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In computational neuroscience, spiking neurons are often analyzed as computing

devices that register bits of information, with each action potential carrying at most

one bit of Shannon entropy. Here, I question this interpretation by using Landauer’s

principle to estimate an upper limit for the quantity of thermodynamic information that

can be processed within a single action potential in a typical mammalian neuron. A

straightforward calculation shows that an action potential in a typical mammalian cortical

pyramidal cell can process up to approximately 3.4 · 1011 bits of thermodynamic

information, or about 4.9 · 1011 bits of Shannon entropy. This result suggests that an

action potential can, in principle, carry much more than a single bit of Shannon entropy.
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1. INTRODUCTION

“The fundamental constraint on brain design emerges from a law of physics. This law governs the costs

of capturing, sending, and storing information. This law, embodied in a family of equations developed by

Claude Shannon, applies equally to a telephone line and a neural cable, equally to a silicon circuit and a

neural circuit.” – P. Sterling and S. Laughlin (Sterling and Laughlin, 2015)

Inmany areas of computational neuroscience, neurons are often analyzed as binary electrochemical
switches (DeWeese et al., 2003; Victor, 2006; Jensen et al., 2013; Mayfield, 2013; Sterling and
Laughlin, 2015; Gupta and Bahmer, 2019). At this level of abstraction, a spiking neuron can be
treated as a memory system with two stable positions. The neuron may be firing, in which case
its state is typically labeled as a 1, or the neuron may be resting, in which case its state is typically
labeled as a 0. Since the probability that a neuron will fire an action potential is influenced by
many different unknown factors (such as the neuron’s temperature, its firing threshold, its degree
of connectivity with presynaptic inputs, and so forth), the distinction between a firing state and a
resting state can be studied as a binary random variable in Shannon’s theory of communication.
Thus, it is often implicitly assumed that a single action potential carries a Shannon entropy of

H = p log2

(

1

p

)

+ (1− p) log2

(

1

1− p

)

(1)

where H is the number of bits of Shannon entropy in an action potential, and p is the action
potential’s initial probability. At a maximum, H = 1 bit.

Numerous hypotheses, models, and theories use the above equation for the Shannon entropy of a
binary random variable as a starting point for more sophisticated analyses of neuronal information
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content (Borst and Theunissen, 1999; Arcas et al., 2003; Victor,
2006; Sharpee and Bialek, 2007; Jensen et al., 2013; Jung et al.,
2014; Sengupta et al., 2014). For example, the popular “direct
method” for calculating the information content of a spike train
begins by dividing its total duration into a number of evenly
spaced time bins. The presence or absence of an action potential
within each time bin is then represented as a 1 or 0 (Victor,
2006). In the equation above, spike probability then becomes the
product of recorded firing rate r and time bin size 1t, so that p=
r1t (Rieke et al., 1999; Arcas et al., 2003; Sterling and Laughlin,
2015). Although the quantity of information carried by the spike
train in this method depends on the chosen time bin size, this
parameter is often chosen to allow each bin to carry at most one
spike (Victor, 2006). Since this method studies the presence or
absence of an action potential within each bin as a binary variable,
each individual spike usually contributes on the order of one bit
of information to the structure of a spike train.

A second method for studying the information in neuronal
signals, which is also based on Shannon’s measure of entropy, is
to quantify the mutual information in the correlation between
a neuron’s stimulus probability and its response probability
(London et al., 2002; Victor, 2006; Jensen et al., 2013; Pregowska
et al., 2015; Azarfar et al., 2018). Many variations of this
method exist, and there are numerous ways to measure the
degree of correlation between neuronal stimulus and response.
Nevertheless, as standard measures of mutual information are
maximized at one bit of Shannon entropy (Timme and Lapish,
2018), this method also generally carries the implicit assumption
that each individual action potential within a spike train carries
on the order of one bit of information about the stimulus with
which it is correlated. Many other methods beyond the two
described here can be used to quantify the information content of
action potentials and spike trains. These include methods based
on measures such as informational complexity, information
transmission rate, Bayesian information, transfer entropy, and
maximum entropy production (Victor, 2006; Chen, 2013; Li and
Li, 2013; Crutchfield et al., 2015; Timme and Lapish, 2018).Many,
though certainly not all, of these analyses are subject to the same
essential criticism, as they often involve characterizing a spike
train as a sequence of binary random variables.

This common assumption that an action potential can carry
at most one bit of Shannon entropy about the structure of a spike
train by virtue of being a binary random variable is certainly
useful in many contexts. For this reason, the goal of this paper
is not to argue that this assumption is necessarily erroneous or
unjustified. Rather, I hope to explain why this interpretation of
the action potential as a simple 1 or 0 may be misleading, at least
from the perspective of fundamental physics. The next section
discusses how the physical information content of an action
potential is limited at a deeper level by the laws of physics.

2. WHAT IS INFORMATION?

“It from bit. Otherwise put, every it — every particle, every field of

force, even the spacetime continuum itself — derives its function,

its meaning, its very existence entirely — even if in some contexts

indirectly — from the apparatus-elicited answers to yes or no

questions, binary choices, bits.” – J. Wheeler (Wheeler, 1990)

As a prelude to the calculation that follows, it is worth taking
a step back to elaborate on some of the physical meanings
of the word information. According to an influential paradigm
in contemporary theoretical physics, the bit of information is
the ultimate irreducible building block of the physical world
(Wheeler, 1990; Bekenstein, 2003; Brukner and Zeilinger, 2005;
Chiribella et al., 2012; Lloyd, 2013; Davies and Gregersen, 2014;
Rovelli, 2015; Vedral, 2018; Glattfelder, 2019; Smolin, 2020a).
From this perspective, records of distinguishable events and
interactions are even more fundamental than such entities as
particles, fields, and forces. A bit of information, then, can be
understood conceptually as any distinction able to be recorded
about the outcome of an event with two mutually exclusive
possibilities. The spin of an electron, the energy level of a
two-level atom, and the linear polarization of a photon are all
examples of bits of potential physical information (Schumacher
and Westmoreland, 2010).

Given that an action potential is a collection of a large number
of microscopic events involving systems such as electrons, ions,
atoms, and molecules, it seems challenging to reconcile the claim
that an action potential can hold at most one bit of information
with modern information physics. While it may be convenient to
study an action potential as if it were a simple binary random
variable abstractly labeled as a 1 or 0, let us remember the
words of Landauer (1996a). As he wrote, “Information is not
a disembodied abstract entity; it is always tied to a physical
representation. It is represented by engraving on a stone tablet,
a spin, a charge, a hole in a punched card, a mark on paper, or
some other equivalent. This ties the handling of information to
all the possibilities and restrictions of our real physical word, its
laws of physics and its storehouse of available parts.” In other
words, when attempting to quantify information in physical
systems, we must be mindful of the fact that bits of physical
information correspond to real degrees of freedom. From a
pancomputationalist perspective, the bits of thermodynamic
information that are processed by an action potential can be
identified as any physical distinctions that are acquired, changed,
or lost by the neuron and its information-storing subsystems over
the duration of the action potential.

Identifying any recorded distinctions in a spiking neuron
as potential bits of information introduces the question of
whether these bits evolve reversibly or irreversibly during
an action potential signaling cycle. Although reversible
(information-conserving) computation by neurons and
their subsystems is theoretically possible, much evidence
indicates that action potentials perform computations that are
irreversible (information-erasing) with respect to the cell and
its information-storing subsystems. As only one justification
for this assertion, consider that information-processing systems
which evolve according to fully reversible dynamics usually must
be isolated from the environment and kept at low temperatures
(Audretsch, 2008; Schumacher and Westmoreland, 2010;
Schlosshauer, 2014). Neurons and their basic components,
however, are warm, open, and noisy systems that interact

Frontiers in Computational Neuroscience | www.frontiersin.org 2 May 2020 | Volume 14 | Article 37

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Street Action Potential Information Content

heavily with their environments. A second way to arrive at the
conclusion that action potentials are likely to process information
irreversibly is to consider that reversible computation requires
no energy expenditure (Landauer, 1996b; Bennett, 2003). Action
potentials, however, require large amounts of energy (Attwell and
Laughlin, 2001). As a third perspective, the brain is a dissipative
structure (Kondepudi et al., 2017) in the sense that it maintains
organization by transforming relative information into relative
entropy through the process of erasure (Aur and Jog, 2007; Perez
Velazquez et al., 2019).

If we hope to quantify the information content of an action
potential, we must take these factors into account in order to be
consistent with the physics of computation. Even though models
that ignore the many microscopic degrees of freedom involved in
the transmission of an action potential have led to great advances
in our understanding of the brain, they may rely on physically
problematic assumptions.

3. LANDAUER’S PRINCIPLE

“Thermodynamic entropy and Shannon entropy are conceptually

equivalent: the number of arrangements that are counted by

Boltzmann entropy reflects the amount of Shannon information

one would need to implement any particular arrangement. [...]

When the two entropies are calculated for the same degrees of

freedom, they are equal.” – J. Bekenstein (Bekenstein, 2003).

By illuminating surprising connections between information
theory and thermodynamics, the information paradigm in
physics has reinvigorated the study of heat. An excellent
example of one such connection can be found in the similarity
between equations at the foundation of each field. Consider
Shannon’s equation for the entropy contained within a set of
discrete random variables (Shannon, 1948), which was originally
developed to quantify the amount of surprisal in the outcome of
one or more probabilistic events:

H = K

N
∑

i= 1

pi log2

(

1

pi

)

(2)

where H is Shannon entropy, K is a positive constant, pi is the
probability of the ith possible outcome, and N is the number of
mutually exclusive alternative outcomes.

It was only after a conversation with the physicist John von
Neumann that Shannon chose to name this quantity “entropy,”
after its resemblance to an equation introduced by Boltzmann
and Gibbs nearly eight decades earlier (Petz, 2001). Long before
the introduction of Shannon’s information theory, the equation
below had been developed as a way to quantify the amount
of information that a macroscopic observer lacks about the
microscopic configurations of a collection of particles:

S = kB

N
∑

i= 1

pi ln

(

1

pi

)

(3)

where S is thermodynamic entropy, kB is Boltzmann’s constant,
pi is the probability of the i

th microscopic configuration, ln is the

natural logarithm, and N is the number of potential microscopic
configurations that may underlie a macroscopic observation.

Ultimately, these and other overlapping themes between
information theory and thermodynamics led Szilard, Landauer,
Brillouin and others to what is now known as Landauer’s
principle, a form of information-energy equivalence that applies
to any physical system processing information irreversibly
(Bennett, 2003; Parrondo et al., 2015; Bormashenko, 2019a;
Ribezzi-Crivellari and Ritort, 2019). This principle states
that, when a memory system generates entropy by erasing
information, the energy of the environment increases by at least:

1Eenv ≥ kBT1Ssys (4)

where 1Eenv is energy dissipated into the environment,
kB is Boltzmann’s constant, T is absolute temperature, and
1Ssys is thermodynamic entropy generated (equivalent to the
information that has been erased from the memory system).
Here, kB = 1.38064852 · 10−23 J/K. Since thermodynamic
entropy is hidden information (Maruyama et al., 2009),
Landauer’s principle can also be written as

1Eenv ≥ −kBT1Isys (5)

where 1Ssys = –1Isys, since a memory system’s loss of
thermodynamic information is equivalent to the generation
of thermodynamic entropy. From these considerations, it can
be shown that there exists a lower limit (Landauer, 1996b,
1999; Ribezzi-Crivellari and Ritort, 2019) on the amount of
energy that is released when a physical system fully clears
distinctions from its memory. In the case of a spiking neuron,
for example, distinctions used to store information could include
the configurations of proteins such as enzymes and ion channels,
the locations of charged particles relative to a membrane, or the
energy states of various molecules involved in action potential
signaling. In any case, the quantity of energy released when a
set of distinctions is erased is proportional to the quantity of
thermodynamic information that they stored:

1Eenv ≥ N kBT

[

p ln

(

1

p

)

+ (1− p) ln

(

1

1− p

)]

(6)

where p is the probability of the first of two mutually exclusive
alternative physical states that the memory system used to store
information, and N is the number of independent physical
memories that have been cleared. When a system has acquired
the maximal thermodynamic information available in a set of
independent binary random variables by recording the outcome
of N pairs of equally probable events, it can be seen that the
above term for minimum energy released becomes N kBT ln2
joules. Therefore, to find an upper limit on the total number
of bits of information that a system can process irreversibly by
clearing from its physical memory devices, we will first make
two assumptions to describe this hypothetical extreme case. First,
we assume that the system in question records new information
as efficiently as possible, so that only kBT ln2 joules of energy
is dissipated per bit of information overwritten. Second, we
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suppose that the information-processing system is noise-free, so
that the final state of each of its memories carries zero entropy
relative to the system. We can now find an upper limit on
information erasure by dividing total energy expenditure 1Eenv
by the minimal energy cost of removing one bit (Bormashenko,
2019a). In accordance with Landauer’s principle, a system can
process at most

N ≤
1Eenv

kBT ln2
(7)

bits of thermodynamic information, where N is a dimensionless
number. Several features of this bound are worth noting. First,
this bound holds even in systems using non-binary degrees of
freedom to record information (Bormashenko, 2019b). Second,
like Landauer’s principle itself (Lloyd, 2000), this bound can also
be read as stating that a memory device cannot be refreshed
if it is not supplied with at least kBT ln2 joules of free energy
per bit intended to be overwritten (Lloyd, 2000). Third, if the
information stored by each relevant degree of freedom in a
system is calculated to be much smaller than ln2 bits, then
the term on the right side of the inequality above can take
arbitrarily large values. When this is the case, the bound becomes
less meaningful or only approximate, as the bound itself will
not be bounded above. By imposing fundamental limits on
energy and information dissipation in physical memories, these
equations and inequalities provide convenient ways to study the
thermodynamics of information processing in the brain (Collell
and Fauquet, 2015; Street, 2016). The next section provides a
realistic estimate for the limit above as applied to action potentials
in typical neurons in mammalian brains.

4. THERMODYNAMIC INFORMATION IN

AN ACTION POTENTIAL

According to Landauer’s principle, the process of resetting a
memory back to its initial state is the key step of irreversible
computation that limits information flow through a system (Lent
et al., 2018). If we take the view that a neuron is a memory
device processing information irreversibly, this step of the cycle
of neuronal computation can arguably be identified as the process
of re-establishing a resting potential after an action potential
has been sent. In other words, if each neuron is a physical
memory, the energy used to restore membrane potential is the
energy required to reset the neuron to its initial configuration.
Further, out of all of the possible configurations that a neuron
receiving synaptic inputs may explore in its configuration space,
the number of resting and inactive configurations is much larger
than the number of actively firing configurations. Therefore, an
actively spiking neuron that is found in the relatively improbable
state of firing an action potential carries a lower thermodynamic
entropy than its initial resting configuration. Taken together,
these two observations predict that a neuron returning to its
higher-entropy initial state after firing an action potential or spike
train must lose information by dissipating energy.

This energy expenditure in neurons is required by the
laws of thermodynamics. Just as a Maxwell’s demon can store

useful energy by recording distinctions about the positions and
velocities of particles in a box with a trapdoor separating two
compartments, a neuron can store useful energy by recording
distinctions about the physical states of ions on either side of
its trapdoor-like semipermeable membrane (Aur and Jog, 2007;
Sengupta et al., 2013; Davies, 2019). For this reason, in order
not to become a perpetual motion machine that could use
information to acquire infinite energy, a neuron must expend
energy by re-establishing membrane potentials after an action
potential has been sent. This process overwrites many previous
distinctions carried by the neuron in such a way that forces
the neuron to lose information, so it is thermodynamically
irreversible. It is in this sense that thermodynamic information
is processed during an action potential—any distinctions that
a neuron uses to reduce its own thermodynamic entropy over
the course of an action potential must ultimately be cleared
(Sengupta et al., 2013).

Thus, to find an upper limit for the quantity of
thermodynamic information that can be carried by each
action potential in a typical mammalian cortical pyramidal cell,
we counterintuitively begin by estimating the energy required
to restore the membrane potential after an action potential
has been sent. Depending on species, cell subtype, and specific
morphological characteristics within a given circuit, a typical
mammalian cortical pyramidal cell uses between about 106 and
1010 molecules of ATP per action potential, with each ATP
molecule providing about 10–19 joules of useful energy (Attwell
and Laughlin, 2001; Nelson, 2004; Pissadaki and Bolam, 2013;
Sengupta et al., 2013; Wang et al., 2017). If we assume that
ATP is a neuron’s primary source of energy for action potential
propagation and membrane potential restoration, then the
quantity of free energy that is available to process information
during the course of an action potential is limited by the number
of ATP molecules required by the action potential:

1Fsys ≤ 1010 ATP · 10−19 J/ATP = 10−9 J (8)

joules of free energy supplied by ATP, per action potential, at
most. It should be clarified that this ATP-dependent quantity
of energy is not, strictly speaking, the energy required to send
an action potential (i.e., the energy cost of opening just enough
sodium channels in the axon hillock during passive conduction
to initiate full depolarization). Rather, this quantity is an upper-
end estimate of the total energy required to prepare the neuron
for depolarization by establishing an ion concentration gradient
along the entire length of the axon. This line of reasoning
is consistent with the idea that spike initiation itself requires
relatively little energy, as there is useful energy stored in ion
concentration gradients (Zhu et al., 2019). In order not to
violate any laws of thermodynamics, a neuron using this quantity
of energy to send information with an action potential must
ultimately expend at least this quantity of energy, per action
potential, over the entire cycle of action potential propagation
and membrane potential restoration:

1Eenv ≥ 1010 ATP · 10−19 J/ATP = 10−9 J (9)
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joules of energy dissipated by each action potential. Now that
we have found a reasonable value for an upper estimate of
the numerator in inequality (7), our next step is to find an
empirically realistic value for the denominator. For a neuron
whose internal temperature is about T = 310 K, a realistic value
for the denominator in inequality (7) is

kBT ln2 = 1.38064852 · 10−23 J/K · 310 K ln2 ≈ 2.97 · 10−21 J
(10)

joules of energy dissipated per bit of thermodynamic information
carried by a maximally informative action potential. If a neuron
were to attain this maximum information condition, kBT ln2
joules of energy would be released into external degrees of
freedom by every neuronal subsystem whose change in state
meaningfully contributes to the physical implementation of the
action potential. We can now divide the maximum energy
available for information processing or erasure (9) by the energy
cost of overwriting a single bit (10) to find the greatest possible
number of bits of thermodynamic information that could be
processed irreversibly by a single action potential in a typical
neuron at a temperature of 310 K.We find that an action potential
can process no more than

N ≤
10−9 J

2.97 · 10−21 J
= 3.37 · 1011 (11)

bits of thermodynamic information. If we would prefer to
measure these distinctions using Shannon entropy, we can also
use the conversion factor 1 Shannon bit = 1/ln2 thermodynamic
bits (natural units, or nats) to find that an action potential can
carry at most about 4.86 · 1011 bits of Shannon entropy. A few
comments are in order regarding some limitations of this result.
As one limitation, the number above is not the bound itself, but
rather an example of a realistic value for the bound based on
the assumption that the neuron it describes requires less than
about 1010 molecules of ATP per spike in total. As a consequence,
although the general form of the bound given by inequality (7) is
likely to hold even for atypically energy-demanding neurons, the
specific numerical value above may not apply to neurons that use
more than 1010 molecules of ATP per spike in total. A second
limitation is that the specific numerical value for the energy cost
of an action potential depends on factors such as ion channel
density, degree of myelination, axon length, and axon diameter
(Sterling and Laughlin, 2015). These factors are not explicitly
incorporated into the bound, so it is very important to accurately
estimate the number of ATP molecules required per spike on
average when using inequality (7) in order to prevent errors.

As an aside, it is also worth noting the potential existence of
a lower bound on the information content of an action potential.
While it could be argued that individual ions, electrons, atoms,
and other microscopic particles store information simply by
carrying distinguishable states, a more modest view is that, at
the very least, information is stored in the states of ion channels.
If we make a lower-end estimate that a typical mammalian
neuron contains 70,000 or more voltage-gated ion channels in
total (Buchholtz et al., 2002), and assume that each channel can
store up to one bit of information by recording the distinction

between whether it is open or closed, then a typical action
potential would process at least several tens of thousands of bits of
thermodynamic information by altering the states of axonal ion
channels. While the idea that a spiking neuron may process such
a large quantity of physical information seems to contradict many
models of neuronal computation that study more abstract forms
of information carried by cells, we should remember that even
relatively small systems such as individual atoms and molecules
can store large quantities of potential information (Schumacher
and Westmoreland, 2010).

In summary, we have arrived at an estimate for the ultimate
thermodynamic limit on the quantity of information that can be
carried by an action potential in a typical mammalian spiking
neuron. By incorporating empirically realistic values of energy
dissipation and temperature into the inequality for Landauer’s
principle, we find that a single action potential in a typical
mammalian pyramidal cell can carry no more than about 3.4 ·

1011 bits of thermodynamic information, or about 4.9 · 1011 bits
of Shannon entropy. It should be noted that the existence of this
upper bound does not necessarily imply that each action potential
saturates the bound in terms of the quantity of information that
it uses for cell-to-cell signaling or intracellular computation. In
much the same way that not every atom, molecule, or subatomic
particle must be counted in order to understand the dynamics of
neuronal computation at a coarse-grained level, it seems likely
that many bits of thermodynamic information involved in the
propagation of an action potential can be safely ignored for
most practical purposes. Indeed, others have proposed forms
of Landauer’s principle that explicitly quantify this excess, non-
predictive information in neurons (Still et al., 2012). In this
regard, the novelty of the present paper is simply to emphasize
the magnitude of the total potential information contained in
an action potential from a physically pancomputationalist point
of view.

5. DISCUSSION

While a typical neuronal action potential is commonly treated as
carrying no more than a single bit of Shannon entropy, simple
thermodynamic arguments suggest that this interpretation may
be too oversimplified to be fully consistent with the physical
laws of computation. Combining realistic values for neuronal
temperature and ATP consumption with the inequality for
Landauer’s principle shows that a single action potential in a
typical mammalian cortical pyramidal cell could hypothetically
carry up to approximately 3.4 · 1011 bits of thermodynamic
information, or approximately 4.9 · 1011 bits of Shannon
entropy. Clearly, this result challenges the notion that a typical
mammalian spiking neuron can be conceptualized as a binary
computing element that registers only the information stored
in the distinction between whether or not it is firing an action
potential at some instant in time.

Yet, while this result contradicts the common neuroscientific
assumption each spiking neuron processes information only in
the form of abstractly labeled binary states, it arguably finds
strong support in the emerging physics of information. If the
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bit of information in the form of an irreducible distinction is
the most fundamental entity in physics (Glattfelder, 2019), it is
only natural to hypothesize that neurons process vast quantities
of information. The myriad positions, momenta, charges, and
other properties of the many interacting constituents of each
neuron together hold a large number of bits of potential
physical information. Moreover, since a spiking neuron is an
open thermodynamic system that decreases its own entropy
by dissipating energy, we would expect this information to be
processed irreversibly by each action potential. That is, any
distinctions carried by the positions, momenta, charges, and
other quantities that provide the neuron with useful energy
during an action potential must ultimately be lost or erased from
the cell and its information-storing subsystems.

Many questions naturally arise from this calculation. For
example, if we make the reasonable assumption that spiking
neurons are at least somewhat energy-efficient, we are led
to conclude that a typical action potential must erase many
bits of thermodynamic information. What physical degrees of
freedom are being used to store all of these bits? Certainly, a
spiking neuron stores many bits of information by recording
distinctions about the locations of ions and electrons relative to
its axonal membrane. But might the information contained in
each action potential also include the degrees of freedom stored
in larger physical particles, such as phospholipid molecules or
various proteins? While speculative, this possibility would be
in line with the proposal that a large quantity of information
is processed by the many nuclear spins of phosphorous atoms
in neuronal membranes (Smolin, 2020b). As a second question,
might this result support the argument (Debanne, 2004) that
biologically relevant information is processed by axons? Finally,
as amore general question, how canwe use other thermodynamic

functions and variables to simplify our understanding of
neuronal spiking dynamics?

This result also has broader implications for areas of
neuroscience beyond the biophysics of cellular computation.
From molecular biology to the neuropsychology of
consciousness, the concept of neuronal information processing
is a central component of a wide range of models and theories
in contemporary neuroscience. By showing that a typical
action potential can in principle hold a very large quantity of
information, this calculation suggests that it would be wise to
assume that neurons process information in ways that are more
nuanced and sophisticated than we often suppose. How will the
assumption that an action potential carries at most one bit of
information impede our progress in understanding neuronal
information processing? There is no doubt that studying action
potentials as simple binary events has led to profound advances
in computational neuroscience. But might we be able to build
on these advances by studying neurons from a perspective that
resonates more closely with the physics of information?

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

ACKNOWLEDGMENTS

I am grateful to Aaliyah Pauyo, Gia Dvali, Robert Pepperell, Eva
Deli, James F. Peters, Blaine Everson, Arturo Tozzi, and Gerard ’t
Hooft for helpful critical feedback regarding ideas about physical
information in the brain. I am also grateful to my reviewers for
providing insightful critique on the manuscript.

REFERENCES

Arcas, B. A. Y., Fairhall, A. L., and Bialek, W. (2003). Computation in a

single neuron: Hodgkin and Huxley revisited. Neural Comput. 15, 1715–1749.

doi: 10.1162/08997660360675017

Attwell, D., and Laughlin, S. B. (2001). An energy budget for signaling in

the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145.

doi: 10.109700004647–200110000-00001

Audretsch, J. (ed.). (2008). Entangled World: The Fascination of Quantum

Information and Computation. Weinheim: John Wiley and Sons.

Aur, D., and Jog, M. (2007). Beyond Spike Timing Theory - Thermodynamics

of Neuronal Computation. Nature Preceed. doi: 10.1038/npre.2007.

1254.1

Azarfar, A., Calcini, N., Huang, C., Zeldenrust, F., and Celikel, T. (2018). Neural

coding: a single neuron’s perspective. Neurosci. Biobehav. Rev. 94, 238–247.

doi: 10.1016/j.neubiorev.2018.09.007

Bekenstein, J. D. (2003). Information in the holographic universe. Sci. Am. 289,

58–65. doi: 10.1038/scientificamerican0803-58

Bennett, C. H. (2003). Notes on Landauer’s principle, reversible computation,

and Maxwell’s Demon. Stud. History Philos. Sci. B 34, 501–510.

doi: 10.1016/S1355-2198(03)00039-X

Bormashenko, E. (2019a). The Landauer principle: re-formulation of the

second thermodynamics law or a step to great unification? Entropy 21:918.

doi: 10.3390/e21100918

Bormashenko, E. (2019b). Generalization of the Landauer principle for computing

devices based on many-valued logic. Entropy 21:1150. doi: 10.3390/e21121150

Borst, A., and Theunissen, F. E. (1999). Information theory and neural coding.Nat.

Neurosci. 2, 947–957.

Brukner, C., and Zeilinger, A. (2005). “Quantum physics as a science of

information,” in Quo Vadis Quantum Mechanics? eds A. C. Elitzur,

S. Dolev, and N. Kolenda (Berlin; Heidelberg: Springer), 47–61.

doi: 10.1007/3-540-26669-0_3

Buchholtz, F., Schinor, N., and Schneider, F. W. (2002). Stochastic nonlinear

dynamics: How many ion channels are in a single neuron? J. Phys. Chem. B

106, 5086–5090. doi: 10.1021/jp0120662

Chen, Z. (2013). An overview of Bayesian methods for neural spike train analysis.

Comput. Intell. Neurosci. 2013:251905. doi: 10.1155/2013/251905

Chiribella, G., D’Ariano, G. M., and Perinotti, P. (2012). Quantum theory,

namely the pure and reversible theory of information. Entropy 14, 1877–1893.

doi: 10.3390/e14101877

Collell, G., and Fauquet, J. (2015). Brain activity and cognition: a connection

from thermodynamics and information theory. Front. Psychol. 6:818.

doi: 10.3389/fpsyg.2015.00818

Crutchfield, J. P., DeWeese, M. R., and Marzen, S. E. (2015). Time resolution

dependence of information measures for spiking neurons: scaling and

universality. Front. Comput. Neurosci. 9:105. doi: 10.3389/fncom.2015.

00105

Davies, P. (2019). The Demon in the Machine: How Hidden Webs of Information

are Solving the Mystery of Life. Chicago, IL: University of Chicago Press.

Davies, P., and Gregersen, N. H. (eds.). (2014). Information and the Nature of

Reality: From Physics to Metaphysics. New York, NY: Cambridge University

Press. doi: 10.1017/CBO9781107589056

Frontiers in Computational Neuroscience | www.frontiersin.org 6 May 2020 | Volume 14 | Article 37

https://doi.org/10.1162/08997660360675017
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1038/npre.2007.1254.1
https://doi.org/10.1016/j.neubiorev.2018.09.007
https://doi.org/10.1038/scientificamerican0803-58
https://doi.org/10.1016/S1355-2198(03)00039-X
https://doi.org/10.3390/e21100918
https://doi.org/10.3390/e21121150
https://doi.org/10.1007/3-540-26669-0_3
https://doi.org/10.1021/jp0120662
https://doi.org/10.1155/2013/251905
https://doi.org/10.3390/e14101877
https://doi.org/10.3389/fpsyg.2015.00818
https://doi.org/10.3389/fncom.2015.00105
https://doi.org/10.1017/CBO9781107589056
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Street Action Potential Information Content

Debanne, D. (2004). Information processing in the axon. Nat. Rev. Neurosci. 5,

304–316. doi: 10.1038/nrn1397

DeWeese, M. R., Wehr, M., and Zador, A. M. (2003). Binary spiking in auditory

cortex. J. Neurosci. 23, 7940–7949. doi: 10.1523/JNEUROSCI.23-21-07940.2003

Glattfelder, J. B. (2019). “A Universe built of information,’’ in Information–

Consciousness–Reality, eds A. C. Elitzur, Z. Merali, T. Padmanabhan, M.

Schlosshauer, M. P. Silverman, J. A. Tuszynski, and R. Vaas (Cham: Springer),

473–514. doi: 10.1007/978-3-030-03633-1_13

Gupta, D. S., and Bahmer, A. (2019). Increase in mutual information during

interaction with the environment contributes to perception. Entropy 21:365.

doi: 10.3390/e21040365

Jensen, G., Ward, R. D., and Balsam, P. D. (2013). Information: theory, brain, and

behavior. J. Exp. Anal. Behav. 100, 408–431. doi: 10.1002/jeab.49

Jung, T. I., Vogiatzian, F., Har-Shemesh, O., Fitzsimons, C. P., and Quax, R.

(2014). Applying information theory to neuronal networks: from theory to

experiments. Entropy 16, 5721–5737. doi: 10.3390/e16115721

Kondepudi, D., Petrosky, T., and Pojman, J. A. (2017). Dissipative structures and

irreversibility in nature: celebrating 100th birth anniversary of Ilya Prigogine

(1917–2003). Chaos 27:104501. doi: 10.1063/1.5008858

Landauer, R. (1996a). The physical nature of information. Phys. Lett. A 217,

188–193. doi: 10.1016/0375-9601(96)00453-7

Landauer, R. (1996b). Minimal energy requirements in communication. Science

272, 1914–1918. doi: 10.1126/science.272.5270.1914

Landauer, R. (1999). Information is a physical entity. Phys. A Stat. Mech. Appl. 263,

63–67. doi: 10.1016/S0378-4371(98)00513-5

Lent, C. S., Orlov, A. O., Porod,W., and Snider, G. L. (eds.). (2018). Energy Limits in

Computation: A Review of Landauer’s Principle, Theory and Experiments. Cham:

Springer. doi: 10.1007/978-3-319-93458-7

Li, Z., and Li, X. (2013). Estimating temporal causal interaction between

spike trains with permutation and transfer entropy. PLoS ONE 8:e0070894.

doi: 10.1371/journal.pone.0070894

Lloyd, S. (2000). Ultimate physical limits to computation. Nature 406, 1047–1054.

doi: 10.1038/35023282

Lloyd, S. (2013). “The universe as quantum computer,” in A Computable Universe:

Understanding and Exploring Nature as computation, ed H. Zenil (Singapore:

World Scientific), 567–581. doi: 10.1142/9789814374309_0029

London, M., Schreibman, A., Hausser, M., Larkum, M. E., and Segev, I. (2002). The

information efficacy of a synapse.Nat. Neurosci. 5, 332–340. doi: 10.1038/nn826

Maruyama, K., Nori, F., and Vedral, V. (2009). Colloquium: the physics

of Maxwell’s demon and information. Rev. Modern Phys. 81:1.

doi: 10.1103/RevModPhys.81.1

Mayfield, J. E. (2013). The Engine of Complexity: Evolution as Computation. New

York, NY: Columbia University Press.

Nelson, P. (2004). Biological Physics. New York, NY: WH Freeman.

Parrondo, J. M., Horowitz, J. M., and Sagawa, T. (2015). Thermodynamics of

information. Nat. Phys. 11, 131–139. doi: 10.1038/nphys3230

Perez Velazquez, J. L., Mateos, D. M., and Erra, R. G. (2019). On a

simple general principle of brain organization. Front. Neurosci. 13:1106.

doi: 10.3389/fnins.2019.01106

Petz, D. (2001). “Entropy, von Neumann and the von Neumann entropy,” in John

von Neumann and the Foundations of Quantum Physics eds M. Rédei and M.

Stöltzner (Dordrecht: Springer), 83–96. doi: 10.1007/978-94-017-2012-0_7

Pissadaki, E. K., and Bolam, J. P. (2013). The energy cost of action potential

propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease.

Front. Comput. Neurosci. 7:13. doi: 10.3389/fncom.2013.00013

Pregowska, A., Szczepanski, J., and Wajnryb, E. (2015). Mutual information

against correlations in binary communication channels. BMC Neurosci. 16:32.

doi: 10.1186/s12868-015-0168-0

Ribezzi-Crivellari, M., and Ritort, F. (2019). Large work extraction and the

Landauer limit in a continuous Maxwell demon. Nat. Phys. 15, 660–664.

doi: 10.1038/s41567-019-0481-0

Rieke, F., Warland, D., Van Steveninck, R. D. R., and Bialek, W. S. (1999). Spikes:

Exploring the Neural Code. Cambridge: MIT Press.

Rovelli, C. (2015). “Relative information at the foundation of physics,” in It From

Bit or Bit From It? eds A. Aguirre, B. Foster, and Z. Merali (Cham: Springer),

79–86. doi: 10.1007/978-3-319-12946-4_7

Schlosshauer, M. (2014). The quantum-to-classical transition and decoherence.

arXiv [Preprint]. arXiv:1404.2635.

Schumacher, B., and Westmoreland, M. (2010). Quantum Processes,

Systems, and Information. New York, NY: Cambridge University Press.

doi: 10.1017/CBO9780511814006

Sengupta, B., Laughlin, S. B., and Niven, J. E. (2014). Consequences of

converting graded to action potentials upon neural information coding and

energy efficiency. PLoS Comput. Biol. 10:e1003439. doi: 10.1371/journal.pcbi.

1003439

Sengupta, B., Stemmler, M. B., and Friston, K. J. (2013). Information and

efficiency in the nervous system–a synthesis. PLoS Comput. Biol. 9:e1003157.

doi: 10.1371/journal.pcbi.1003157

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech.

J. 27, 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x

Sharpee, T., and Bialek, W. (2007). Neural decision boundaries

for maximal information transmission. PLoS ONE 2:e0000646.

doi: 10.1371/journal.pone.0000646

Smolin, L. (2020a). The Place of Qualia in a Relational Universe. Available online

at: https://philarchive.org/archive/SMOTPO-3v1

Smolin, L. (2020b). Natural and bionic neuronal membranes:

possible sites for quantum biology. arXiv [Preprint]. arXiv:2001.

08522.

Sterling, P., and Laughlin, S. (2015). Principles of Neural Design.

London: MIT Press. doi: 10.7551/mitpress/9780262028707.00

1.0001

Still, S., Sivak, D. A., Bell, A. J., and Crooks, G. E. (2012). Thermodynamics

of prediction. Phys. Rev. Lett. 109:120604. doi: 10.1103/PhysRevLett.109.

120604

Street, S. (2016). Neurobiology as information physics. Front. Syst. Neurosci. 10:90.

doi: 10.3389/fnsys.2016.00090

Timme, N. M., and Lapish, C. (2018). A tutorial for information theory in

neuroscience. ENeuro 5:3. doi: 10.1523/ENEURO.0052-18.2018

Vedral, V. (2018). Decoding Reality: The Universe as Quantum Information. New

York, NY: Oxford University Press.

Victor, J. D. (2006). Approaches to information-theoretic analysis of

neural activity. Biol. Theory 1, 302–316. doi: 10.1162/biot.2006.

1.3.302

Wang, Y., Wang, R., and Xu, X. (2017). Neural energy supply-consumption

properties based on Hodgkin-Huxley model. Neural Plastic. 2017:6207141.

doi: 10.1155/2017/6207141

Wheeler, J. A. (1990). Information, physics, quantum: The search for links.

Complex. Entropy Phys. Inform. 8, 3–27.

Zhu, F., Wang, R., Pan, X., and Zhu, Z. (2019). Energy expenditure

computation of a single bursting neuron. Cogn. Neurodyn. 13, 75–87.

doi: 10.1007/s11571-018-9503-3

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Street. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 May 2020 | Volume 14 | Article 37

https://doi.org/10.1038/nrn1397
https://doi.org/10.1523/JNEUROSCI.23-21-07940.2003
https://doi.org/10.1007/978-3-030-03633-1_13
https://doi.org/10.3390/e21040365
https://doi.org/10.1002/jeab.49
https://doi.org/10.3390/e16115721
https://doi.org/10.1063/1.5008858
https://doi.org/10.1016/0375-9601(96)00453-7
https://doi.org/10.1126/science.272.5270.1914
https://doi.org/10.1016/S0378-4371(98)00513-5
https://doi.org/10.1007/978-3-319-93458-7
https://doi.org/10.1371/journal.pone.0070894
https://doi.org/10.1038/35023282
https://doi.org/10.1142/9789814374309_0029
https://doi.org/10.1038/nn826
https://doi.org/10.1103/RevModPhys.81.1
https://doi.org/10.1038/nphys3230
https://doi.org/10.3389/fnins.2019.01106
https://doi.org/10.1007/978-94-017-2012-0_7
https://doi.org/10.3389/fncom.2013.00013
https://doi.org/10.1186/s12868-015-0168-0
https://doi.org/10.1038/s41567-019-0481-0
https://doi.org/10.1007/978-3-319-12946-4_7
https://doi.org/10.1017/CBO9780511814006
https://doi.org/10.1371/journal.pcbi.1003439
https://doi.org/10.1371/journal.pcbi.1003157
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1371/journal.pone.0000646
https://philarchive.org/archive/SMOTPO-3v1
https://doi.org/10.7551/mitpress/9780262028707.001.0001
https://doi.org/10.1103/PhysRevLett.109.120604
https://doi.org/10.3389/fnsys.2016.00090
https://doi.org/10.1523/ENEURO.0052-18.2018
https://doi.org/10.1162/biot.2006.1.3.302
https://doi.org/10.1155/2017/6207141
https://doi.org/10.1007/s11571-018-9503-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Upper Limit on the Thermodynamic Information Content of an Action Potential
	1. Introduction
	2. What is Information?
	3. Landauer's Principle
	4. Thermodynamic Information in an Action Potential
	5. Discussion
	Author Contributions
	Acknowledgments
	References


