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Recently DCNN (Deep Convolutional Neural Network) has been advocated as a

general and promising modeling approach for neural object representation in primate

inferotemporal cortex. In this work, we show that some inherent non-uniqueness

problem exists in the DCNN-based modeling of image object representations. This

non-uniqueness phenomenon reveals to some extent the theoretical limitation of this

general modeling approach, and invites due attention to be taken in practice.
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1. INTRODUCTION

Object recognition is a fundamental task of a biological vision system. It is widely believed that the
primate inferotemporal (IT) cortex is the final neural site for visual object representation. Due to
viewpoint change, illumination variation and other factors, how visual objects are represented in
IT cortex, which manifests sufficient invariance to such identity-orthogonal factors, is still largely
an open issue in neuroscience.

There are many different natural and manmade object categories, and each category in turn
contains various different members. Currently, a number of works in neuroscience advocate the
DCNN (Deep Convolutional Neural Network) as a new framework for modeling vision and brain
information processing (Cadieu et al., 2014; Khaligh and Kriegeskorte , 2014; Kriegeskorte , 2015).
In Yamins et al. (2014), Yamins and DiCarlo (2016), DCNN is regarded as a promising general
modeling approach for understanding sensory cortex, called “the goal-driven approach.”

The basic idea of the goal-driven approach for IT cortex modeling can be summarized as: a
multi-layered DCNN is trained by ONLY optimizing the object categorization performance with a
large set of visual category-labeled objects. Once a high categorization performance is achieved, the
outputs of the penultimate layer neurons of the trained DCNN, which are regarded as the object
representation, can reliably predict the IT neuron spikes for other visual stimuli in rapid object
recognition1. In addition, the outputs of the upstream layer neurons can also predict the V4 neuron
spikes. The goal-driven approach is conceptually eloquent and has been successfully used to model
IT cortex in rapid object recognition and predict category-orthogonal properties (Hong et al.,
2016).

1The goal-driven approach is for modeling IT neuron representation in rapid object vision, which is assumed largely a feed

forward process, hence could be modeled by DCNNs which are also feed forward networks.
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2. DOES THE GOAL-DRIVEN APPROACH
SATISFY THE UNIQUENESS
REQUIREMENT IN MODELING IT
CORTEX?

2.1. Motivation
Although some experimental results have demonstrated the
success of the goal-driven approach in modeling IT cortex
to some extent as mentioned above, the following uniqueness
problem on the fundamental premise of the goal-driven approach
is still unclear: does there exist a unique pattern of activations of
the neurons (units) in the penultimate layer of a DCNN to a given
set of image stimuli by only optimizing the object categorization
performance? This uniqueness problem on object representation
via a DCNN has a great influence on the theoretical foundation
and generality of the goal-driven approach in particular, and the
DCNN as a new framework for vision modeling in general.

In this work, we aim to provide a theoretical analysis on this
problem as well as some supporting experimental results. Note
that our current work is to clarify the non-uniqueness problem
in object representation modeling with DCNNs under the goal-
driven approach, it does not mean DCNNs could account for IT
diverse specifications, as revealed in numerous works (Elston ,
2002, 2007; Jacobs and Scheibel , 2002; Spruston , 2008; Elston
and Fujita , 2014; Luebke , 2017).

In order to analyse this problem more clearly, we firstly
introduce the definition of DCNN layer’s object representation
as used for predicting the neuron responses of primate IT cortex
in the aforementioned goal-driven approach:

Definition 1. For a layer of a DCNN for object recognition, the
activations of the neurons in this layer to an input object image is
defined as its object representation.

Following the convention in the computational neuroscience, the
following representation equivalence is introduced to evaluate
whether the object representations learnt from two DCNNs are
the same or not:

Definition 2. Given a set of object image stimuli, if the two
object representations of two DCNNs on these stimuli can
be related by a linear transformation, they are considered
equivalent, or the same representations. Otherwise, they are
different representations.

In the deep learning community, a recent active research topic
is called “convergent learning” (Li et al., 2016), referring whether
different DCNNs can learn the same representation at the level
of neurons or groups of neurons. A generally reached conclusion
is that different DCNNs with the same network architecture but
trained only with different random initializations, have largely
different representations at the level of neurons or groups of
neurons, although their image categorization performances are
similar. Note that although Li et al.’s work and the goal-driven
approach focus on the representation from different points of
view, the representations in the two works are closely related.
Hence, the results in Li et al. (2016) could also re-highlight the
aforementioned uniqueness problem in object representation via
a DCNN to some extent.

Addressing this uniqueness problem, we show in the
following section that, in theory, by only optimizing the image
categorization accuracy, different DCNNs can give different
object representations though they have exactly the same
categorization accuracy. In other words, the obtained object
representations by DCNNs under the goal-driven approach
could be inherently non-unique, at least in theory.

2.2. Theoretical Analysis and Experimental
Results
Proposition 1. If the “Softmax” function is used as the final
classifier for image categorization in modeling N categories of
objects via a DCNN, and the object category with the largest
probability is chosen as the final categorization, and if x =
(x1, x2, · · · , xN)T ∈ RN is the final output of this DCNN
for an input image object I, f (·) is a univariate non-linear
monotonically increasing function, y , (y1, y2, · · · , yN)T =
F(x) = (f (x1), f (x2), · · · , f (xN))T , then x and y give exactly the
same categorization result.

Proof: For x and y, their corresponding probability vectors by
Softmax are respectively:

Cx =
(

ex1
∑N

i=1 e
xi
,

ex2
∑N

i=1 e
xi
, · · · ,

exN
∑N

i=1 e
xi

)T

(1)

Cy =
(

ey1
∑N

i=1 e
yi
,

ey2
∑N

i=1 e
yi
, · · · ,

eyN
∑N

i=1 e
yi

)T

(2)

Since yi = f (xi) (i = 1, 2, · · · ,N) and f (·) is a monotonically
increasing function, the magnitude order of elements for x and y
does not change. Then themagnitude order of the two probability
vectors Cx and Cy does not change. Since the object category
with the largest probability is chosen as the final categorization,
both the indices of the largest elements in Cx and Cy are the
same, hence the same categorization results are obtained for
x and y. �

Remark 1: Since f (·) is a non-linear function, x and y cannot
be related by a linear transformation. In addition, in the deep
learning community, the Softmax function is commonly used to
convert the output vector of the network into a probability vector,
and the category with the largest probability value is chosen as the
final category.

Remark 2: In theory, f (·) could be different for different
input image I. More generally, even the demand of monotonicity
for f (·) is unnecessary, we need only the index of the largest
value in y is the same to that in x because only the largest
value determines the correct categorization. For the Top-K
categorization accuracy, we need the index set of the K largest
values in y keep the same to that in x, and the rest elements
are not required. Hereinafter, for the notational convenience in
discussion and practicality of implementation, we always assume
f (·) is a univariate non-linear monotonically increasing function.

Proposition 2. As shown in Figure 1, assume that DCNN1 is
a multi-layered network, concatenating a sub-network DCNNP

1
whose output is x, and a fully connected layer with weight matrix
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FIGURE 1 | DCNN1 and DCNN2 give the different object representations x and y for the same input image object I, however their object categorization performances

are exactly the same if y′ = f (x′), where f (·) is an element-wise non-linear monotonically increasing function.

W1 ∈ RN×M and bias b1 ∈ RN×1 ({M,N} are the numbers
of neurons at the penultimate layer and last layer of DCNN1,
respectively, with M > N), with x′ = W1x + b1. And assume
that DCNN2 is a multi-layered network, concatenating a sub-
network DCNNP

2 whose output is y, and a fully connected layer
with weight matrix W2 ∈ RN×M and bias b2 ∈ RN×1, with
y′ = W2y+b2. If y

′ = f (x′) in element-wise mapping where f (·) is
a monotonically increasing function, then the object representation
x under DCNN1 cannot be related by a linear transformation to the
object representation y under DCNN2, or x and y are two different
object representations under the goal-driven approach.

Proof: Since y′ = f (x′) in element-wise mapping where f (·)
is a monotonically increasing function, according to Proposition
1, DCNN1 and DCNN2 have the identical image object
categorization performance.

Since x′ = W1x + b1, then x = (WT
1 W1)

+WT
1 (x

′ − b1),
where A+ denotes the pseudo-inverse of matrix A. Similarly,
y = (WT

2 W2)
+WT

2 (y
′ − b2). By Proposition 1, x′ and y′ is related

by a non-linear function, then x and y cannot be related by a
linear transformation either. In other words, x and y are two
different object representations under the goal-driven approach.

�
Remark 3: Since {W1,W2} ∈ RN×M and M > N in

Proposition 2, the pseudo-inverse operator is used in the above
proof. Here are a few words on the pseudo-inverse: Since M >

N, which is the usual case in most existing DCNNs for object
categorization (Krizhevsky et al., 2012; Simonyan and Zisserman,
2014; Szegedy et al., 2015), the inverse (WT

i Wi)
+(i = 1, 2) is not

unique, but the equalities in x = (WT
1 W1)

+WT
1 (x

′ − b1) and
y = (WT

2 W2)
+WT

2 (y
′ − b2) can be strictly met.

Proposition 2 indicates that given DCNN1 with output
x′, if there exists another multi-layered network DCNN2 to
output y′ = f (x′), their representations x and y would be
different but with identical categorization performance. This
means that the aforementioned non-uniqueness problem in

object representation modeling under the goal-driven approach
would arise regardless of how many training images are used,
and how many exemplar images in each category are included.
In other words, the non-uniqueness problem is an inherent
problem in DCNN modeling under the goal-driven approach,
and it cannot be completely removed by usingmore training data,
at least in theory.

In the above, an implicitly assumption is that given a DCNN1

with the output x′i, there always exists a DCNN2 with the output
y′i = f (x′i). Does such a DCNN2 really always exist? This issue can
be separately addressed for the following two cases. The first one
is that DCNN1 and DCNN2 could be of different architectures,
and the second one is that they are of the same architecture, but
merely initialized differently during training.

2.2.1. The Different Architecture Case

Proposition 3. There always exists a multi-layered network to
map Ii to yi for the given input-output pairs {(Ii ↔ yi), i =
1, 2, · · · , n} in Proposition 2.

Proof: As shown in Proposition 2 and Figure 1, since
DCNN1 exists, it maps I to x. Denote this mapping function
as x = S1(I) = DCNNP

1 (I). Since x′ = W1x + b1, y
′ =

F(x′) = ((f (x′1), f (x
′
2), · · · , f (x′n)), y′ = W2y + b2, and y =

(WT
2 W2)

+WT
2 (y

′ − b2), we have:

y = (WT
2 W2)

+WT
2 (y

′ − b2)

= (WT
2 W2)

+WT
2 (F(W1S1(I)+ b1)− b2) (3)

This is just the required mapping function. According to the
Universal Approximation Theorem in Csáji (2001), it could be
straightforwardly inferred that there always exists a DCNN with
an arbitrary number k + 1(k > 1) of hidden layers, denoted as
DCNN2, whose sub-network DCNNP

2 with k hidden layers is able
to approximate this function. �

Proposition 3 indicates that given a DCNN1, there always
exists a DCNN2 whose architecture may be different from
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DCNN1, so that the object representations of the two DCNNs
are different but with the same categorization performance. A
training procedure is described in the Appendix, to show how
to train such a pair of DCNN1 and DCNN2.

Remark 4: In the proof, the only requirement for DCNN2

is that it should have sufficient capacity to represent the input
object set, but it does not necessarily have a similar network
architecture to DCNN1. Note that the sufficient representational
capacity is an implicit necessary requirement for any DCNN-
based applications.

Remark 5: In the proof, the number of input images is
assumed to be unknown. However, for the finite-input case,
Theorem 1 in Tian (2017) guarantees that there exists a two-
layered neural network with ReLU activation and (2n + d)
weights, which could represent any mapping function from
input to output on sample of size n in d dimensions. Of
course, such a constructed network could be of a memorized
neural network, i.e., it can ensure the given finite inputs to be
mapped to the required outputs, but it cannot guarantee that
the constructed network could possess sufficient generalization
ability for new samples.

2.2.2. The Same Architecture Case

When DCNN1 and DCNN2 are obtained with the same
network architecture but only trained under different random
initializations, clearly a theoretical proof is impossible. However,
based on the reported results in the “convergent learning”
literatures as well as our simulated experimental results, it seems
they still largely have non-equivalent object representations
although they have similar categorization performances.

(1) Non-uniqueness results from “convergent learning”

literatures

Using AlexNet (Krizhevsky et al., 2012) as a benchmark, Li
et al. (2016) showed that by keeping the architecture unchanged
but only trained with different random initializations, the
obtained 4DCNNs have similar categorization performances, but
their object representations are largely different in terms of one-
to-one, one-to-many, and many-to-many linear representation
mapping. Note that themany-to-manymapping in Li et al. (2016)
is closely related to the equivalence representation in Definition
2. Hence, the four representations are largely non-equivalent and
this non-equivalence becomes more prevalent with increasing
convolutional layers.

By introducing the concepts of “ǫ-simple match set” and
“ǫ-maximum match set,” Wang et al. (2018) showed that for
the 2 representative DCNNs, VGG (Simonyan and Zisserman,
2014), and ResNet (He et al., 2016), the size of maximum match
set between the activation vectors of individual neurons at the
same layer of the two DCNNs, which are also obtained with
only different initializations as did in Li et al. (2016), is tiny
compared with the number of the neurons at that layer. It
was further found that only the outputs of neurons in the ǫ-
maximum match set can be approximated within ǫ-error bound
by a linear transformation, which indicates that for majority of
the neurons at the same layer, their outputs cannot be reasonably
approximated by a linear transformation, or the corresponding
object representations are largely not equivalent.

(2) Non-uniqueness results from our experiments

Definition 3. If two DCNNs, DCNN1 and DCNN2, have similar
image categorization performances with the same network
architecture but different parameter configurations, they are
called the similar performing pair of DCNNs.

Generally speaking, our results further confirm the non-
uniqueness phenomenon of object representation under the
goal-driven approach. We systematically investigated the
representation differences between a similar performing pair
of DCNNs on the two public object image datasets, CIFAR-10
that contains 60,000 images belonging to 10 categories of objects
and CIFAR-100 that contains 60,000 images belonging to 100
categories of objects (Krizhevsky , 2009). In our experiments,
5,000 images per category in CIFAR-10 (also 500 images per
category in CIFAR-100) were randomly selected for network
training, and the rest for testing. Six network architectures with
different configurations (denoted as {D1, D2, D3, D4, D5, D6})
were employed for evaluations, where {D1, D2, D3, D5, D6}were
for CIFAR-10 and {D3, D4, D6} were for CIFAR-100 as shown
in Table 1.

The traditionally used measure, “explained variance” (EV),
was employed to access the degree of linearity between the learnt
object representations from a similar performing pair of DCNNs,
and we trained similar performing pairs of DCNNs under the
following two schemes:

• Scheme-1: Both DCNN1 and DCNN2 were trained with
random initializations.

• Scheme-2: Similar to the training procedure in the DCNN1

was firstly trained with the Softmax loss, and then DCNN2 was
trained by combining the Softmax loss on the neuron outputs
of the last layer and the Euclidean loss on the differences
between the neuron outputs of the penultimate layer in
DCNN2 and the corresponding terms calculated according to
Equation (3) (In our experiments, f (x) = |x|

√
x).

Here are some main results from our experiments:
(i) Explained variance on standard data

The results using the training Scheme-1 are shown in
Figure 2. Figures 2A,C show the categorization accuracies of
similar performing pairs of DCNNs under different network
architectures with two random initializations on CIFAR-10 and
CIFAR-100, respectively. The blue bars of Figures 2B,D show
the corresponding mean EVs on CIFAR-10 and CIFAR-100,
respectively. As seen from Figures 2B,D, the mean EVs by {D1,
D2, D3, D5, D6} are around 63.4–87.5% on CIFAR-10, while the
mean EVs by {D3, D4, D6} are around 53.6–65.9% on CIFAR-
100. iIn addition, the mean EV of the network D1 under the
training Scheme-2 is 51.2% on CIFAR-10.

Two points are revealed from these results:

• Given a similar performing pair of DCNNs, although the
representations of the two DCNNs cannot in theory be related
by a linear transformation, the explained variance between the
two representations is relatively large.

• A similar performing pair of DCNNs with a deeper
architecture, or having more layers, will generally have a
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TABLE 1 | Network configurations (shown in columns).

ConvNet configuration

D1 D2 D3 D4 D5 D6

5 Layers 8 Layers 8 Layers 8 Layers 15 Layers 9 Layers

Input (32*32 RGB Image)

Conv5-32 Conv3-bn-32 Conv3-bn-64 Conv3-bn-128 Conv3-bn-32 Conv3-bn-64

Conv3-bn-32 Conv3-bn-64 Conv3-bn-128 Conv3-bn-32

Conv3-bn-32

Conv3-bn-32

Max-pool

Conv5-32 Conv3-bn-64 Conv3-bn-128 Conv3-bn-256 Conv3-bn-64 Conv3-bn-128

Conv3-bn-64 Conv3-bn-128 Conv3-bn-256 Conv3-bn-64

Conv3-bn-64

Conv3-bn-64

Max-pool

Conv5-64 Conv3-bn-128 Conv3-bn-256 Conv3-bn-512 Conv3-bn-128 Conv3-bn-256

Conv3-bn-128 Conv3-bn-256 Conv3-bn-512 Conv3-bn-128 Conv3-bn-256

Conv3-bn-128

Conv3-bn-128

Max-pool

Fc-64 Conv3-bn-256 Conv3-bn-512 Conv3-bn-1024 Conv3-bn-256 Conv3-bn-512

Conv3-bn-256 Conv3-bn-512

Max-pool

Conv3-bn-512

Conv3-bn-512

Max-pool

Fc-10 Fc-10 Fc-10(100) Fc-100 Fc-10 Fc-10(100)

The convolutional layer parameters are denoted as “Conv〈receptive field size〉-bn-〈number of channels〉.” The Fully connected layer parameters are denoted as “Fc-〈number of units〉”.

larger explained variance between the two representations.
The underlying reason seems that since a DCNNwith a deeper
architecture will generally have a larger representational
capacity and since a fixed task has a fixed representation
demand, a DCNN with a larger capacity will give a more
linear representation.

In addition, for a similar performing pair, although their
categorization performances are similar, it does not mean that
the two DCNNs have the identical categorization label for
each input sample, either correct or wrong. We have manually
checked the categorization results for CIFAR-10 and CIFAR-
100. The orange bars of Figures 2B,D show the computed mean
EVs for only those inputs correctly categorized. As seen from
Figure 2, the discrepancy of the explained variances between the
representations of only the correctly categorized inputs and those
of the whole inputs is insignificant and negligible in most cases,
and it is perhaps due to the already high categorization rate of
the two DCNNs such that the incorrectly categorized inputs only
take a small fraction of a relatively large test set.

(ii) Explained variance on noisy data

In Szegedy et al. (2014), it is reported that DCNNs are sometimes
sensitive to adversarial images, that is, images slightly corrupted
with random noise, which do not pose any significant problem

for human perception, but dramatically alter the categorization

performance of DCNNs. Here, we assessed the noise effects on
the representation equivalence on CIFAR-10. The input images

are normalized to the range [0, 1], and Gaussian noise with mean
0 and standard variance σ = {0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1}
are added into these images, respectively. Figure 3A shows the

corresponding categorization accuracies of similar performing

pairs of DCNNs under different architectures, while Figure 3B

shows the corresponding mean EVs. We find that even under
the noise level σ = 0.1, the explained variance does not change

much, although the categorization accuracy decreases notably.

(iii) Variations of explained variance by changing

stimuli size

In the neuroscience, the number of stimuli could not be too

large. However, for image categorization by DCNNs, the size
of the test set could be very large. Does the size of stimuli set

play a role on the explained variance? To address this issue,

we assessed the explained variance as the dataset size increases
by resampling subsets from the original test set of images in

CIFAR-10. Here, image subset sizes of [1000, 2000, · · · , 10000]
are evaluated. Figures 4A,B show the results on the resampled
subsets from the whole set of test data and the set of only those
images which are correctly categorized, respectively. Our results
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FIGURE 2 | (A) Categorization accuracies of {D1, D2, D3, D5, D6} with two random initializations on CIFAR-10 (Net1 and Net2 indicate a same network with two

initializations, similarly hereinafter). (B) Mean EVs on CIFAR-10 for all the inputs (blue bars)/only the correctly categorized inputs (orange bars). (C) Categorization

accuracies of {D3, D4, D6} with two initializations on CIFAR-100. (D) Mean EVs on CIFAR-100 for all the inputs (blue bars)/only the correctly categorized inputs

(orange bars).

FIGURE 3 | Categorization accuracies and mean EVs under different levels of noise: (A) Categorization accuracies of similar performing pairs of DCNNs. (B) Mean

EVs of similar performing pairs of DCNNs.

show that if the size of the stimuli set reaches a modestly large
number (around 3000), the explained variance stabilized. That is
to say, we do not need a too large number of stimuli for reliably

estimating explained variance. In other words, stimuli in the
order of thousands could already reveal the essence, and a further
increase of stimuli could not alter much the estimation.
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FIGURE 4 | Mean EVs with different image samples: (A) Samples are randomly selected from the whole test image set. (B) Samples are randomly selected from the

set of only those correctly categorized images.

(iv) Explained variance vs. neuron selectivity

Clearly, some DCNN neurons are more selective than others
(Dong et al., 2017, 2018). Using the kurtosis (Lehky et al.,
2011) of the neuron’s response distribution to image stimuli,
we investigated whether neuron selectivity has some correlation
with the explained variance.We chose top {10%, 20%, · · · , 100%}
most selective neurons from each DCNN in a similar performing
pair, respectively, then computed the explained variance between
the two chosen subsets, and the results are shown in Figure 5.
As seen from Figure 5, with the increase of the percentage of
selective neurons, the explained variance increases accordingly.
This indicates that for the object representations of a similar
performing pair of DCNNs, neuron selectivity is also an
influential factor on their explained variance. The explained
variance between the subsets of more selective neurons is smaller,
and this result seems to be in concert with the conclusion in
Morcos et al. (2018) where it is shown that neuron selectivity does
not imply the importance in object generalization ability.

(v) A good representation does not necessarily needs IT-like

In the literature (Khaligh and Kriegeskorte , 2014), it is shown
that if an object representation is IT-like, it can give a good object
recognition performance. This work shows that the inverse is
not necessarily true, at least theoretically speaking. That is, as
shown in the above experiments and discussions, many different
representations can give the same or quite similar recognition
results with/without noise.
Remark 6: In this work, we assume the final classifier is
a Softmax classifier. For other linear classifiers, the general
concluding remark of non-equivalence can be similarly derived.
Of course, if the used classifier is a non-linear one, or the output
of the penultimate layer is further processed by a non-linear
operator before inputting it to a linear classifier, as done in
Chang Tsao (2017), where a 3-order polynomial is used as a
preprocessing step for the final classification, our results will no
longer hold. But as shown in Majaj et al. (2015), monkey IT
neuron responses can be reliably decoded by a linear classifier,
we thought using Softmax as the final classifier for DCNN-based

FIGURE 5 | Mean EVs with different percentages of selective neurons.

IT cortex modeling could not constitute a major problem for
our results.

3. CONCLUSION

Here, we would say that we are not against using DCNNs to
model sensory cortex. In fact, its potential and usefulness have
been demonstrated in Yamins et al. (2014) and Yamins and
DiCarlo (2016). Here, we only provide a theoretical reminder
on the possible non-uniqueness phenomenon of the learnt object
representations by DCNNs, in particular, by the goal-driven
approach proposed in Yamins and DiCarlo (2016). As shown
in the convergent-learning literatures, such a non-uniqueness
phenomenon is prevalent in deep learning, hence when DCNNs
are used for modeling sensory cortex as a general framework,
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people should be aware of this potential and inherent non-
uniqueness problem, and appropriate network architectures in
DCNN learning should be carefully considered.
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APPENDIX

Procedure to train DCNN1 and DCNN2:

Input: A set of n image objects: D = {Ii, i = 1, 2, · · · , n} with
known categorization labels.

Output: DCNN1 and DCNN2 whose object
representations are different but with the same (or similar)
categorization performance;

1 Using D = {Ii, i = 1, 2, · · · , n} to train a DCNN by optimizing
the categorization performance. This training can be done
similarly as reported in numerous image categorization
literatures. Denote the trained DCNN as DCNN1. The output
of the penultimate layer in DCNN1 for D is denoted as X =
{xi, i = 1, 2, · · · , n}, xi is the output for input image Ii. Denote
the output of the final layer in DCNN1 for D as: X′ = {xi′, i =
1, 2, · · · , n}, the weighting matrix at the final layer in DCNN1

isW1 and the bias vector is b1, that is xi
′ = W1xi + b1;

2 Choose a non-linear monotonically increasing function f (·),
and compute Y ′ = {yi′, i = 1, 2, · · · , n}, where y′i = f (xi

′) in
element-wise mapping;

3 Choose a weighting matrix W2 for the second DCNN,
sayW2 = W1;

4 Compute Y = {yi, i = 1, 2, · · · , n} by yi =
(WT

2 W2)
+WT

2 (yi
′ − b2);

5 Using training pair {(Ii ↔ yi), i = 1, 2, · · · , n} to train the
second DCNN to minimize the Euclidean loss between the
DCNN’s output ỹi and yi.

6 The trained DCNN in step (5) is our required DCNN2. The

object representation xi of DCNN1 and yi of DCNN2 are
different representations by Definition 2, because for the same

object Ii, xi and yi can give the same categorization results in

theory without noise, or similar results with noise in practice,
but they cannot be transformed by a linear transformation as

shown in Proposition 2.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 May 2020 | Volume 14 | Article 35

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Non-uniqueness Phenomenon of Object Representation in Modeling IT Cortex by Deep Convolutional Neural Network (DCNN)
	1. Introduction
	2. Does the Goal-Driven Approach Satisfy the Uniqueness Requirement in Modeling IT Cortex?
	2.1. Motivation
	2.2. Theoretical Analysis and Experimental Results
	2.2.1. The Different Architecture Case
	2.2.2. The Same Architecture Case


	3. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix


