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Spatio-temporal brain activities with variable delay detectable in resting-state functional

magnetic resonance imaging (rs-fMRI) give rise to highly reproducible structures,

termed cortical lag threads, that propagate from one brain region to another. Using a

computational topology of data approach, we found that persistent, recurring blood

oxygen level dependent (BOLD) signals in triangulated rs-fMRI videoframes display

previously undetected topological findings, i.e., vortex structures that cover brain

activated regions. Measure of persistence of vortex shapes in BOLD signal propagation

is carried out in terms of Betti numbers that rise and fall over time during spontaneous

activity of the brain. Importantly, a topology of data given in terms of geometric shapes

of BOLD signal propagation offers a practical approach in coping with and sidestepping

massive noise in neurodata, such as unwanted dark (low intensity) regions in the

neighborhood of non-zero BOLD signals. Our findings have been codified and visualized

in plots able to track the non-trivial BOLD signals that appear intermittently in a sequence

of rs-fMRI videoframes. The end result of this tracking of changing lag structures is a

so-called persistent barcode, which is a pictograph that offers a convenient visual means

of exhibiting, comparing, and classifying brain activation patterns.

Keywords: Betti Numbers, brain activity, fMRI video, persistence bar code, topological data analysis

1. INTRODUCTION

Point clouds are a natural outcome of a topology of data approach in tracking intermittent as well
as persistent BOLD signals in different sections of the brain. A point cloud is a collection of sampled
pinpointed places in a subregion (Ghrist, 2014). A topology of data circumvents noise in data
and focuses on those data that persist over time (Edelsbrunner and Harer, 2010). Computational
topology of data provides a practical method in isolating, measuring, and classifying persistent
lag structures BOLD signals in each rs-fMRI video frame that are mapped to point clouds in a
finite, bounded region in an n-dimensional Euclidean metric space. It has been observed that brain
activity in one region of the brain propagates to others with variable temporal delay (Mitra et al.,
2015; Matsui et al., 2016; Park et al., 2019), giving rise to brain activity lag (delay) structures. Lag
threads are temporal sequences of propagated brain activities (Mitra et al., 2015). Lag structures in
fMRI video frames are rich source of point clouds. Triangulated brain point clouds are a source
of brain activation area shapes that appear intermittently in different cortical regions during a
rs-fMRI video such as the four videos provided by Mitra et al. (2015). Selected barycenters of
triangles in a triangulated cortical point cloud are connected to form vortexes covering each brain
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activation region with its own distinctive shape. Each vortex in
a triangulated rs-fMRI video frame is a collection of connected
cycles (see, e.g., the lower half of Figure 1) that make it possible to
approximate, measure, track and compare brain activation region
shapes. A vortical view of brain activity first appeared in Freeman
(2009).

Each vertex in a triangulated brain activation region point
cloud is represented by a feature vector containing useful
information such as activation region area and representative
Betti number (Giusti et al., 2015). Traditionally, the more
intuitive geometric forms of Betti numbers are counts of cells
(vertexes, edges, filled triangles), cycle counts or surface hole
counts (Zomorodian, 2001). A particularly useful intuitive form
of geometric Betti number is a count of the number of connected
vortex cycles covering an activation subregion (Peters, 2020).
Less frequently used algebraic Betti numbers (counts of the
number of generators in a free Abelian group; Munkres, 2000)
also provide insight concerning the inner workings of cycles
in triangulated brain activation regions. We first consider the
persistence of geometric numbers (vortex cycle counts) over
sequences of sequences of triangulated rs-FMRI video frames.
Later, in Appendix B, the persistence of algebraic Betti numbers
is also considered to obtain an alternative view of the changing

FIGURE 1 | Betti numbers for a rs-fMRI BOLD signal vortex on a Transversal view for four videos.

character of connected cycles in triangulated rs-FMRI lag threads
in three regions of the brain.

Tracking the appearances of the Betti number of a brain
activation vortex containing a particular number of connected
cycles leads to the construction of a persistence barcode (see
the top half of Figure 1) in which a Betti number appears in
a video frame, disappears afterward and possibly reappears one
or more times in later video frames. 2D (planar) as well as 3D
(volumetric) persistent barcodes provide an easy-to-read means
of tracking intermittent BOLD signals in a sequence of rs-fMRI
video frames.

The origin of topological data analysis and persistent
homology can be traced back to Edelsbrunner et al. (2000,
2001). A common approach is to build a continuous shape
(graphs) on top of data to detect complex topological and
underlying geometric structures (Carlsson, 2009; Chazal and
Michel, 2017). This shape is called a simplicial complex or a
nested family of simplicial complexes and the process of shape
construction is commonly referred to a filtration (Zomorodian,
2001). One of the fundamental tools in computational topology
is persistent homology (Zomorodian and Carlsson, 2005), which
is a powerful tool to compute, study, and efficiently encode
multiscale topological features of nested families of simplicial
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complexes and topological spaces (Edelsbrunner and Harer,
2008).

Earlier studies of brain networks primarily focused on a
graph-theoretic approach where the brain regions and their
connections are encoded as a graph (i.e., a network of nodes
and edges) and cycles (representing complex behaviors). Such
networks were modeled and analyzed with methods such as Q-
modularity (Meunier et al., 2009) or with network measures
such as betweeness centrality (Bullmore and Sports, 2009). Brain
networks with weighted edges where problems of selecting
thresholds for edge weights and dealing with sparse edges can
be found in Achard and Bullmore (2007) and van Wijk et al.
(2010). This has led to application of persistent homology to
the problem of determining multiple thresholds derived from
more than one network. A brain network can be considered as
the 1-skeleton of a simplicial complex, where the 0-dimensional
hole is the connected component, and the 1-dimensional hole
is a cycle (Chung et al., 2019). The number of k-dimensional
holes of a simplicial complex is its k-th Betti number. Persistent
homology-based multiscale hierarchical modeling was proposed
in Lee et al. (2011b), Petri et al. (2014), Giusti et al. (2015),
Sizemore et al. (2018), and Chung et al. (2019) to name a
few. Here, graph filtration is used to build these networks in
a hierarchically manner. Filtration is the process of connecting
edges to form a graph.

Betti numbers computed during this filtration process have
been used for further statistical analysis such as Pearson
correlation to MRI image data (Chung et al., 2015) and various
metrics for similarity and distances assessments (Lee et al.,
2011a; Chung et al., 2019). 0-dimensional holes (β0 or zeroth
Betti numbers) have been computed during the graph filtration
process and a persistent barcode has been constructed for
subsequent statistical analysis (Cassidy et al., 2015; Chung et al.,
2017). However, the cycle concept is extremely important to the
study of behavior diffusion and integration of the brain network.
In persistent homology, cycles are measured using the first or
one-dimensional Betti Number (β1). In Chung et al. (2019), the
one dimensional Betti numbers are used to measure cycle and
the significance of the number of cycles is evaluated using the
Kolmogorov–Smirnov (KS) distance.

For geometric representations of rs-fMRI lag threads, an
incisive form of statistical analysis of the geometry is given in
terms of edge density and Eigen values (Giusti et al., 2015). The
results of this form of geometry-based statistical analysis are
given in Appendix A.

In contrast to earlier approaches, we use computational
geometry to detect lag thread shapes in fMRI video frames
using a geometric Betti number that counts the total number
of connected cycles forming a vortex (nested, usually non-
concentric, connected cycles) derived from the triangulation of
brain activation regions.We build on our previous work in Peters
et al. (2017), Don and Peters (2019), and Peters (2020), to evaluate
real BOLD resting state rs-fMRI videos fromMitra et al. (2015).

Here, the video frames are processed directly to obtain Betti
numbers by triangulating the transversal, sagittal, and coronal
sections of the fRMI video frames and constructing vortexes
through a process of filtration. Rather than constructing graphs

of brain networks and analysing cycles in the network, we analyze
cycles by processing the video frames. The vortexes correspond to
the changing activation areas in the video frames. The number of
vortexes in a frame represents the most relevant areas of change.
Higher Betti number values imply that the change is closer to the
center of the section of the brain. To the best of our knowledge,
this method of detecting cycles in persistent homology is novel
and a preliminary version of this paper appeared in Don A. P.
et al. (2019).

2. MATERIALS AND METHODS

2.1. Theory
The basic approach is to introduce a geometric representation
of brain activation regions in terms of intersecting cycles that
are sequences of path-connected vertexes on the barycenters of
triangles forming vortices (Don and Peters, 2019; Peters, 2020).
Each vortex is a collection of connected cycles called a vortex
nerve. Of particular interest are those nerves that have a maximal
collection of triangles of a common vertex in the triangulation
of a finite, bounded planar region. In our case, the planar
region is a rs-fMRI video frame. A vortex nerve results from the
triangulation of the sections of each rs-fMRI brain video frame.
A centroid (also called a seed point), is used as a vertex in the
triangulation of a video frame. A barycenter on a such a triangle
is in a high light intensity video frame region between the dark
regions, which we refer to as holes.

Definition 1 (Hole). A hole is a collection of contiguous low
intensity voxels. The centroid of a hole is the center of mass
of the hole. In an rs-fMRI video frame, the holes are in
background regions containing dark (low intensity) voxels and
the foreground regions are filled with mainly orange voxels.
Sample centroids of brain activation region holes are given
in Figure 1.

Using Delaunay triangulation (Delaunay, 1934; Yung et al.,
2016), each pair of closest neighboring centroids of holes become
the vertexes of edges of triangles covering brain activation regions
in rs-fMRI videos. Each line segment drawn between closest pairs
of centroids becomes the edge of a triangle in the Delaunay
triangulation of an rs-fMRI video frame. The concept of a hole
is crucial to this work, since edges drawn between barycenters in
the interior of adjacent centroidal triangles reveal paths of high
intensity voxels between brain activation region holes.

Definition 2 (Barycenter of centroidal triangle). Recall that the
median line of a triangle is a line drawn from a vertex
to the midpoint of the opposite side of the triangle. The
barycenter of a centroidal triangle is the point of intersection of
the median lines of the triangle. A sample barycenter is given
in Figure 1.

The barycenters of centroidal triangles covering brain
activation regions are always between holes. Barycenters are
stepping stones in the construction vortex cycles.

Definition 3 (Barycentric cycle). A barycentric cycle is a
sequence of edges drawn between neighboring barycenters of
adjacent centroidal triangles.
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FIGURE 2 | Coronal persistence barcode with Betti numbers as vortex cycle counts in a rs-fMRI video frame (see text for further details).

As a result, connected barycenters model paths for high
intensity voxels recorded in a brain activity video frame.
Barycentric cycles are the basic building blocks in the
construction of local vortexes covering triangulated brain
activation regions.

Definition 4 (Local Vortex (briefly, Vortex)). A local vortex is a
collection of nesting, usually non-concentric barycentric cycles.
The simplest vortex contains a single barycentric cycle (see, for
example, the vortex in Figure 3).

2.2. Betti Numbers on a Triangulated Brain
Activation Region
Betti numbers provide a computational topology perspective
on the structure of brain activation subregions. In our case,
the Betti number β1 tells us either the number of connected
vortex cycles in a vortex on a triangulated brain activation region
(geometric view). Later, in Appendix B, we also introduce and
apply the Betti number βα , which is a count of the number
of generators in a free Abelian group representation of an rs-
fMRI video frame vortex (algebraic view). The focus here is
on the persistent geometric Betti numbers across sequences of
triangulated video frames. Each such Betti number is mapped

to an entry in a persistent barcode (see top half of Figure 1).
This topology of data pictographs is useful in representing the
persistence of the brain activation region shapes found in rs-
fMRI brain video sections. From an intuitive perspective, there
are three types of geometric Betti numbers, namely, β0,β1,β2,
introduced in Zomorodian (2001).

Definition 5 (β0). The Betti numberβ0 is a count of the total
number of elementary cell complexes, which are vertexes, edges
and filled triangles attached to each other in a triangulated region.

Definition 6 (β1). The Betti numberβ1 is a count of the
number cycles.

Each β1 in a persistent barcode (Ghrist, 2008) represents the
number of connected barycentric cycles covering an activation
area of the brain.

Definition 7 (β2). The Betti numberβ2 is a count of the number
of holes. In our case, β2 is a count of the number of contiguous
low intensity voxels in brain activation regions in an rs-
fMRI video.

Definition 8 (C0 vortex cycle). cycle C0 is the
innermost cycle in a vortex. In our case, the sequence of
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FIGURE 3 | Method flow graph.

edges connected between barycenters of adjacent triangles
with a common vertex, collectively called an Alexandroff
nerve (Alexandroff, 1965) forms the cycle C0. Notice that cycle
C0 will always be in the interior of a brain activation region
containing high intensity voxels.

Definition 9 (C1). In a vortex with 2 nested cycles, cycle C1 is
the vortex cycle that has only C0 in its interior. In effect, cycle
C1 is a collection of path-connected vertices on a sequence of
edges surrounding C0. Cycle C1 usually overlaps the boundary
of a high intensity brain activation region in an rs-fMRI
video frame.

Definition 10 (Bridge Segment). A bridge segment is an edge
attached between vertices on a pair of neighboring cycles. Let
cycA, cycB be a pair of neighboring cycles (i.e., there are no cycles
in between cycA and cycB) and let p be a vertex on cycA and q, a
vertex on cycB. The edge pq is a bridge segment. Edge cj between
vertices c and j is a bridge segment and there is no bridge segment
between vertices c and i in Figure 5.

In the main body of this paper, we give barcoded video
results for the more intuitive geometric Betti number counts of
vortex cycles on triangulated brain activation regions. Later, in
Appendix B, we give examples of both geometric and algebraic
forms of Betti numbers. A repetition of the same β1 across a
sequence of consecutive frames tells us that a similar vortex shape
recurs in these frames. The geometric Betti number of a vortex
containing two cycles with k bridge segments attached between
the pair of vortex cycles equals k + 2 (Don and Peters, 2019).

For example, the Betti number β0 of the vortex in the lower
half of Figure 1 equals 12 and β1 = 1, since there are 12 cycle
edges and there is only one cycle in the vortex shown.

2.3. rs-fMRI Lag Threads Having
Descriptive Proximity
A pair of objects are descriptively proximal (near each other),
provided the objects have the same description (Di Concilio
et al., 2018). A feature vector provides a description of an object.
In this work, feature vector (Betti number, area) describes a
subregion of a rs-fMRI brain region. Rather than a purely
theoretical, abstract approach to descriptive proximity spaces,
the focus here is on computational descriptively proximities.
Briefly, computational descriptive proximity includes algorithms
as well as structures such as set intersection, union and
closure and proximity space axioms introduced in Peters (2020).
Descriptive proximites provide mathematical framework useful
in measuring, comparing, and classifying (1) lag structures and
threads across frames in the same video or (2) lag structures and
threads across frames in different rs-fMRI videos. For example,
in terms of (1), (Bt , inner vortex cycle area) = (100, 100
mm2) describes a brain activation subregion in the transversal
brain section in frames 10 and 75 in Figure 7. In terms of (2),
Let Bs,Bt ,Bc be Betti numbers for the sagittal, transversal and
coronal brain regions. The feature vector (Bs,Bt ,Bc) is used
to describe and compare lag threads in frames across different
videos. This is an important advantage that accrues from the
application of computational descriptive proximities.

2.4. Methods
This section briefly introduces the method used to derive vortex
cycles on triangulated video frames (steps 0 through 5) and their
geometric Betti numbers (step 6), which are used to construct
persistent barcode for rs-fMRI videos. The fMRI videos (of 688
subjects) used in this work were obtained from the Harvard-
MGH Brain Genomics Superstruct Project (Buckner et al., 2014).
Each video contains 360 frames that exhibit the propagation of
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BOLD signals in the sagittal, transversal and coronal sections
of the human brain (see, e.g., the middle row of Figure 2). Let
K be a rs-fMRI video frame. The steps to obtain triangulation
vortexes covering the brain activation regions shown in Figure 2

are exhibited in the flow graph in Figure 3.
00 After selecting a video frame, find the centroids (centers of
mass) of the dark background regions. Holes are identified by
binarizing each video frame.

10: Triangulate the centroids of the tiny dark regions inside
the brain activation regions in K. A sample centroidal triangle is
shown in Figure 1.

20: Find the barycenter of every centroidal triangle △ in K.
Each barycenter is a voxel representing a high BOLD signal
situated between centroids.

30: Connect the barycenters where there is the greatest
concentration of centroidal triangles △s with a common vertex.
Recall that the vertex common to a collection of triangles is
an example of an Alexandroff nerve (Alexandroff, 1965) (see,
e.g., the collection of centroidal triangles with a common vertex
covered by the inner vortex cycle in Figure 1). In this work, the
focus is on finding maximal Alexandroff nerves.

40: Construct vortex cycles on the barycenters of centroidal
triangles {△} along the boundary of C0.

50: Repeat steps 20 through 40 until there are nomore vortexes
covering subregions containing nonzero BOLD signals. The end
result is a collection of connected nesting non-concentric cycles
that form a vortex. Once these vortexes are generated, the next
step is to compute the β1 for each vortex that has been found in
each of the triangulated video frames. Notice that there is usually
more than one vortex in video frame.

60: Compute Betti number. Count the number of non-single
edge (main) cycles in a vortex plus the number of signal edge
cycles connected between the main vortex cycles. This process
is repeated for each brain section in every frame containing
sagittal, trasversal and coronal brain sections in each of the
sample rs-fMRI videos.

To construct a Betti number-based persistent barcode, insert
a bar in a pictograph (an easy-to-read visualization of brain
activity instants accumulated in what is known as a homology
barcode Ghrist, 2014), using rs-fMRI video frame number (x-
axis) and its corresponding Betti Number (y-axis) (shown in the
top half of Figure 1).

3. RESULTS

3.1. Part 1. Edge Density and Eigen Value
Statistics
Since the focus of this study of brain activation in rs-fMRI videos
is on the formation of nesting cycles (vortexes) covering the
interior brain activation regions, we consider the edge densities
and eigenvalues that reflect the levels of connectedness of these
activation region cycles.

3.1.1. Edge Density
In this work, edge density quantifies the connectedness in the
vortex representation of a brain activation region in a rs-fMRI
video frame. Specifically, edge density is proportional to the

FIGURE 4 | Edge density of sagittal view.

product of the number of vortex bridge segments between cycles
× the number of cycle vertices. Mathematically, we have

E = number of bridge segments between vortex cycles.

V = number of vortex cycle vertices.

EdgeDensity = 2

[

E

V(V − 1)

]

.

An increase in the number of bridge segments E between vortex
cycles results in higher edge density. This can happen in the
case where there is more than one bridge segment connected
to a vortex cycle. An increase in the number of vortex cycle
vertices V with no change in the number of bridge segments,
leads to a lower edge density. This occurs whenever the number
of dark regions increase in a brain activation region, which leads
to an increase in the number of centroidal triangles. This also
leads to an increase in the number of barycenters. Physically,
each barycenter pinpoints the location of high intensity in a
brain activation region. Each vortex cycle vertex represents a
barycenter on brain activation region triangle.

Frequency of occurrence in the plot in Figure 4, for example,
is the number of times a certain edge density appears in the cycles.
Whenever a certain edge density appears, the plot will show the
frequency of occurrence as 1. If it reappears, the frequency of
occurrence will be 2. So it will increase the said value for the
occurrence by 1, each time it appears.

From the plot for the Sagittal view in Figure 4, it can be seen
that each distribution can be represented using three normal
distributions. Observe that the left-most normal distribution has
a mean µ = 0.04 and a standard deviation σ = 0.014 but it has
a lower edge density compared to the other two (middle, right)
distributions. The middle normal distribution has µ = 0.11
and a σ = 0.03. This distribution has the highest frequency of
occurrence of edges. The right normal distribution has a µ =

0.41 and a σ = 0.1 and has the second highest edge frequency.
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FIGURE 5 | Adjacency matrix representation of cortical vortex Connectedness.

When we consider the cycles that are generated by these edge
density values, we can observe the following. In order to get a
edge density value close to 0.4, there needs to be single cycle with
a lower number of vertices. For example, in the case where there
is a single cycle with three vertices (i.e., a triangle), we have the
edge density of 0.66. This represents the highest value attainable
in vortex cycles. Any single or multiple cycles will have a lower
edge density than 0.66. In other words, higher the number of
cycles and vertices in a cycle; the lower the edge density. Hence,
in Figure 4, it can be observed that the highest frequencies of
occurrence of edges is for edge densities between 0.1 and 0.2. For
further evidence of this, see the plots for transversal and coronal
views given in 9 and 10 reported in Appendix A.

3.1.2. Eigenvalue Spectrum
This section briefly introduces an eigenvalue spectrum
representation of the eigen values derived from the connectivity
relations between cortical vortex cycles. A number λ is an
eigenvalue of a linear transformation A (our adjacency matrix),
provided there is a vector x 6= 0 so that A(x) = λx. The
vector x called an eigenvector. Eigen values are computed
using an adjacency matrix A, which is a n × n square matrix
where n is the number of vertices in a vortex cycle. Here, an
eigenvalue spectrum is defined by an activation matrix view of
the connectedness between vertices in a vortex representation
of brain activation regions in rs-fMRI videos. Each adjacency
matrix represents the connectivity in vortex cycles. To help
visualize the connectivity between vertexes in a vortex, a color-
coding scheme is given. That is, the vertices on each vortex cycle
edge are color-coded as shown in Figure 5. In this color-coding
scheme, sub-matrix (a–f) represents inner cycle vertexes (color-
coded Green �). The Sub-matrix (g–n) represents cycle vertexes
(color-coded Orange �). The other two sub matrices represent
the bridge segment vertexes (color-coded Blue �).

FIGURE 6 | Eigen values for the sagittal view.

A bridge segment between vortex cycles with its ending
vertices on neighboring cycles has its connectivity represented by
a cell containing 1 in the two sub-matrices (color-coded Blue �)
that are not on the main diagonal as illustrated in Figure 5. The
bridge segment cj is represented by 1s in cells (c,j) and (j,c). If a
vortex cycle has an edge between two vertices in locations i and
j the cycle, it is represented symmetrically by 1 in a matrix cell
(i,j) and a corresponding cell (j,i). For example if there is a edge
between vertices 4 and 6 then cells (4, 6) and (6, 4) is 1 in the
corresponding adjacency matrix.

Each eigenvalue plot encapsulates results of the sagittal,
transversal and coronal views of brain activations recorded in
rs-fMRI videos. Each plot represents 12 separate brain section
videos = 3 brain sections × 4 original composite videos (i.e., we
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FIGURE 7 | Frame-Betti number-Area for rs-fMRI BOLD signal vortexes on three brain regions.

have extracted three separate brain section videos from each of
the four original composite videos). The separated brain section
videos made it possible for us to carry out statistical analysis
based on the triangulation of the centroids on holes found in
the brain activation regions of each brain section in the reported
experimental results recorded in the original four videos.

Example 1. In Figure 5, connectivity between vertices on vortex
cycles are color-coded. For instance, the connectivity between
vertexes a and b on the inner cycle in Figure 5 is represented by a
green cell � containing a 1 in (b, a) (row b and column a) and by
a green cell containing a 1 in (a, b) (row a and column b). �

Sample results for the eigenvalue spectrum for the sagittal view
of brain activation regions is recorded in the plot in Figure 6.
Plots of the eigenvalue spectrum for the transversal and coronal
views are given in Appendix A.

3.2. Part 2. Derivation of Persistent Brain
Activation Subregion Signature
Each triangulated BOLD signal propagation subregion has a
signature defined by the vector (frame number, cycle count Betti
number, inner vortex cycle area). This leads to the production
of four triangulated rs-fMRI videos available at Don A. et al.
(2019), that are part of the University of Manitoba Vortex
Signature Project. Vortexes have been derived from each of the
triangulation of the BOLD signal activation regions in each of

the brain sections in the video frames in the four rs-fMRI videos
from Buckner et al. (2014).

A straightforward outcome of the derived vortexes is a rich

source of new means of describing individual BOLD signal

activation regions as well as a bridge to various forms of
descriptions of lag threads. For example, each vortex has a Betti

number (count of the number of connected cycles) and various
cycle areas. Each of the three brain regions in each frame in the

Harvard Brain Genomics rs-fMRI videos has its own vortex and,

consequently, its own Betti number. Typically, each video frame
will have more than one Betti number derived from vortexes on
the multiple brain activation subregions.

In this study, the focus is on the area of the inner cycle of a

BOLD signal subregion vortex. This is the case, since each inner

cycle lies entirely within the interior of an activation subregion.
Hence, an inner cycle area is a reliable approximation of a

brain activation area. In sum, geometric Betti numbers and inner
vortex cycle area help gauge the extent of an activation subregion.
Considered either separately or taken together, a vortex on brain
activation subregion provides the basis for a subregion signature,
i.e., a distinctive characteristic of a brain activation subregion in a
rs-fMRI video frame. For example, (frame number, Betti number)
= (140, 60), (200, 60), (210, 60) provides a signature for the
coronal brain region in frames 140, 200, and 210 in Figure 2.
Betti number 60 is an example of a brain activation subregion
characteristic that persists over a sequence of video frames. The
vector (frame number, Betti number, inner vortex cycle area) =
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FIGURE 8 | 3D persistence barcode for 3 rs-fMRI BOLD signal propagated in brain regions.

(180, 40, 10 mm2) depicts a brain activation subregion in the
sagittal brain region in Figure 7. A repetition of the same Betti
number for the same brain region across multiple video frames
defines a lag thread pattern. For example, Bs = Bt = Bc = 100
for the sagittal, transversal and coronal brain regions defines a lag
thread pattern for multiple frames in Figure 7.

The gaps between the sequences of contiguous bars are
important, since gaps in a particular row of pictograph bars
indicates rs-fMRI video frames that do not have the same level
of brain activity represented by bars in the row. The proximity
of the bars (not necessarily contiguous) in a pictograph row call
attention to BOLD signals that are close to each other, temporally.
Repeated bars in a pictograph row indicate a repeated (persistent)
level of brain activity recorded in rs-fMRI video frames. An
example of a pictograph row containing multiple, contiguous
bars can be seen in row 30 (Betti numbers = 30) in Figure 2.
Contiguous bars in a pictograph row indicate the closeness in
time of the corresponding brain activity.

Examples of pictograph rows containing multiple, non-
contiguous bars can be seen in rows 10 and 60 (Betti numbers
= 10 and 60) in Figure 2. A byproduct of the inspection of
a sequence of contiguous bars (geometric β1 Betti numbers)
in a persistent barcode row can lead to the production of a
reduced rs-fMRI video containing only video frames with either
activation sub-regions with the same Betti number or a new

video containing frames with activation sub-regions, each with
a different β1 (vortex cycle count) Betti number.

3.3. Part 3. Confirmation of Highly
Reproducible Lag Thread Topography
From 3D barcodes in Figure 7 as well as in Figure 8, Betti
number-area patterns can be detected within frames in the same
video. That is, one can find many examples of brain activation
subregion Betti number (and corresponding subregion area in
a lag thread in one video frame) that are reproduced in a lag
thread in a different video frame. In other words, the Betti
number-area combination persists across different frames. Many
examples of this Betti number-area persistence phenomenon can
be detected in the two sample 3D homology barcodes when
compared with similar 3D homology barcodes derived from the
frames in the videos available at the University of Manitoba
Vortex Project at DonA. et al. (2019). These persistent repetitions
in the topography detected in different lag threads confirm the
observation that there are commonalities in signal propagation
within each lag thread (Mitra et al., 2015).

3.4. Summary of Findings
This study of the Betti numbers and inner vortex areas of rs-fMRI
BOLD signal propagation subregions of the brain confirms and
supplements earlier findings given in Mitra et al. (2015). A main
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result of this study of the persistence of brain activation subregion
features confirms the contention that the topography of lag
threads is highly reproducible. Starting with the Betti number
of connected cycles derived from triangulated brain activation
regions found in rs-fMRI videos, it is apparent that the vortexes
on brain activation subregions appear over and over in the lag
threads across different rs-fMRI video frames. In other words, we
find that there are commonalities in BOLD signal propagation
within each lag thread.

The question whether intrinsic brain activity contains
reproducible temporal sequences is revisited. It is confirmed
that a human resting state fMRI (rs-fMRI) contains persistent
(repeatable) highly reproducible lag structure. The answer to
this question is given twofold. This is done first in terms of
Betti numbers that are counts of the number of connected
cycles in vortexes on triangulated brain activation subregions.We
introduce a 2D persistence pictograph (barcode) that exhibits the
appearance, disappearance, and repeated reappearance of Betti
numbers across lag threads in sequences of rs-fMRI video frames.
In addition, the reproducibility question is also answered in terms
of the introduction of a video frame-Betti number-vortex cycle
area combination in 3D persistence barcodes that facilitates a
check on how often these features of lag threads appear during
a rs-fMRI session.

Concluding Remarks
This study considers Betti numbers that are counts of the number
of connected barycentric cycles in vortexes on triangulated brain
activation regions. In terms of the area occupied by a vortex
on a brain activation subregion, we have only considered the
area of the interior of the innermost barycentric cycle of each
vortex. Also of interest and of considerable importance is the
area in the interior of other cycles that includes the inner vortex
cycle. Future work would expand the derivation of persistent
barcodes to include the zeroth as well as the oneth Betti numbers.
In working toward the approximation of the area of brain

activation subregion shapes, the areas in the interior of the other
cycles (summing on the innermost vortex cycle area) would
be considered.
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