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Modality-invariant categorical representations, i.e., shared representation, is thought to

play a key role in learning to categorize multi-modal information. We have investigated

how a bimodal autoencoder can form a shared representation in an unsupervisedmanner

with multi-modal data. We explored whether altering the depth of the network and

mixing the multi-modal inputs at the input layer affect the development of the shared

representations. Based on the activation of units in the hidden layers, we classified them

into four different types: visual cells, auditory cells, inconsistent visual and auditory cells,

and consistent visual and auditory cells. Our results show that the number and quality

of the last type (i.e., shared representation) significantly differ depending on the depth

of the network and are enhanced when the network receives mixed inputs as opposed

to separate inputs for each modality, as occurs in typical two-stage frameworks. In the

present work, we present a way to utilize information theory to understand the abstract

representations formed in the hidden layers of the network. We believe that such an

information theoretic approach could potentially provide insights into the development of

more efficient and cost-effective ways to train neural networks using qualitative measures

of the representations that cannot be captured by analyzing only the final outputs of

the networks.

Keywords: shared representation, auto-encoder, multi-modal data, information theory, mutual information

1. INTRODUCTION

The term concept describes the fundamental building blocks of thoughts and beliefs we develop in
our own mind. Concepts are thought to be crucial for making the predictions required for various
tasks in everyday life (Fisher et al., 2014). It has been proposed that concepts are acquired essentially
by learning to categorize multi-modal information (Nagai et al., 2016; Nakamura and Nagai, 2017).
During this process, modality-invariant categorical representations, i.e., shared representation, are
thought to be developed. Ngiam et al. (2011) presented a way to develop shared representations in
a bimodal autoencoder in an unsupervised manner, and various other researchers have advanced
the idea. These activities have highlighted the broad potential utility of multi-modal data, for
example in learning sound representations from unlabeled videos (Aytar et al., 2016), learning
spoken language with a visual context (Harwath et al., 2016), estimating emotion based on visual
and audio cues (Horii et al., 2016), and identifying audio source location in a images (Arandjelovic
and Zisserman, 2017a,b), etc.
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Nevertheless, these studies have not explicitly investigated
the degree to which shared representations can be trained to
develop or what aspects are important for the formation of such
representations. More specifically, it is still unclear (1) if altering
the depth of the encoding layer of an autoencoder and/or (2)
mixing the multi-modal data at the input layer facilitates the
formation of shared representations.

Previously, it was presented that training a one-layer multi-
modal model over the concatenated audio and video data
failed to develop shared representations. When the correlations
between the multi-modal data are highly non-linear in a
“shallow network,” the result is that hidden units that have
strong connections to variables from each individual modality
(Ngiam et al., 2011). We hypothesized that the quality of shared
representation may be better if the network becomes deeper and
if the network receives mixed modality data from the input layer.

Based on the activations, we used information theoretic
techniques (see section 2.3 for the details) to classify each unit in
hidden layers into four different types. The first and second types
included cells that represent categories for only a single modality
(vision or audio), while the third and fourth types include cells
that represent either inconsistent or consistent categories across
the two modalities, respectively. We consider that the number of
the fourth type indicates the goodness of shared representations.

In order to evaluate the development of shared
representations, we also test the actual performance of the
network in a context where task performance depends on the
successful acquisition and utilization of shared representations.
This is achieved by extending the model with additional
supervised layers to conduct a “shared-representation learning”
(Ngiam et al., 2011). This type of learning would confirm
the successful development of shared representations in
the encoding layer, and furthermore demonstrate how such
representations are useful in solving practical tasks, such as
stimulus classification.

Currently, examples of bottlenecks in training deep neural
networks (DNNs) include the limited availability of datasets with
appropriate annotations and limited strategies to quantitatively
evaluate developed representations in intermediate layers
(Shwartz-Ziv and Tishby, 2017). As our results show that altering
the number of encoding layers and mixing the multi-modal
data at the input layer both facilitate the development of
shared representations, our information theoretic approach
may provide insights into more efficient and cost-effective
ways to train various kinds of neural network models with the
qualitative measures of the abstract representations developed
at the intermediate stages of the networks, which cannot be
captured by analyzing only the final outputs of the networks.

2. MATERIALS AND METHODS

2.1. Model Description
The current simulation studies were conducted within a bimodal
autoencoder developed with the open-source neural network
library Keras (Chollet, 2015). This is a variant of a basic
autoencoder that consists of the following types of layers
arranged in a similar way to the multilayer perceptrons: an input

layer, an output layer, and one or more hidden layers. What
makes the autoencoder unique is that instead of predicting the
target value Y given inputs X, the model learns to reconstruct its
inputs in the output layer by minimizing the difference between
the input (X) and the output (X′) thorough the feature space (F)
in an unsupervised manner.

More precisely, the same set of data presented at the input
serves as a set of teaching signals used at the training within
the hourglass-type neural network model where the number of
nodes in the hidden layers is smaller than the number of nodes in
the input/output layer. As a result, it is expected that an efficient
representation for a set of the data will be learned at the hidden
layer through data denoising and dimensionality reduction for
data visualization (Cottrell and Munro, 1988).

Suppose the number of nodes in the input/output layer is d
and the number of nodes in the hidden layer is p, the input of
the encoder X = (x ∈ R

d), the output of the encoder (the input
of the decoder) F = (h ∈ R

p), and the output of the decoder
X′ = (x′ ∈ R

d). Also, when σ and σ ′ represent a transfer
function, such as a sigmoid function, and b represents a bias term,
the two phase transitions of encoding and decoding are expressed
in the following way:

h = σ (Wx+ b)

x′ = σ ′(W′h+ b′)
(1)

During the training, the model aims to minimize reconstruction
errors as follows:

L(x, x′) = ‖x− x′‖2 = ‖x− σ ′(W′(σ (Wx+ b))+ b′)‖2 (2)

Figure 1A shows a typical bimodal autoencoder with a two-stage
framework to achieve the formation of shared representations,
similar to that described in Ngiam et al. (2011). It first learns
features separately for each modality and then learns the
correlations between those two input modalities. However, a
potential weakness of this strategy was subsequently pointed out
by Feng et al. (2014) and Peng et al. (2016). These researchers
claimed that in reality, two different modalities may be correlated
at different abstract levels of representation, and that the two-
stage framework may ignore these complex correlations in
intermediate representations. We therefore propose instead a
model that simultaneously performs the correlation learning and
representation learning as a whole, as shown in Figure 1B. With
this approach, multi-modal data are mixed from the beginning
in the input layer, so the potential risk of ignoring subtle
correlations between representations developed at different
abstract levels of each modality is minimized.

This model contains two parts to form a bimodal autoencoder:
the encoding and the decoding layers. To first encode the
multimodal inputs, combined signals of visual and auditory
inputs are propagated through a series of encoding layers of 64
cells with sigmoid activation function. Activations in the final
encoding layer are then propagated through two parallel paths
of multiple layers (from 1 to 4 layers) of 64 cells to reconstruct
the signals of each modality. The optimization function used for
this model is expressed in the following way, where xv and x′v are
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FIGURE 1 | Bimodal deep autoencoder models. (A) Two-stage framework that separates feature learning from correlation learning. The network first learns to encode

inputs from each modality along 3 consecutive encodings and then learns modality-combined representations at the encoding layer 4. Then, the network learns to

reconstruct inputs from each modality along 3 consecutive decoding layers. (B) The mixed input framework that concatenates the multi-modal inputs from the

beginning. The network first learns to encode the modality-concatenated inputs along encoding layer(s) where the number of layers can vary from 1 to 4 depending on

conditions. The network then learns to reconstruct inputs from each modality along 3 consecutive decoding layers. The source code of the simulation model can be

downloaded from the github repository at https://github.com/arayabrain/multi-modal-integration.

the visual input and output while xa and x′a are the audio input
and output:

L(xv, x
′
v, xa, x

′
a) = (‖xv − x′v‖

2 + ‖xa − x′a‖
2) (3)

In this particular model, successive neuronal layers are densely
connected, and the weights are adjusted via backpropagation of
errors with an optimizer of AdaDelta using its default values
(Zeiler, 2012) and a loss function of binary cross-entropy during
5,000 epochs of training. After the training, the responses of the
cells in the four encoding layers to each pair of stimuli in the
testing dataset are used for subsequent analysis. The source code
of this simulation model can be found in the github repository
at https://github.com/arayabrain/multi-modal-integration.

2.2. Dataset and Training Procedure
The visual stimuli used to train and test the network are taken
from the database of handwritten digits, Modified National
Institute of Standards and Technology database (MNIST) (Lecun
et al., 1998). Five hundred samples for each digit are taken to
construct the training set and 50 samples for each digit are taken
to construct the test set. All images are gray-scaled and 28 × 28
pixels in size. The values are rescaled into a range of [0, 1].
Similarly, the auditory stimuli are taken from a publicly available
dataset, free-spoken-digit-dataset (Jackson, 2018). Datasets for
training and testing are generated in the following steps: 100

samples for each digit, which consist of 50 recorded audios of two
speakers (namely “Jackson” and “Theo”; Jackson, 2018), are taken
to first create a pool of input stimuli. We then randomly select
one-half of the stimuli in the dataset for constructing a training
set and the second half for use in constructing a test set. Each
sound input is transformed into a spectrogram of 14 × 56 pixels
in size. The values are rescaled into a range of [0, 1].

Two types of training dataset are created: a dataset consisting
of pairs of a visual and an audio input in which the digits
from the two modalities correspond with each other (Consistent
training dataset), and a dataset consisting of pairs of a visual
and an audio input in which the digits do not correspond
with each other (Inconsistent training dataset). The inconsistent
training dataset is used as a control experiment to evaluate the
significance of shared representations developed in the consistent
training dataset. In both cases, each of the 500 visual inputs for
each digit is paired with a randomly selected input of the 50
auditory inputs. Furthermore, following the procedure used in
Ngiam et al. (2011), we use an augmented but noisy dataset with
additional examples that have only a single modality as input. In
particular, we add examples that contain only zeros for one of
the input modalities (e.g., visual inputs) and the original values
for the other input modality (e.g., auditory inputs), but require
the network to reconstruct both modalities. This means that one-
third of the training set has only visual input, another one-third
of the set has only auditory input, and the last one-third of the
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set has both visual and auditory input. Therefore, each training
dataset consists of a total of 15,000 pairs of inputs (10 digits ×
500 variations× 3 conditions).

In contrast, the test set is created by simply pairing each one
of 50 visual inputs for each digit with one of 50 auditory inputs
for the corresponding digit. In addition, similarly to the training
datasets, we consider those cases where the network is required
to reconstruct the signals of two modalities, given that the signals
from only one modality are available. Therefore, the dataset is
composed of 1,500 pairs of visual and audio inputs (10 digits ×
50 variations× 3 conditions).

During the training, the network is exposed to a series of
signals coming from visual and auditory modalities assigned in
the training set simultaneously, and the weights are adjusted
to properly reconstruct both the corresponding visual and
auditory signals in the final decoding layers. Once the training
is completed, the responses of the cells in each encoding layer of
the autoencoder to the input data in the test set are then used for
the information analysis described in the next section.

We prepare 10 different consistent and inconsistent training
datasets as well as 10 different test datasets according to the above
procedures for statistical analysis.We obtain 10 individual results
for each of the consistent and inconsistent training.

2.3. Information Analysis
In order to analyze the formation of shared representations, we
take an information theoretic approach that has traditionally
been used in the field of neuroscience. The performance of Deep
Neural Networks (DNNs) is typically assessed by the yes/no
responses of the units in the output layer, and the activations
in the hidden layers tend to be treated as a black box. Recently,
however, the use of information theory has gradually gained the
attention of AI researchers in various forms (Sorngard, 2014;
Berglund et al., 2015; Tishby and Zaslavsky, 2015; Higgins et al.,
2016; Shwartz-Ziv and Tishby, 2017; Tax et al., 2017).

In the context of the present study, we are interested in
how well the units in the hidden layers of the network have
learned to be selective for the digits provided as inputs. Suppose s
represents the digit that is presented as an input, i.e., s ∈ {0, ..., 9},
ES represents the set of digits presented, and ERi represents the
responses of a particular unit i for the set of inputs, the mutual
information I(ES, ERi) can then provide a single value to summarize
the digit selectivity of each unit. However, this measure does
not provide information about how selective each cell is for
each digit.

In order to identify whether a trained unit is invariantly
selective for a particular digit across different modalities, we
need to know the amount of information each cell carries about
each specific digit. Single cell information analysis described in
Rolls et al. (1997) fixes the stimulus s and calculates the mutual
information I(s, ERi) to describe stimulus-specific selectivity.

In this way, if a cell responds invariantly to any inputs of a
particular digit but not to inputs of other digits, then the cell
carries a high level of information about the presence of its
preferred digit (i.e., the cell is maximally selective to the particular
digit). From Shannon’s definition, we can obtain the expression
for the mutual information between the stimulus s and the set of

TABLE 1 | Example cell firing rates to each alphabet over presented in 100

different variations.

Alphabet 0 ≤ r < 0.33 0.33 ≤ r < 0.67 0.67 ≤ r ≤ 1 Total

A 3 17 80 100

B 68 31 1 100

C 73 25 2 100

D 65 12 23 100

Total 209 85 106 400

responses R (the net stimulus information):

I(s,Ri) =
∑

r∈Ri

P(r|s) log2
P(r|s)

P(r)
(4)

Here, P(r|s) represents the probability of a specific level of
activation of the unit given that a stimulus labeled with a
particular digit is presented. P(r) is estimated on a histogram of
values taken by r across the presentation of the test set:

P(r) =
∑

s∈S

P(r, s) (5)

The maximum information that an ideally developed cell could
carry is given by the formula:

Maximum cell information = log2(nCat) bits (6)

where nCat is the number of different stimulus categories (the
size of S).

In our scenario, we consider single-cell information measures
for simulation with 10 different digits, from 0 to 9. Therefore,
the maximum information possible is log2(10) ≈ 3.32 bit. To
calculate the probability of each response, activity for each cell, r,
is divided into 10 bins. Using the table of the binned activations,
we can measure the information that a particular cell carries
about a particular stimulus by calculating the probability of that
response P(r) and the probability of the responses given the
stimulus P(r|s) based on the Equation (4).

To provide a solid understanding of the process of computing
the amount of the single cell information, let us suppose a simpler
scenario with 4 different alphabets, A, B, C, and D (nCat =
4), where each alphabet is presented 100 times with different
handwriting. Also, for this example, we chose to use only three
equally spaced bins, 0 ≤ r < 0.33, 0.33 ≤ r < 0.67, and
0.67 ≤ r ≤ 1. This produces a matrix of responses for each cell,
an example is given in Table 1.

Suppose we are interested in the amount of the single cell
information that this particular cell carries about an alphabet
A. Based on the Equation (4), we first need to calculate the
partial information that is specific to each range of the activation
in different bins and then to sum each partial information
altogether. For example, the strongest range of activation 0.67 ≤
r ≤ 1 has the probability of occurring P(r) = 106/400 and the
probability of occurring given that an alphabet Awas presented of
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P(r|s) = 80/100 = 0.8. Therefore, the amount of the information
that this particular cell i carries about an alphabet A with such
a strong activation is I(s, r) = 0.8 log2 (0.8/(106/400)). We will
then need to compute the partial information for the middle
range of activation 0.33 ≤ r < 0.67 and for the weakest range of
activation 0 ≤ r < 0.33 in the same manner, and the summation
of each partial information gives the final result of the single cell
information of this particular cell about an alphabet A, which is
in this case about 1.097 bit. Since the single cell information of
the same cell about B, C, and D are about 0.380 bit, 0.336 bit, and
0.059 bit, respectively, we can understand that this particular cell
carries most information about an alphabet A.

3. RESULTS

The main interest of the present study is to understand
the nature of concept formation with multi-modal inputs.
More specifically, we investigate this process in the context
of the formation of shared representations, modality invariant
categorical representations, in a bimodal auto-encoder. In
this section, we provide some of the experimental results to
answer the following two questions: (1) Does the quality of
the shared representations developed depend on the depth
of the network? (2) Does the bimodal autoencoder with the
mixed-input framework (see Figure 1) produce better shared
representations than that with the two-stage framework?

In particular, we first utilize the information theoretic
technique described in methods to quantify the abstract
representations that may form in the encoding layers of the
bimodal autoencoder and investigate the distribution of the
cells with different characteristics. We then conduct the shared-
representation learning that aims to test the development of
shared representations by evaluating whether inputs from a
different modality can be decoded even when only one modality
is learned (Ngiam et al., 2011). This is to investigate whether
the developed shared representations can actually be utilized to
perform digit classification tasks.

3.1. Information Analysis
In this section, we first measure how selective each cell in the
encoding layers has become to a particular digit presented at
eachmodality after training. Based on the amount of information
each cell carries about digits, we identify the number of cells that
represent the same digit regardless of the input modality, i.e.,
the shared representations. We performed simulations 10 times
for each condition as described in section 2.2. We first show
the results of one simulation to provide the general idea of our
information theoretic analysis.

Figure 2 shows the results of single cell information analysis
of the selectivity of cells in the fourth encoding layer of the
network to specific digits. Each line plots the maximum amount
of single cell information for each cell in the final encoding layer
concerning whether one of the ten digits was present. The plot
(a) shows the single cell information about the digits given the
inputs in the entire test set, which consists of only visual inputs,
only auditory inputs, and both visual and auditory inputs (see
section 2.2). The results before training are presented with a blue

dotted line, which shows that most of the cells carry none of
the information about any of the digits at the beginning. On the
other hand, the results when the network was trained on the
inconsistent training dataset are plotted with an orange dashed
line while the results for when the network was trained on the
consistent training dataset is plotted with a green solid line. These
results show that the networks have learned to carry a higher
amount of information about a specific digit after training, and
the result for the network trained on the consistent training
dataset is generally better than that of the network trained on the
inconsistent training dataset.

However, this result does not immediately guarantee that
the network has learned to utilize signals from both modalities
to represent the digit. For example, let us suppose a cell that
responds to any visual presentation of a digit one but not to
any auditory presentation of the same digit. In other words, this
particular cell responds to only the two-thirds of the subset of the
testing dataset that corresponds to the digit one. Nevertheless,
the cell can still carry a reasonably high amount of information
about the digit one. In order to remove this possibility, the same
analysis technique is also applied to the responses of the cells to
two different subsets of the testing dataset separately: one-third of
the original training dataset which consists of visual inputs only
and the dataset which consists of auditory inputs only.

Figures 2B,C shows the results of the single cell information
analysis over the subset of the testing dataset that provides signals
from only one modality, vision or auditory. We can now confirm
with these results that the amount of information carried by
each cell concerning a specific digit is higher after training for
both modalities.

To understand the nature of the representations in more
detail, we classify the cells into four different types, each of which
exhibits different selectivity properties in terms of selectivity to
visual and audio inputs. (1) Visual cells: selective only to visual
inputs. (2) Auditory cells: selective only to auditory inputs. (3)
Inconsistent visual and auditory cells: selective to both visual and
auditory inputs but selective for different digits. (4) Consistent
visual and auditory cells: selective to both visual and auditory
inputs and selective for at least one same digit. The existence
of type (4) cells indicates to what extent shared representations
are developed during the learning process. We classify the cells
as “selective” if the amount of information exceeds a certain
threshold value. We set the threshold to 0.96 bits for visual inputs
and 0.94 bits for auditory inputs, respectively. This threshold
value is determined based on the 80th percentile of the amount
of the information each cell carries about each digit of the
corresponding modality in the fourth encoding layer of the
network after training on the consistent training dataset.

Figure 3 shows the activation of exemplar cells of the
four types defined above. For more details of the amount of
information that each cell carries about different visual and
auditory inputs, please refer to Table S1. The plot in the first
column shows the response of the cells to 50 variations in visual
input for each digit, and the plot in the second column shows
those of auditory input. (a) shows a cell that carries 3.006 bits
of information about digit “1” from the visual input but no
information from the auditory input. (b) shows a cell that carries
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FIGURE 2 | Single cell information analysis of the selectivity of cells to specific digits given (A) the entire testing dataset (visual inputs only, audio inputs only, and both

visual and auditory inputs), (B) visual inputs only, and (C) auditory inputs only. All 4th encoding layer cells are plotted along the abscissa in rank order according to the

amount of information they convey about the digits. The results before the training are plotted with blue dotted lines, the results of the case where the input digits of

both modalities are inconsistent with each other during the training are plotted with orange dashed lines, and the results of the case where the input digits of both

modalities are always consistent are plotted with green solid lines.

1.076 bits of information about digit “1” from auditory input
and not from visual input (the maximum information is 0.724
bit about digit 4). (c) shows a cell that learned to represent
digit “1” from the visual input and digit “6” from the auditory
input (inconsistent digit depending on modality). (d) shows the
example of a cell that learned to respond to digit “0” regardless
of the modality the signal comes from, which can be regarded as
the shared representation. Note that the most active cell does not
necessarily mean the most selective cell, but this figure shows the
cases in which the cells carry high mutual information and are
also highly active for the sake of better visualization.

In order to understand the development of such
representations, the number of hidden encoding layers was
varied, and the two types of the network architecture, i.e.,
mixed-input and two-stage framework, were compared, as
described in section 2.1. Based on the information calculated
for each modality, we quantified the distribution of the four
types of cells that learned to exhibit the different selectivity
properties. Figure 4 shows the average number of consistent
visual and auditory cells (regarded as shared representation)
over 10 simulations. The distribution of three other types of cells
are presented in the supplementary material (Figures S1–S7,
Tables S2–S6).

As a control experiment, we first trained the network with
inconsistent training dataset, in which different visual and
auditory inputs are paired. The result presented in Figure 4A

confirms that the number of consistent visual and auditory
cells developed was very small, which indicates the failure of
formation of shared representations in the control condition.
On the other hand, when the same network was trained
on the consistent training dataset, the network successfully
developed a significantly larger number of such cell types, as
shown in Figure 4B (t-test, p < 0.0005 in each layer). By
using the results obtained with inconsistent training datasets
as baseline, this result confirms the successful development of
shared representations across all mixed-input networks, each
implemented with a different depth.

More importantly, these results revealed the fact that the
number of units with shared representations significantly
changes as the depth of the network alters [one-way
ANOVA, F(3, 36) = 156.24, p < 0.0005]. Ngiam et al.
(2011) has previously presented that the number of the
units with shared representations formed in a shallow
network is limited, which is consistent with our present
results. However, while these experiments propose the
workaround of introducing the two-stage framework, our
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FIGURE 3 | Examples of cell activations. Each row shows the activations of different example cells. The plot shows the responses of the cells to 50 variations of visual

input (left) and auditory input (right) for each digit. The darker the color is, the higher the activation. (A) Visual cell: an example of a cell that learned to be selective to

digit one of the visual input. (B) Auditory cell: an example of a cell that learned to be selective to digit one of the auditory input. (C) Inconsistent visual and auditory cell:

an example of a cell that represents inconsistent digits across the modalities. (D) Consistent visual and auditory cells (shared representation): an example of a cell that

represents the same digits.

FIGURE 4 | Distribution of the cells with different selectivity properties. (A,B) Number of consistent visual and audio cells (shared representation) in the final layer of the

network with different depths, trained on the inconsistent training dataset and on the consistent training dataset, respectively. (C) Results of the networks with the two

different architectures.

results show that the problem is not necessarily due to a
limitation of the original mixed-input framework; rather,
simply increasing the number of layers in the network
implemented with the mixed-input framework may also be
a simple workaround.

To investigate the difference in the formation of shared
presentations between these two different network architectures,
we implemented a network with two-stage framework as
described in section 2.1. The quality of the representations

formed in the final encoding layer of the model was compared
with that of representations formed in our model with the
mixed-input framework in Figure 4C. The results indicate
the fact that the number of consistent visual and auditory
cells (i.e., shared representations) is significantly larger in the
model implemented with the mixed-input framework (t-test,
p < 0.0005). This leads to the conclusion that the shared
representations are better achieved in the mixed-input than the
two-stage framework.
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FIGURE 5 | (A) The network structures for shared representation learning. The final encoding layer of the bimodal autoencoder is treated as an input layer for the

following additional hierarchical neural network to achieve digit classification via supervised learning. (B,C) Results of the shared representation learning. Categorical

accuracies of the output responses where the network was trained with supervised signals over the visual inputs only (B) and over the audio inputs only (C) are

presented. (B1,C1) Show the results when the network was trained on the inconsistent training dataset while (B2,C2) Show the results when the network was trained

on the consistent training dataset, and (B3,C3) compare the performance of the network implemented with the two different frameworks.

3.2. Shared Representation Learning
In this section, we test the development of shared representations
by evaluating whether digits from different modalities can be
decoded even when only one modality is learned. We conducted
this test by implementing an additional supervised layer for
learning to decode the digits. In particular, we conducted a
test for “shared representation learning” to evaluate if the
categorical representations developed in the final encoding layer
of the bimodal autoencoder capture correlations across different
modalities. This test additionally allows us to assess whether the
learned representations are modality-invariant and exhibit the
characteristics of the shared representations based on a digit
classification task.

Figure 5A illustrates the modified architecture of the network
used to conduct the test of the shared representation learning
(Ngiam et al., 2011). In particular, the final encoding layer of
the bimodal autoencoder described in Figure 1B is treated as an
input layer for the following additional neural network layers
to achieve a digit classification via supervised learning. The
supervised layer consists of three densely connected neuronal
layers: two layers of 64 rectified linear units with 20% dropout
(Hinton et al., 2012) and a layer of 10 cells with softmax activation
function to represent each digit.

During the shared representation learning, the weights of the
bimodal autoencoder are fixed while the weights of the additional
supervised layers are adjusted to identify the digit of the incoming
signals. To test the modality invariance learning, the network is
trained on only one modality (e.g., vision) and is then tested on
anothermodality (e.g., auditory), on which the network has never

been explicitly trained. If the network has successfully developed
the shared representation, it is expected that the categorical
accuracy of digit prediction based on signals from this never-
trained modality would also be improved. In order to assess the
statistical significance of the results, we conducted the training 10
times for each condition.

Figures 5B,C shows the results of the shared representation
learning. The figure plots the average categorical accuracy of
the responses of the trained output cells over 10 simulations.
Figure 5B shows the results when the labels are trained with
the visual inputs while Figure 5C shows the results when the
labels are trained with the auditory inputs. For each condition,
the results are compared between the cases in which the
bimodal autoencoder has been trained on the inconsistent
training set (Figures 5B1,C1) and on the consistent training set
(Figures 5B2,C2). The dashed blue lines represent the results of
testing with visual inputs, and the solid orange lines represent the
results of testing with auditory inputs.

The result presented in Figures 5B,C confirms that the
bimodal autoencoder trained on the inconsistent training dataset
failed to develop the shared representations whereas the network
trained on the consistent training dataset did successfully develop
the shared representations.

Also, we compared the results between the autoencoders
implemented with the two-stage framework and the mixed-
input framework. In the model implemented with the two-stage
framework, the final encoding layer of each network is used as
the input to train the following supervised layers to achieve the
shared representation learning. Figures 5B3,C3 shows the result
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after training with the visual inputs and with the auditory inputs,
respectively. In both cases, the effect of shared representation
learning within the network implemented with the mixed-input
framework is better than that in the network implemented with
the two-stage framework (t-test, p < 0.05 in Figure 5B3 and t-
test, p < 0.005 in Figure 5C3. This finding is consistent with the
results reported in section 3.1.

For reference, the complete set of results with all the different
conditions tested is presented in Figures S8–S14, Tables S7–S11.

4. DISCUSSION

In this study, we revisited the development of a specific
internal representation emerging in a neural network model
originally investigated in Ngiam et al. (2011). Together with
this investigation, we also aimed to establish a technique
to quantitatively measure the representations in the different
layers during the training to understand the black box. More
precisely, we utilized an information theoretic approach that
has traditionally been used in the field of neuroscience (Rolls
et al., 1997), further refined by Eguchi et al. (2016). The use
of information theory provided a means of measuring the
quality of representations formed in the hidden layers based
on the response patterns of the cells. With this technique, we
confirmed that the emergence of modality-invariant categorical
representations (i.e., shared representations) could be directly
assessed even at an abstract level, and thereby successfully
described how the network may make use of multi-modal data
to develop such representations.

In particular, we investigated the effect of changing the
depth of the network and the effect of implementing different
frameworks on the formation of shared representations. We
confirmed that the network can develop shared representations
in a simple bimodal autoencoder (Figures 2, 3) and found that
the proportion of cells with shared representations significantly
changed depending on the depth of the network (Figure 4B). We
also highlighted the potential of using a mixed-input framework
rather than the typical two-stage framework by presenting the
larger number of shared representations developed in the former
(Figure 4C) and the better performance of shared representation
learning (Figures 5B3,C3).

As shown in the present study, information theoretic
assessment provided a way to quantitatively and qualitatively
understand the various kinds of representations emerging in the
models. Our approach clarified the effect of model structure

(i.e., depth and mixed-method of multimodal signals) in the
acquisition of categorical representations and the relationship
between shared representations and input signals. This approach
might help to evaluate previous studies. For example, some
previous studies Horii et al. (2016, 2018) used a two-
stage framework to acquire emotional categories from human
visual and auditory signals. However, these did not evaluate
performance when the model structures were changed. Thus,
it is possible that the mixed-input framework provides better
performance in shared representation learning, as indeed we
showed in this study.

With regard to the effectiveness of using mutual information
to characterize the representations of hidden units, some
of the recent attempts (Chen et al., 2016; Hjelm et al.,
2018; Pineau and Lelarge, 2018; Amjad and Geiger, 2019;
Zhao et al., 2019) directly introduced mutual information in
the objective function. It has been shown that those novel
learning rules help to acquire and improve the disentangled
representation in the hidden layers. We expect that the method
proposed in this study could potentially open up the black
box of the deep neural network and provide insights into the
development of more efficient and cost-effective ways to train
the networks.
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