns of PA increases with the strength of the recurrent
connections and decreases with strength of the feedforward
connections. On the other hand, the SA/PA is divided in n
qualitatively different rectangular regions of size

(

wI
n

)

× [1 −

jSA/PA

(

wI
n

)

] with jSA/PA = 1, 2, . . . , n, where jSA/PA corresponds
to the number of populations that ends in PA after SA elicited
by stimulating the first population in the sequence (Figure 3
bottom right plot). Then for a given strength of the recurrent
connectivity w∗ above 1+

(

wI
n

)

, the critical feedforward strength
sc that separates the PA and SA/PA regions is

sc =
wI

n

⌈

(

w∗ − 1− wI
n

)

n

wI

⌉

, (15)

where ⌈·⌉ is the ceiling function. Similarly, for a given strength
of the feedforward connection s∗ above wI

n , the critical recurrent
strength separating SA/PA and PA is

wc =
wI

n

⌈

(

s∗ − wI
n

)

n

wI

⌉

. (16)
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FIGURE 3 | Bifurcation diagram for feedforward-recurrent connected network of excitatory populations with shared inhibition. Top left plot: Bifurcation diagram in the

s-w plane, showing qualitatively different regions: dSA (gray), SA (red), SA/PA (green), and PA (blue). The PA region is divided in sub-regions which are distinguished by

the maximum and minimum number of populations active during PA (see text). The SA/PA region is also subdivided into sub-regions characterized by a different

number of the maximum number of populations active in PA at the end of the sequence. Regions are separated by black lines and sub-regions are separated by gray

lines. Five plots encompassing the bifurcation diagram show examples of the dynamics observed in its four qualitatively different regions. Initial condition: first

population active at the maximum rate, while the rest is silent. The location in the corresponding regions of the parameter space are indicated with the symbols on the

top right of the surrounding plots. Parameters can be found in Table S2. Firing rates of excitatory populations are colored as in Figure 2.

Lastly, we find that the SA region is shrunk compared with the
pure excitatory network, and that the dSA region is wider.

2.2. Unsupervised Temporally Asymmetric
Hebbian Plasticity Rule
Let us consider now a fully connected network of n excitatory
populations with plastic synapses and global fixed inhibition.
The plasticity rule for the excitatory-to-excitatory connectivity
is described by Equation (7). Using this learning rule, with fixed
pre- and post-activity, the connectivity tends asymptotically to
a separable function of the pre- and post-synaptic activity. The
functions f (r) and g(r) are bounded by zero for small or negative
values of the population synaptic current, and by one for large
values (see Figures 4A,B). This learning rule is a generalization
of classic Hebbian rules like the covariance rule (Dayan and
Abbott, 2001), with a non-linear dependence on both pre and
post-synaptic firing rates.

The delayD in the learning rule leads to a temporal asymmetry
(Blum and Abbott, 1996; Gerstner and Abbott, 1997; Veliz-
Cuba et al., 2015). This delay describes the time it takes for
calcium influx through NMDA receptors to reach its maximum
(Sabatini et al., 2002; Graupner and Brunel, 2012). When this
learning rule operates and the network is externally stimulated,
the connectivity changes depending on the interaction of the
input, the network dynamics and the learning rule. Due to
the relaxational nature of Equation (7), for long times without
external stimulation the connectivity matrix will converge to
a stationary rank-1 matrix with entries of the form f (r∗i )g(r

∗
j ),

where Er∗ = φ(Eu∗) is the stationary firing rate vector, independent
of all inputs presented in the past. Therefore, stimuli learned in
the connectivity matrix will be erased by the background activity
of the network for long times after stimulation. To prevent this
inherent forgetting nature of the learning rule we introduce an
activity-dependent plasticity time scale in Equation (10). Thus,
when pre and/or post-synaptic currents are below a plasticity
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FIGURE 4 | Unsupervised Hebbian learning rule. (A) Piecewise linear transfer function. The dashed gray horizontal line indicates the plasticity threshold rw. (B)
Post-synaptic dependence on the rates of the stationary connectivity function, f (r). The vertical dashed gray line indicates the plasticity threshold. (C) Contour plot of

the stationary connectivity function, wmax f (ri )g(rj ). The dashed gray box indicates the plasticity threshold. For Wi,j = 0.5wmax the red region below the dashed green

line corresponds to LTD while the yellow region above it to LTP. Parameters can be found in Table S3.

threshold rw, the time scale becomes infinite, and therefore no
plasticity occurs. When both are above rw, then the time constant
is given by Tw [see Equation (10) and Figure 4]. Lastly, the
time scale Tw of these changes are chosen to be several order of
magnitude slower than the population dynamics, consistent with
the time it takes (∼1 min or more) for plasticity to be induced in
standard synaptic plasticity protocols (see e.g., Markram et al.,
1997; Bi and Poo, 1998; Sjöström et al., 2001, but see Bittner
et al., 2017). Importantly, the weight changes are proportional
to the difference wmaxf [ri(t)]g[rj(t − D)] −Wi,j, which depends
on both the pre and post-synaptic firing rates and the current
value of the synaptic weight (see Equation 7). Typically, when
both pre and post-synaptic firing rates are at intermediate values
(see the red region in Figure 4C) the corresponding synapse
undergoes LTD (weight strength tend to decrease), and when
they are both high (see the yellow region in Figure 4C) it
undergoes LTP (wight strength tend to increase). Therefore, the
rule goes from no plasticity to LTD and then to LTP when
both pre and post-synaptic firing rates increase (see diagonal
direction in Figure 4C), which is reminiscent of results in pairing
experiments (Ngezahayo et al., 2000).

Our goal is to understand the conditions for a sequential
stimulation to lead the network dynamics to PA or SA,
depending of the temporal characteristics of the stimulus, when
this plasticity rule is introduced. Here we consider a simple
stimulation protocol where each population in the network is
stimulated sequentially one population at a time (see Figure 5A).
In this protocol, population 1 is first stimulated for some time
T. Then, after an inter-stimulation time 1, population 2 is
stimulated for the same duration T. The other populations are
then stimulated one at a time (3, 4, . . . , n) using the same protocol.
The amplitude of the stimulation is fixed such that the maximum
of the current elicited in each population leads to a firing rate that
is greater than the plasticity threshold of the learning rule. The
time interval between each repetition of the sequence is much
longer than T and1 and any time constant of the network.When

the duration of each stimulation is larger than the synaptic delay
(i.e., D < T), recurrent connections increase, since the Hebbian
term driving synaptic changes (f [ri(t)]g[ri(t − D)], where i is
the stimulated population) becomes large after a time D after
the onset of the presentation. When the inter-stimulation time is
smaller that the synaptic delay (i.e.,1 < D), then the feedforward
connections increase, since the Hebbian term driving synaptic
changes (f [ri+1(t)]g[ri(t − D)]) is large in some initial interval
during presentation of stimulus i+ 1 (see also Herz et al., 1988).

As a result, there are four distinct regions of interest
depending on the relative values of the 1 and T with respect
to the synaptic delay D. When T is larger than the synaptic
delay, and 1 is smaller than the synaptic delay, both recurrent
and feedforward connections increase. When T is larger than
the synaptic delay and 1 is much larger than D, only the
recurrent connections increase. When 1 is smaller than the
synaptic delay and T is much smaller, only the feedforward
connections increase. Lastly, when 1 is larger and T is smaller
than D no changes in the connectivity are observed. The initial
temporal evolution of both recurrent and feedforward weights
in representative examples of the four regions is presented in
Figure 5B. We chose not to study the region corresponding to
2T + 1 < D here, which is a region where “feedforward”
connections involving non-nearest neighbor populations can
also increase during learning.

We found that this learning rule is in general unstable for
long sequential stimulation when both feedforward and recurrent
connections increase during the stimulation (i.e., 1 < D < T)
to values large enough to produce persistent activity states. This
is a consequence of the classic instability observed with Hebbian
plasticity rules, where a positive feedback loop between the
increase in synaptic connectivity and increase in firing rates leads
to an explosive increase in both (Dayan and Abbott, 2001). Larger
feedforward and recurrent connections lead to an increase in
number of populations active at the same time during stimulation
(see Figures 6A,D) which produce an increase of the overall
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FIGURE 5 | Sequential stimulation and initial synaptic weights dynamics. (A) Schematic diagram showing stimulation protocol for two populations. Population 1 is first

stimulated for some time T. Then, after an inter-stimulation 1 time, population 2 is stimulated for the same duration T. (B) The weight dynamics for a network of

excitatory populations with shared inhibition and a piecewise linear transfer function is shown for four different stimulation regimes. Top-left: 1 < D < T; top-right:
D < 1, T; bottom-left: T,1 < D; bottom-right: T < D < 1. Cyan: recurrent connections; Yellow/Green: feedforward; Blue: all other connections. Parameters can be

found in Tables S3, S4.

connectivity by the synaptic plasticity rule (Figures 6B,C). This
leads to an increase in the overall activity producing longer
periods of PA during stimulation until a fixed point where many
populations have high firing rates is reached, and the connectivity
increases exponentially to its maximum value (see Figures 6B,C).
By increasing the plasticity threshold, it is possible to increase
the number of stimulations (and consequently the strength of
the feedforward and recurrent connections) where the network’s
activity is stable. However, this does not solve the problem, since
the instability on the weights eventually occurs but for a larger
number of stimulations and stronger synaptic weights. In order
to prevent this instability, we investigate in the next sections two
different stabilization mechanisms: synaptic normalization and
generalized homeostatic plasticity. Throughout this paper, for
testing whether PA, SA, SA/PA, or dSA is learned, after sequential
stimulation we stimulate the first population and then check
whether the network recalls the corresponding type of activity
(see Figure 3).

2.3. Synaptic Normalization
The first mechanism we consider is synaptic normalization.
This mechanism is motivated by experimental evidence of
conservation of total synaptic weight in neurons (Royer and Paré,
2003; Bourne and Harris, 2011). In our model, we enforce that
the sum of the incoming synaptic weights to a given population
is fixed throughout the dynamics (see Equation 11 in Methods).
This constraint prevents the growth of all the synaptic weights
to their maximum value during sequential stimulation due to
the Hebbian plasticity, as is described in the previous section.
This leads to a heterogeneous dynamics in the synaptic weights
where they strongly fluctuate in time during the stimulation

period (see Figure 7B). We find that the network does not reach
a stable connectivity structure, and that the connectivity after
the stimulation markedly depends on the specific moment when
stimulation ended for a large range of stimulation parameters.

At the initial stages of the stimulation, feedforward and
recurrent connections grow, while the rest of the synaptic
connections decrease at the same rate (see Figure 7B). When
the feedforward and recurrent connections are large enough
for producing persistent activity, co-activation between a
population(s) undergoing persistent activity and the population
active due to the stimulation (which are not necessarily adjacent
in the stimulation sequence, see Figures 7A,D) produces an
increase in feed-back and upper triangular connections that are
different than feedforward and recurrent (see Figure 7B). In
turn, feedforward and recurrent connections decrease due to
the synaptic normalization mechanism. This leads to complex
dynamics in the synaptic weights, in which the connections
sustaining co-active neuronal assemblies (i.e., group of excitatory
populations with clustered connectivity) learned via Hebbian
plasticity are depressed due to the interplay between synaptic
normalization and sequential stimulation. This then leads to the
formation of new assemblies due to the interplay of Hebbian
plasticity and sequential stimulation.

During stimulation, the feedforward and recurrent
connectivity studied in the first section increase first, leading
then in a second stage to connectivities with strong bi-directional
connections (see Figure 7C). Persistent activity can not be
learned consistently after long times, and most populations
are simultaneously active in retrieved states (see Figure 7E).
For a very few parameter values compared with the explored
parameter space sequential activity is learned (data not shown).
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FIGURE 6 | Runaway instability of the unsupervised Hebbian learning rule. (A) Population dynamics during 4 s of sequential stimulation with T = 19 ms and 1 = 10

ms. After about 25 s, the last six populations stimulated become active at maximal rates. (B) Synaptic weights dynamics during stimulation. Cyan: recurrent

connections; Light Yellow/Green: feedforward; Red: feed-backward. (C) Connectivity matrix at different stimulation times. From left to right and from top to bottom: 0,

10, 20, and 30 s. (D) Three examples of population dynamics during a single sequential stimulation at 0, 20.28, and 27.3 s, respectively. Note the buildup of activity

preceding each stimulus presentation because of the build-up in the feedforward connectivity at 20.28 s. In (A,D) the black and gray traces indicate a scaled version

of the stimulus. Parameters can be found in Tables S3, S4. Firing rates of excitatory populations are colored according to their position in the sequential stimulation.

Overall, it is unclear whether neural circuits can use the
observed complex synaptic dynamics to store retrievable
information about the external stimuli. Thus, we find that
synaptic normalization is not sufficient in this case to stabilize
learning dynamics and to lead to a consistent retrieval of PA
or SA. We checked that this finding is robust to changes in
parameters, in particular to changes in the sum of incoming
synaptic weights [parameter C in Equation (11)] and the
sequential stimulation magnitude I, period T, and delay 1. In
the next section we consider a second stabilization mechanism,
namely generalized homeostatic plasticity.

2.4. Generalized Homeostatic Plasticity
Homeostatic plasticity is another potential stabilization
mechanism that has been characterized extensively in
experiments (Turrigiano et al., 1998; Turrigiano, 2017).
The interplay between homeostatic plasticity and Hebbian
plasticity has recently been the focus of multiple theoretical
studies (Renart et al., 2003; Toyoizumi et al., 2014; Keck et al.,
2017). Here, we study the effect of a generalization of the
standard multiplicative homeostatic plasticity and Hebbian
plasticity for learning SA and PA. We consider a model for
homeostatic plasticity in which the overall connectivity at each

time Wi,j(t) is given by the multiplication of two synaptic
variables with different time scales as is shown in Equation (12).
In this equation, the fast plastic variable Wi,j(t) (time scale of
seconds) is governed by Hebbian plasticity, see Equation (7). On
the other hand, the slow (with a time scale of tens to hundred of
seconds) homeostatic variable Hi(t) scales the incoming weights
to population i, ensuring that the network maintain low average
firing rates on long time scales. The dynamics of the homeostatic
variable is given by Equation (13). This is a generalization of
the standard homeostatic learning rule (Renart et al., 2003;
Toyoizumi et al., 2014), that does not include the quadratic term
in the r.h.s. of Equation (13). We term this rule generalized
homeostatic plasticity since is a non-linear generalization of the
standard multiplicative homeostatic plasticity rule in Renart
et al. (2003) and Toyoizumi et al. (2014). The equation proposed
in Toyoizumi et al. (2014) stabilizes the network’s activity during
stimulation, preventing the runaway of the firing rates and
synaptic weights. Scaling down the overall connectivity during
stimulation prevents co-activation of multiple populations, and
lead to stable learning. However, in the network’s steady state
(i.e., when times longer than the time scale of the homeostatic
variable have passed without any stimulation), if the equation
proposed in Toyoizumi et al. (2014) is used, then each connection
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FIGURE 7 | Heterogeneous synaptic dynamics for Hebbian plasticity and synaptic normalization. (A) Population dynamics during 10 s of sequential stimulation with

T = 19 ms and 1 = 10 ms. (B) Synaptic weights dynamics during stimulation. Cyan: recurrent connections; Light Yellow/Green: feedforward; Red: feed-backward;

Blue: feed-second-forward; Green: feed-second-backward. (C) Connectivity matrix at different stimulation times. From left to right and from top to bottom: 0, 13.8,

27.6, and 41.5 s. (D) Two examples of population dynamics during a single sequential stimulation at 0 and 15.8 s respectively. In (A,D) the black and gray traces

indicate a scaled version of the stimulus. (E) Network dynamics after learning for the initial condition where the first population is active at high rate and the rest silent.

Parameters can be found in Tables S3, S4. Firing rates of excitatory populations are colored according to their position in the sequential stimulation.

will be proportional to the factor φ−1(r0)
r0

multiplied by a number
of order one (see section 5 in the Supplementary Material for
the mathematical details). This implies that the steady state
connectivity after learning will depend sensitively on the choice
of the value of the objective background firing rate (i.e., r0) and
the specific functional form of the transfer function (i.e., φ(u)).
Due to the transfer function non-linearity, small changes in r0

might produce large values for the factor φ−1(r0)
r0

and therefore
very strong connections for the steady state connectivity. This is
due to the fact that steady state large values in the homeostatic
variable H scale up the connectivity learned via Hebbian
plasticity in a multiplicative fashion, see Equation (12). In
practice, PA is retrieved almost always independently of the type
of stimulation presented during learning, and in the absence of
the quadratic term in Equation (13) no temporal attractor other
than PA can be learned. This problem can be prevented by the
introduction of a quadratic term in the original homeostatic
rule (see section 5 in the Supplementary Material). Note that
with this quadratic term, the homeostatic plasticity rule does
not exactly achieve a given target firing rate, and therefore is
not strictly speaking “homeostatic.” Additionally, the timescale
of this rule is of the order of minutes (see Figure 8A), which
is an order of magnitude faster of what has been reported

experimentally (Turrigiano et al., 1998; Turrigiano, 2008, 2017)
(see section 3.3 for a discussion).

We explore the role of this generalized homeostatic learning
rule for learning both PA and SA. During sequential stimulation,
the average firing rate is higher than the background objective
firing rate r0, and the homeostatic variables decrease to values
that are smaller than 1, see Figures 8A,C. As a result, during
sequential stimulation the dynamics of the homeostatic variable
will be dominated by the linear version of the homeostatic
learning rule proposed in Toyoizumi et al. (2014), since H2

i ≪ 1.
Then, the small values that the homeostatic variables take during
the sequential stimulation scale down the increasing values of the
recurrent and feedforward connections due to Hebbian plasticity.
This produces a weak excitatory connectivity during a repeated
sequential stimulation (see Figure 8C, left), preventing activation
of spurious populations during stimulation (see Figure 8B), even
though the strength of recurrent and feedforward connections
learned via Hebbian plasticity are strong enough to produce PA
or SA, since these connections are masked by the homeostatic
variable. When the network returns to the steady state after
sequential stimulation, the homeostatic variables return to values
Hi ∼ O(1) (see section 5 in the Supplementary Material for
the mathematical details), and the recurrent and feedforward
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FIGURE 8 | Learning dynamics in a network with Hebbian and generalized homeostatic plasticity. (A) Top: synaptic weights dynamics during and after stimulation.

Cyan: recurrent; Yellow: feedforward; Blue: all other connections. Bottom: homeostatic variables colored according to the position of the corresponding excitatory

population in the sequential stimulation (as in B). Gray vertical dashed line indicate the end of the sequential stimulation. (B) Neuron dynamics during stimulation for

two different periods of time. (C) Snapshots of the connectivity matrix Wi,j (t) at the end of the sequential stimulation (left) and 60 s after the end of the sequential

stimulation (right). (D) Network dynamics after learning following an initial condition where the first population is active at high rate while all others are silent for two

different stimulation parameters, one that generates SA (left), the other PA (right). Parameters can be found in Tables S3, S4. Firing rates of excitatory populations are

colored according to their position in the sequential stimulation.

connections learned via Hebbian plasticity are unmasked. This
mechanism stabilizes learning, allowing the network to stably
learn strong recurrent and feedforward connections, consistent
with SA or PA dynamics (see Figure 8D).

The weakening of recurrent connections during sequential
stimulation allows us to derive an approximate analytical
description of the temporal evolution of the synaptic connectivity
with learning. Since the net current due to connections
between populations is very small, each population dynamics
is well-approximated by an exponential rise (decay) toward
the stimulation current (background current) provided the
stimulation is strong and inhibition is weak enough (see
Figure 9). By using this approximation we build a mapping
that yields the value of the recurrent and feedforward synaptic
strengths as a function of stimulation number k, stimulation

period, T, and delay, 1 (see Equations S39, S40 in 6
of Supplementary Material). This mapping provides a fairly
accurate match of both the dynamics of the synaptic weights
and the final steady state connectivity matrix in the case of
weak (see Figure 10A, corresponding to wI = 1) and stronger
inhibition (see Figure 10B, wI = 2). The mapping derived for
evolution of the synaptic weights during sequential stimulation
corresponds to a dynamical system in the (s,w) phase space
that depends on the stimulus parameters (1,T) and the initial
connectivity. The final connectivity corresponds to the fixed
point of these dynamics (see Equations S41, S42 in section 6 of
Supplementary Material).

Figure 10 shows that depending on the temporal
characteristics of the input sequence, the network can reach any
of the four qualitatively different regions of the phase diagrams
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FIGURE 9 | Analytical approximation of the dynamics of the network with Hebbian and generalized homeostatic plasticity. First row: Current dynamics for the second

and third populations in a network of 20 populations during one presentation of the sequence. The dashed red line shows the analytical approximation for the

dynamics during stimulation (Equation S32 in section 6 of Supplementary Material). Second row: Dynamics of the recurrent synaptic strength within the second

population (cyan), and the “feedforward” synaptic strength from the second to the third population (yellow) during the same presentation of the sequence. The dashed

red line shows the analytical approximation for the synaptic weight dynamics (Equations S34, S37 in section 6 of Supplementary Materials). (A,B) correspond to

the first and the fifth presentation of the stimulation sequence respectively. Parameters can be found in Tables S3, S4.

in a completely unsupervised fashion. For values of 1 that are
smaller than the synaptic delay D and T on the order or larger
than D, the network generates SA. For values of T approximately
larger than D and for 1 small enough, the dynamics lead to
SA/PA. Lastly PA is obtained for large enough 1 and T. These
observations match with the intuition that stimulations long
enough but far delayed in time leads to learning of PA and
that stimulations contiguous in time but short enough leads
to SA. Stimulations between these two conditions (long and
contiguous) leads to a combination of both dynamics, i.e.,
SA/PA, as shown in Figure 10.

2.5. Learning and Retrieval Is Robust to
Noise
Under in vivo conditions neural systems operate with large
amount of variability in their inputs. In order to assess the
effect of highly variable synaptic input current during learning
and retrieval, we add a mean zero uncorrelated white noise
to the dynamics when both Hebbian learning and generalized
homeostatic plasticity are included in the network, as described
in Equation (14). We found that both the synaptic weights
dynamics during learning and the retrieved spatiotemporal

dynamics after learning are robust to noise (see Figure 11), even
when the amplitude of the noise is large (i.e., inputs with values
equal to the standard deviation of the noise lead to a population
to fire at 30% of the maximum firing rate). During sequential
stimulation, the learning dynamics is marginally altered for both
weak and strong inhibition (compare Figure 11 with Figure 10).
Importantly, the synaptic weights reach very similar stationary
values compared with the case without noise. After learning, even
though the rates stochastically fluctuate in time, the retrieved
spatiotemporal attractors (i.e., PA, SA, dSA, or PA/SA) are
qualitatively similar as in the case without noise (compare
Figure 11 with Figure 10). One qualitative difference in the case
with external noise, is that in both SA and PA/SA dynamical
regimes random inputs lead to a repetition of the full or partial
learned sequence. Altogether, this simulations show that the
network can robustly learn and retrieve qualitatively the same
spatiotemporal attractors in the presence of external noise.

3. DISCUSSION

We have shown that under sequential stimulation a network
with biologically plausible plasticity rules can learn both PA
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FIGURE 10 | Changes in recurrent and feedforward synaptic strengths with learning, for different sequences with different temporal parameters. Left: Dynamics of

recurrent and feedforward connections in the (s,w) parameter space during sequential stimulation for four different values of 1 and T. Black circles (SA), plus signs

(PA), hexagons (dSA), and squares (PA/SA) show the simulated dynamics. Red traces indicate the approximated dynamics derived in section 6 of

Supplementary Material. Right: Rates dynamics after many presentations of the sequence. The first population was initialized at high rates, the others at low rates.

(A,B) correspond to wI = 1, wmax = 3, and (T,1) = {(7, 14), (50, 40), (5, 15), (22, 8.5)} (in ms) and wI = 2, wmax = 3.5, and (T,1) = {(11, 14), (50, 40), (5, 15), (23, 8.5)},

respectively. The rest of the parameters can be found in Tables S3, S4. Firing rates of excitatory populations are colored according to their position in the

sequential stimulation.

or SA depending on the stimulus parameters. Two plasticity
mechanisms are needed: (1) Hebbian plasticity with temporal
asymmetry; (2) a stabilization mechanism which prevents the
runaway of synaptic weights while learning. When unsupervised
Hebbian plasticity is present alone the network fails to stably
learn PA or SA, while including a generalized homeostatic
plasticity stabilizes learning. For stable learning, we show that the
learning process is described by a low dimensional autonomous
dynamical system in the space of connectivities, leading to
a simplified description of unsupervised learning of PA and
SA by the network from external stimuli. Depending on the
stimulus parameters, the network is flexible enough to learn
selectively both types of activity by repeated exposure to a
sequence of stimuli, without need for supervision. This suggests
that cortical circuits endowed with a single learning rule can
learn qualitatively different neural dynamics (i.e., persistent vs.
sequential activity) depending on the stimuli statistics.

Using the full characterization of the bifurcation diagram
in the space of fixed feedforward and recurrent connections
developed here, we mapped the evolution of the connectivity
during stimulation in the bifurcation diagram. We analytically
and numerically showed that the synaptic weights evolve
in the feedforward—recurrent synaptic connections space
until they reach their steady state (when the number of
sequential stimulations is large). The specific point of the
steady state in the bifurcation diagram depends solely on
the stimulation parameters—stimulation period T and
time delay 1—and the connectivity initial conditions. We
found that stimulations with long durations and large
delays generically leads to the formation of PA, whereas
stimulations with long enough durations and short delays
leads to the formation of SA. Thus, persistent stimulation
leads to persistent activity while sequential stimulation leads to
sequential activity.
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FIGURE 11 | Learning dynamics under noisy stimulation. Same as in Figure 10, but in the presence of a white noise input current, with mean 0 and standard

deviation of 0.3 [i.e., σ = 0.3 in Equation (14)]. Firing rates of excitatory populations are colored according to their position in the sequential stimulation.

3.1. Learning of Sequences in Networks
A growing number of network models have been shown to be
able to learn sequential activity. Models with supervised learning
can reproduce perfectly target sequences through minimization
of a suitable error function (Sussillo and Abbott, 2009; Laje
and Buonomano, 2013; Memmesheimer et al., 2014; Rajan
et al., 2016), but the corresponding learning rules are not
biophysically realistic.

Other investigators have studied how unsupervised learning
rules leads to sequence generation. Early models of networks
of binary neurons showed how various prescriptions for
incorporating input sequences in the connectivity matrix can
lead to sequence generation (see Kuhn and van Hemmen,
1991)—or, sometimes, both sequence generation or fixed
point attractors depending on the inputs (Herz et al., 1988).
The drawback of these models is that they separated a
learning phase in which recurrent dynamics was shut down
in order to form the synaptic connectivity matrix, and a
retrieval phase in which the connectivity matrix does not
change anymore.

Our model removes this artificial separation, since both
plasticity rule and recurrent dynamics operate continuously, both

during learning and recall. However, we found that there needs to
be a mechanism to attenuate recurrent dynamics during learning
for it to be stable. The mechanism we propose rely on a modified
version of a standard homeostatic rule. Other mechanisms have
been proposed, such as neuromodulators that would change
the balance between recurrent and external inputs during
presentation of behaviorally relevant stimuli (Hasselmo, 2006).

The cost of not having supervision is that the network
can only learn the temporal order of the presented stimuli,
but not their precise timing. Veliz-Cuba et al. (2015) have
recently provided a model which bear strong similarities with
our model (rate model with unsupervised temporally asymmetric
Hebbian plasticity rule), but includes in addition a short-
term facilitation mechanism that allows the network to learn
both order and precise timing of a sequence presented in
input. However, their mechanisms require parameters to be
precisely related.

Models with temporally asymmetric Hebbian plasticity have
also been investigated in the context of the hippocampus (Abbott
and Blum, 1996; Gerstner and Abbott, 1997; Mehta et al.,
1997; Jahnke et al., 2015; Chenkov et al., 2017; Theodoni
et al., 2018). In such models, feedforward connectivity is
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learned through multiple visits of neighboring place fields,
and sequential activity (“replays”) can be triggered using
appropriate inputs mimicking sharp-wave ripples. Other models
use unsupervised Hebbian plasticity but qualitatively distinct
mechanisms to generate sequential activity. In particular, several
studies showed that sequences can be generated spontaneously
from unstructured input noise (Fiete et al., 2010; Okubo et al.,
2015). Murray and Escola (2017) showed that sequences can be
generated in networks of inhibitory neurons with anti-Hebbian
plasticity, and proposed that this mechanism is at work in
the striatum.

3.2. Learning of Persistent Activity With
Unsupervised Hebbian Plasticity
In our model, unsupervised temporally asymmetric Hebbian
plasticity is unstable, and after a number of stimulations,
all synaptic weights increase to the maximum value. The
destabilization occurs during sequential stimulation when the
population previously stimulated in the sequence presents
persistent activity at the moment the next population is being
stimulated. This leads to the increase of the feedforward synaptic
weight between these two populations, producing that both
present PA while the next population in the sequence is being
stimulated. This process continues in each repetition of the
sequential stimulation until all populations in the network
present PA leading to an increase in the synaptic weights to
maximum values. However, previous studies have shown that PA
could be learned without additional stabilization mechanisms.
In Del Giudice and Mattia (2001), Del Giudice et al. (2003),
and Mongillo et al. (2005) PA is learnt without any stabilizing
mechanism except for short-term depression. These studies have
a number of differences with ours, however, we believe the
key difference for stable learning PA is that in these models
there is PA (in the absence of inputs to the network) below
the threshold for LTP induction - something is not currently
present in our model since PA is always at the maximal
rate. Therefore, unlike our model, PA after stimulation does
not lead to effective changes in the synaptic connections.
Interestingly, they introduced short term depression to stabilize
learning by rapidly shutting down high firing rates during
stimulation or PA, which resembles the effect of the generalized
homeostatic plasticity rule in our model. In Mongillo et al.
(2003), connectivities with stable recurrent, feedforward and
feedback connections between pairs of populations emerge
from unsupervised Hebbian learning without any stabilization
mechanism. After learning, when one population in the pair
presents PA the other transition to PA stochastically after a
period of time due to spike noise. Importantly, as in the previous
models discussed above, the learning thresholds are set in such
a way that there is no learning when both populations present
PA. Additionally, during learning the presentations of stimuli
are far apart, and unlike our model learning feedback and
feedforward connections are due to persistent activity in one
neuron, and the stimulation in the other, followed by a small
increase in the synaptic strengths in each presentation. Lastly,
another difference with the models above, and with classical

models for persistent delay activity (Amit and Brunel, 1997),
is that in our model the “background state” is at zero activity.
This is an unrealistic feature stemming from the simplified
piecewise linear transfer function used in our network (see
Equation 5).

3.3. Stabilization Mechanisms
Consistent with many previous studies (Dayan and Abbott,
2001), we have shown that a network with unsupervised Hebbian
plasticity under sequential stimulation leads to a runaway of the
synaptic weights. This instability is due to a positive feed-back
loop generated by the progressive increase of network activity
leading to a progressive increase in average synaptic strength
when PA or SA are being learned. One possible solution for this
problem was first proposed in the context of attractor neural
network models (Amit et al., 1985; Tsodyks and Feigel’Man,
1988; Amit and Fusi, 1994). In these models, patterns are learned
upon presentation during a learning phase where synapses are
plastic but there is no ongoing network dynamics. After the
learning phase, the learning of attractors is tested in a retrieval
phase, where the network dynamics is ongoing but synaptic
plasticity is not present. Therefore, by compartmentalizing in
time dynamics and learning, the network dynamics does not
lead to changes in the synaptic weights during retrieval, and
conversely, changes in synaptic weights do not lead to changes
in the dynamics during learning. This separation prevents the
observed runaway of the synaptic weights due to unsupervised
Hebbian plasticity.

However, it is unclear whether such compartmentalization
exists in cortical networks. In this work, we explored the
alternative scenario, in which both plasticity and dynamics
happen concurrently during learning and retrieval (see also
Mongillo et al., 2005; Litwin-Kumar and Doiron, 2014; Zenke
et al., 2015 for a similar approach in networks of spiking
neurons). First, we found that by adding to unsupervised
Hebbian plasticity an instantaneous synaptic normalization
mechanism that maintains constant the sum of incoming
synaptic weights to each population, PA and SA cannot be
stably learned. Second, we found that adding a generalized
homeostatic plasticity to unsupervised Hebbian plasticity leads
to stable learning of PA and SA. During sequential stimulation,
the increase in co-activation betweenmultiple populations due to
recurrent and feedforward connections learned via unsupervised
Hebbian plasticity is prevented by suppressing its effect in the
network dynamics. Homeostatic plasticity scales down the overall
connectivity producing a weakly connected network. PA and
SA is prevented to occur during stimulation, which weakens
the positive feed-back loop generated by the increase in co-
activations of neuronal populations. After learning, the dynamic
variables of the Homeostatic plasticity rule reach a steady state
with values similar of what they where before stimulation
(see Figure 8A) and the connectivity learned via unsupervised
Hebbian plasticity can lead to retrieval of PA and SA upon
stimulation (see Figure 8C). The homeostatic variable reaches its
steady state at a value close to one, and the connectivity recovers,
unmasking the feedforward and recurrent learned architecture.
We have also tried other stabilization mechanisms such as
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inhibitory to excitatory plasticity (Vogels et al., 2011) instead of
homeostatic plasticity. In this case we found that stable learning
of PA and SA is possible, but for distinct sets of network and
stimulation parameters (data not shown).

As explained in Zenke and Gerstner (2017) and Zenke
et al. (2017), in order to prevent the runaway of the synaptic
weights produced by Hebbian plasticity, the timescale of any
compensatory mechanism should be of the same order or
faster than the Hebbian timescale. For generalized homeostatic
plasticity, the timescale of the homeostatic variable Hi is
dependent on the firing rate of neuron i and the target firing
rate [i.e., φ(ui)/φ(u0)]. When the network firing rate is close to
the target firing rate the homeostatic learning rule is slow, and
the homeostatic mechanism seldom play a role in the dynamics.
On the other hand, for high firing rates the homeostatic plasticity
timescale becomes faster, preventing the runaway of the synaptic
weights. There is currently an ongoing debate about whether the
timescales of compensatory processes used in theoretical studies,
as the ones used here, are consistent with experimental evidence
(see e.g., Zenke and Gerstner, 2017; Zenke et al., 2017).

AUTHOR CONTRIBUTIONS

UP and NB designed, performed the research, and wrote
the manuscript.

FUNDING

This work was supported by NIH R01 MH115555, NIH R01
EB022891, and ONR N00014-16-1-2327.

ACKNOWLEDGMENTS

UP thanks to the Champaign Public Library for providing the
physical space where part of this work has been completed.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2019.00097/full#supplementary-material

REFERENCES

Abbott, L. F., and Blum, K. I. (1996). Functional significance of long-term
potentiation for sequence learning and prediction. Cereb. Cortex 6, 406–416.
doi: 10.1093/cercor/6.3.406

Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge:
Cambridge University Press.

Amador, A., Perl, Y. S., Mindlin, G. B., and Margoliash, D. (2013). Elemental
gesture dynamics are encoded by song premotor cortical neurons. Nature 495,
59–64. doi: 10.1038/nature11967

Amari, S.-I. (1972). Learning patterns and pattern sequences by self-organizing
nets of threshold elements. IEEE Trans. Comput. 100, 1197–1206.
doi: 10.1109/T-C.1972.223477

Amit, D. J., and Brunel, N. (1997). Model of global spontaneous activity and local
structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7,
237–252. doi: 10.1093/cercor/7.3.237

Amit, D. J., Brunel, N., and Tsodyks, M. (1994). Correlations of cortical
hebbian reverberations: theory versus experiment. J. Neurosci. 14, 6435–6445.
doi: 10.1523/JNEUROSCI.14-11-06435.1994

Amit, D. J., and Fusi, S. (1994). Learning in neural networks withmaterial synapses.
Neural Comput. 6, 957–982. doi: 10.1162/neco.1994.6.5.957

Amit, D. J., Gutfreund, H., and Sompolinsky, H. (1985). Spin-glass models
of neural networks. Phys. Rev. A 32:1007. doi: 10.1103/PhysRevA.
32.1007

Bi, G.-Q. and Poo, M.-M. (1998). Synaptic modifications in cultured
hippocampal neurons: dependence on spike timing, synaptic
strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.
doi: 10.1523/JNEUROSCI.18-24-10464.1998

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory
for the development of neuron selectivity: orientation specificity
and binocular interaction in visual cortex. J. Neurosci. 2, 32–48.
doi: 10.1523/JNEUROSCI.02-01-00032.1982

Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S., and Magee, J. C. (2017).
Behavioral time scale synaptic plasticity underlies ca1 place fields. Science 357,
1033–1036. doi: 10.1126/science.aan3846

Blum, K. I., and Abbott, L. (1996). A model of spatial map formation
in the hippocampus of the rat. Neural Comput. 8, 85–93.
doi: 10.1162/neco.1996.8.1.85

Bourne, J. N., and Harris, K. M. (2011). Coordination of size and number of
excitatory and inhibitory synapses results in a balanced structural plasticity

along mature hippocampal ca1 dendrites during ltp.Hippocampus 21, 354–373.
doi: 10.1002/hipo.20768

Brunel, N. (2003). Dynamics and plasticity of stimulus-selective persistent
activity in cortical network models. Cereb. Cortex 13, 1151–1161.
doi: 10.1093/cercor/bhg096

Brunel, N. (2005). “Network models of memory,” in Methods and Models in

Neurophysics, Volume Session LXXX: Lecture Notes of the Les Houches Summer

School 2003, eds C. Chow, B. Gutkin, D. Hansel, C. Meunier, and J. Dalibard
(Amsterdam: Elsevier), 407–476.

Cannon, J., Kopell, N., Gardner, T., and Markowitz, J. (2015). Neural sequence
generation using spatiotemporal patterns of inhibition. PLoS Comput. Biol.

11:e1004581. doi: 10.1371/journal.pcbi.1004581
Chafee, M. V., and Goldman-Rakic, P. S. (1998). Matching patterns of

activity in primate prefrontal area 8a and parietal area 7ip neurons
during a spatial working memory task. J. Neurophysiol. 79, 2919–2940.
doi: 10.1152/jn.1998.79.6.2919

Chenkov, N., Sprekeler, H., and Kempter, R. (2017). Memory replay
in balanced recurrent networks. PLoS Comput. Biol. 13:e1005359.
doi: 10.1371/journal.pcbi.1005359

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience, Vol. 806. Cambridge,
MA: MIT Press.

Del Giudice, P., Fusi, S., and Mattia, M. (2003). Modelling the
formation of working memory with networks of integrate-and-fire
neurons connected by plastic synapses. J. Physiol. Paris 97, 659–681.
doi: 10.1016/j.jphysparis.2004.01.021

Del Giudice, P., and Mattia, M. (2001). Long and short-term synaptic plasticity
and the formation of working memory: A case study. Neurocomputing 38,
1175–1180. doi: 10.1016/S0925-2312(01)00557-4

Diesmann, M., Gewaltig, M.-O., and Aertsen, A. (1999). Stable propagation
of synchronous spiking in cortical neural networks. Nature 402, 529–533.
doi: 10.1038/990101

Durstewitz, D., Seamans, J. K., and Sejnowski, T. J. (2000). Neurocomputational
models of working memory. Nat. Neurosci. 3, 1184–1191. doi: 10.1038/81460

Erickson, C. A., and Desimone, R. (1999). Responses of macaque perirhinal
neurons during and after visual stimulus association learning. J. Neurosci. 19,
10404–10416. doi: 10.1523/JNEUROSCI.19-23-10404.1999

Ermentrout, G. B., and Terman, D. H. (2010). Mathematical Foundations of

Neuroscience, Vol. 35. New York, NY: Springer Science & Business Media.
Fiete, I. R., Senn, W., Wang, C. Z., and Hahnloser, R. H. (2010). Spike-time-

dependent plasticity and heterosynaptic competition organize networks to

Frontiers in Computational Neuroscience | www.frontiersin.org 17 January 2020 | Volume 13 | Article 97

https://www.frontiersin.org/articles/10.3389/fncom.2019.00097/full#supplementary-material
https://doi.org/10.1093/cercor/6.3.406
https://doi.org/10.1038/nature11967
https://doi.org/10.1109/T-C.1972.223477
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1523/JNEUROSCI.14-11-06435.1994
https://doi.org/10.1162/neco.1994.6.5.957
https://doi.org/10.1103/PhysRevA.32.1007
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982
https://doi.org/10.1126/science.aan3846
https://doi.org/10.1162/neco.1996.8.1.85
https://doi.org/10.1002/hipo.20768
https://doi.org/10.1093/cercor/bhg096
https://doi.org/10.1371/journal.pcbi.1004581
https://doi.org/10.1152/jn.1998.79.6.2919
https://doi.org/10.1371/journal.pcbi.1005359
https://doi.org/10.1016/j.jphysparis.2004.01.021
https://doi.org/10.1016/S0925-2312(01)00557-4
https://doi.org/10.1038/990101
https://doi.org/10.1038/81460
https://doi.org/10.1523/JNEUROSCI.19-23-10404.1999
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pereira and Brunel Unsupervised Learning of Persistent and Sequential Activity

produce long scale-free sequences of neural activity. Neuron 65, 563–576.
doi: 10.1016/j.neuron.2010.02.003

Foster, D. J., and Wilson, M. A. (2006). Reverse replay of behavioural sequences
in hippocampal place cells during the awake state. Nature 440, 680–683.
doi: 10.1038/nature04587

Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S. (1989). Mnemonic coding of
visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 61,
331–349. doi: 10.1152/jn.1989.61.2.331

Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S. (1990). Visuospatial coding in
primate prefrontal neurons revealed by oculomotor paradigms. J. Neurophysiol.
63, 814–831. doi: 10.1152/jn.1990.63.4.814

Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S. (1991). Neuronal activity
related to saccadic eye movements in the monkey’s dorsolateral prefrontal
cortex. J. Neurophysiol. 65, 1464–1483. doi: 10.1152/jn.1991.65.6.1464

Fuster, J. M., and Alexander, G. E. (1971). Neuron activity related to short-term
memory. Science 173, 652–654. doi: 10.1126/science.173.3997.652

Fuster, J. M., Bauer, R. H., and Jervey, J. P. (1982). Cellular discharge in the
dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp. Neurol.
77, 679–694. doi: 10.1016/0014-4886(82)90238-2

Gerstner, W., and Abbott, L. (1997). Learning navigational maps through
potentiation and modulation of hippocampal place cells. J. Comput. Neurosci.

4, 79–94. doi: 10.1023/A:1008820728122
Gerstner,W., Kistler,W.M., Naud, R., and Paninski, L. (2014).Neuronal Dynamics:

From Single Neurons to Networks and Models of Cognition. Cambridge:
Cambridge University Press.

Graupner, M., and Brunel, N. (2012). Calcium-based plasticity model explains
sensitivity of synaptic changes to spike pattern, rate, and dendritic location.
Proc. Natl. Acad. Sci. U.S.A. 109, 3991–3996. doi: 10.1073/pnas.1109359109

Grosmark, A. D., and Buzsáki, G. (2016). Diversity in neural firing dynamics
supports both rigid and learned hippocampal sequences. Science 351, 1440–
1443. doi: 10.1126/science.aad1935

Guo, Z. V., Li, N., Huber, D., Ophir, E., Gutnisky, D., Ting, J. T., et al. (2014). Flow
of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194.
doi: 10.1016/j.neuron.2013.10.020

Hahnloser, R. H., Kozhevnikov, A. A., and Fee, M. S. (2002). An ultra-sparse code
underliesthe generation of neural sequences in a songbird. Nature 419, 65–70.
doi: 10.1038/nature00974

Harvey, C. D., Coen, P., and Tank, D. W. (2012). Choice-specific sequences in
parietal cortex during a virtual-navigation decision task. Nature 484, 62–68.
doi: 10.1038/nature10918

Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Curr.
Opin. Neurobiol. 16, 710–715. doi: 10.1016/j.conb.2006.09.002

Herz, A., Sulzer, B., Kühn, R., and vanHemmen, J. L. (1988). TheHebb rule: storing
static and dynamic objects in an associative neural network. Europhys. Lett. 7,
663–669. doi: 10.1209/0295-5075/7/7/016

Inagaki, H. K., Fontolan, L., Romani, S., and Svoboda, K. (2019). Discrete
attractor dynamics underlies persistent activity in the frontal cortex. Nature
566, 212–217. doi: 10.1038/s41586-019-0919-7

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural
Comput. 18, 245–282. doi: 10.1162/089976606775093882

Jahnke, S., Timme, M., and Memmesheimer, R. M. (2015). A unified dynamic
model for learning, replay, and sharp-wave/ripples. J. Neurosci. 35, 16236–
16258. doi: 10.1523/JNEUROSCI.3977-14.2015

Jun, J. K., and Jin, D. Z. (2007). Development of neural circuitry for
precise temporal sequences through spontaneous activity, axon remodeling,
and synaptic plasticity. PLoS ONE 2:e723. doi: 10.1371/journal.pone.00
00723

Keck, T., Toyoizumi, T., Chen, L., Doiron, B., Feldman, D. E., Fox, K., et al.
(2017). Integrating hebbian and homeostatic plasticity: the current state of
the field and future research directions. Philos. Trans. R. Soc. B 372:20160158.
doi: 10.1098/rstb.2016.0158

Kim, S. S., Rouault, H., Druckmann, S., and Jayaraman, V. (2017). Ring
attractor dynamics in the drosophila central brain. Science 356, 849–853.
doi: 10.1126/science.aal4835

Kleinfeld, D., and Sompolinsky, H. (1988). Associative neural network model
for the generation of temporal patterns. theory and application to
central pattern generators. Biophys. J. 54:1039. doi: 10.1016/S0006-3495(88)
83041-8

Koch, K., and Fuster, J. (1989). Unit activity in monkey parietal cortex related
to haptic perception and temporary memory. Exp. Brain Res. 76, 292–306.
doi: 10.1007/BF00247889

Kuhn, R., and van Hemmen, J. L. (1991). “Temporal association,” in Models

of Neural Networks, eds E. Domany, J. L. van Hemmen, and K. Schulten
(New York, NY: Springer), 221–285.

Laje, R., and Buonomano, D. V. (2013). Robust timing and motor patterns
by taming chaos in recurrent neural networks. Nat. Neurosci. 16, 925–933.
doi: 10.1038/nn.3405

Litwin-Kumar, A., and Doiron, B. (2014). Formation and maintenance of
neuronal assemblies through synaptic plasticity. Nat. Commun. 5:5319.
doi: 10.1038/ncomms6319

Liu, D., Gu, X., Zhu, J., Zhang, X., Han, Z., Yan, W., et al. (2014). Medial prefrontal
activity during delay period contributes to learning of a working memory task.
Science 346, 458–463. doi: 10.1126/science.1256573

Liu, J. K., and Buonomano, D. V. (2009). Embedding multiple trajectories in
simulated recurrent neural networks in a self-organizing manner. J. Neurosci.
29, 13172–13181. doi: 10.1523/JNEUROSCI.2358-09.2009

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of
synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275,
213–215. doi: 10.1126/science.275.5297.213

McCormick, D. A., Connors, B. W., Lighthall, J. W., and Prince, D. A.
(1985). Comparative electrophysiology of pyramidal and sparsely
spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–806.
doi: 10.1152/jn.1985.54.4.782

Mehta,M. R., Barnes, C. A., andMcNaughton, B. L. (1997). Experience-dependent,
asymmetric expansion of hippocampal place fields. Proc. Natl. Acad. Sci. U.S.A.
94, 8918–8921.

Memmesheimer, R.-M., Rubin, R., Ölveczky, B. P., and Sompolinsky,
H. (2014). Learning precisely timed spikes. Neuron 82, 925–938.
doi: 10.1016/j.neuron.2014.03.026

Miller, E. K., Erickson, C. A., and Desimone, R. (1996). Neural mechanisms of
visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16,
5154–5167. doi: 10.1523/JNEUROSCI.16-16-05154.1996

Miller, K. D., and Fumarola, F. (2012). Mathematical equivalence of two common
forms of firing rate models of neural networks. Neural Comput. 24, 25–31.
doi: 10.1162/NECO_a_00221

Miyashita, Y. (1988). Neuronal correlate of visual associative long-term memory
in the primate temporal cortex. Nature 335, 817–820. doi: 10.1038/335817a0

Miyashita, Y., and Chang, H. S. (1988). Neuronal correlate of pictorial
short-term memory in the primate temporal cortex. Nature 331, 68–70.
doi: 10.1038/331068a0

Mongillo, G., Amit, D. J., and Brunel, N. (2003). Retrospective and prospective
persistent activity induced by hebbian learning in a recurrent cortical network.
Eur. J. Neurosci. 18, 2011–2024. doi: 10.1046/j.1460-9568.2003.02908.x

Mongillo, G., Curti, E., Romani, S., and Amit, D. J. (2005). Learning in realistic
networks of spiking neurons and spike-driven plastic synapses. Eur. J. Neurosci.
21, 3143–3160. doi: 10.1111/j.1460-9568.2005.04087.x

Murray, J. M., and Escola, G. S. (2017). Learningmultiple variable-speed sequences
in striatum via cortical tutoring. Elife 6:e26084. doi: 10.1101/110072

Nakamura, K., and Kubota, K. (1995). Mnemonic firing of neurons in the monkey
temporal pole during a visual recognition memory task. J. Neurophysiol. 74,
162–178. doi: 10.1152/jn.1995.74.1.162

Naya, Y., Sakai, K., and Miyashita, Y. (1996). Activity of primate inferotemporal
neurons related to a sought target in pair-association task. Proc. Natl. Acad. Sci.
U.S.A. 93, 2664–2669. doi: 10.1073/pnas.93.7.2664

Ngezahayo, A., Schachner, M., and Artola, A. (2000). Synaptic activity modulates
the induction of bidirectional synaptic changes in adult mouse hippocampus. J.
Neurosci. 20, 2451–2458. doi: 10.1523/JNEUROSCI.20-07-02451.2000

Okubo, T. S., Mackevicius, E. L., Payne, H. L., Lynch, G. F., and Fee, M. S. (2015).
Growth and splitting of neural sequences in songbird vocal development.
Nature 528, 352–357. doi: 10.1038/nature15741

Pereira, U., and Brunel, N. (2018). Attractor dynamics in networks
with learning rules inferred from in vivo data. Neuron 99, 227–238.
doi: 10.1016/j.neuron.2018.05.038

Rajan, K., Harvey, C. D., and Tank, D. W. (2016). Recurrent network
models of sequence generation and memory. Neuron 90, 1–15.
doi: 10.1016/j.neuron.2016.02.009

Frontiers in Computational Neuroscience | www.frontiersin.org 18 January 2020 | Volume 13 | Article 97

https://doi.org/10.1016/j.neuron.2010.02.003
https://doi.org/10.1038/nature04587
https://doi.org/10.1152/jn.1989.61.2.331
https://doi.org/10.1152/jn.1990.63.4.814
https://doi.org/10.1152/jn.1991.65.6.1464
https://doi.org/10.1126/science.173.3997.652
https://doi.org/10.1016/0014-4886(82)90238-2
https://doi.org/10.1023/A:1008820728122
https://doi.org/10.1073/pnas.1109359109
https://doi.org/10.1126/science.aad1935
https://doi.org/10.1016/j.neuron.2013.10.020
https://doi.org/10.1038/nature00974
https://doi.org/10.1038/nature10918
https://doi.org/10.1016/j.conb.2006.09.002
https://doi.org/10.1209/0295-5075/7/7/016
https://doi.org/10.1038/s41586-019-0919-7
https://doi.org/10.1162/089976606775093882
https://doi.org/10.1523/JNEUROSCI.3977-14.2015
https://doi.org/10.1371/journal.pone.0000723
https://doi.org/10.1098/rstb.2016.0158
https://doi.org/10.1126/science.aal4835
https://doi.org/10.1016/S0006-3495(88)83041-8
https://doi.org/10.1007/BF00247889
https://doi.org/10.1038/nn.3405
https://doi.org/10.1038/ncomms6319
https://doi.org/10.1126/science.1256573
https://doi.org/10.1523/JNEUROSCI.2358-09.2009
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1152/jn.1985.54.4.782
https://doi.org/10.1016/j.neuron.2014.03.026
https://doi.org/10.1523/JNEUROSCI.16-16-05154.1996
https://doi.org/10.1162/NECO_a_00221
https://doi.org/10.1038/335817a0
https://doi.org/10.1038/331068a0
https://doi.org/10.1046/j.1460-9568.2003.02908.x
https://doi.org/10.1111/j.1460-9568.2005.04087.x
https://doi.org/10.1101/110072
https://doi.org/10.1152/jn.1995.74.1.162
https://doi.org/10.1073/pnas.93.7.2664
https://doi.org/10.1523/JNEUROSCI.20-07-02451.2000
https://doi.org/10.1038/nature15741
https://doi.org/10.1016/j.neuron.2018.05.038
https://doi.org/10.1016/j.neuron.2016.02.009
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pereira and Brunel Unsupervised Learning of Persistent and Sequential Activity

Renart, A., Song, P., and Wang, X.-J. (2003). Robust spatial working memory
through homeostatic synaptic scaling in heterogeneous cortical networks.
Neuron 38, 473–485. doi: 10.1016/S0896-6273(03)00255-1

Roxin, A., Brunel, N., Hansel, D., Mongillo, G., and van Vreeswijk, C. (2011). On
the distribution of firing rates in networks of cortical neurons. J. Neurosci. 31,
16217–16226. doi: 10.1523/JNEUROSCI.1677-11.2011

Royer, S. and Paré, D. (2003). Conservation of total synaptic weight through
balanced synaptic depression and potentiation. Nature 422, 518–522.
doi: 10.1038/nature01530

Sabatini, B. L., Oertner, T. G., and Svoboda, K. (2002). The life cycle of ca 2+ ions
in dendritic spines. Neuron 33, 439–452. doi: 10.1016/S0896-6273(02)00573-1

Sakai, K., andMiyashita, Y. (1991). Neural organization for the long-termmemory
of paired associates. Nature 354, 152–155. doi: 10.1038/354152a0

Sjöström, P. J., Turrigiano, G. G., and Nelson, S. B. (2001). Rate, timing, and
cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–
1164. doi: 10.1016/S0896-6273(01)00542-6

Sussillo, D., and Abbott, L. F. (2009). Generating coherent patterns
of activity from chaotic neural networks. Neuron 63, 544–557.
doi: 10.1016/j.neuron.2009.07.018

Theodoni, P., Rovira, B., Wang, Y., and Roxin, A. (2018). Theta-modulation drives
the emergence of connectivity patterns underlying replay in a network model
of place cells. eLife 7:e37388. doi: 10.7554/eLife.37388

Toyoizumi, T., Kaneko, M., Stryker, M. P., and Miller, K. D. (2014). Modeling
the dynamic interaction of hebbian and homeostatic plasticity. Neuron 84,
497–510. doi: 10.1016/j.neuron.2014.09.036

Tsodyks, M., and Feigel’Man, M. (1988). The enhanced storage capacity
in neural networks with low activity level. Europhys. Lett. 6:101.
doi: 10.1209/0295-5075/6/2/002

Turrigiano, G. G. (2008). The self-tuning neuron: synaptic scaling of excitatory
synapses. Cell 135, 422–435. doi: 10.1016/j.cell.2008.10.008

Turrigiano, G. G. (2017). The dialectic of hebb and homeostasis. Philos. Trans. R.
Soc. B 372:20160258. doi: 10.1098/rstb.2016.0258

Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., and Nelson,
S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical
neurons. Nature 391:892. doi: 10.1038/36103
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