
ORIGINAL RESEARCH
published: 26 June 2020

doi: 10.3389/fncom.2020.00043

Frontiers in Computational Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 43

Edited by:

Petia D. Koprinkova-Hristova,

Institute of Information and

Communication Technologies (BAS),

Bulgaria

Reviewed by:

Jose Bargas,

National Autonomous University of

Mexico, Mexico

Pablo Varona,

Autonomous University of Madrid,

Spain

*Correspondence:

Rong Chen

rchen@umm.edu

Shuvra S. Bhattacharyya

ssb@umd.edu

†These authors have contributed

equally to this work

Received: 07 March 2019

Accepted: 28 April 2020

Published: 26 June 2020

Citation:

Lee Y, Xie J, Lee E, Sudarsanan S,

Lin D-T, Chen R and

Bhattacharyya SS (2020) Real-Time

Neuron Detection and Neural Signal

Extraction Platform for Miniature

Calcium Imaging.

Front. Comput. Neurosci. 14:43.

doi: 10.3389/fncom.2020.00043

Real-Time Neuron Detection and
Neural Signal Extraction Platform for
Miniature Calcium Imaging

Yaesop Lee 1†, Jing Xie 1†, Eungjoo Lee 1, Srijesh Sudarsanan 1, Da-Ting Lin 2, Rong Chen 1,3*

and Shuvra S. Bhattacharyya 1,4*

1Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD,

United States, 2National Institute on Drug Abuse, National Institutes of Health (NIH), Baltimore, MD, United States,
3Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland at Baltimore, Baltimore, MD,

United States, 4 Institute for Advanced Computer Studies (UMIACS), University of Maryland at College Park, College Park,

MD, United States

Real-time neuron detection and neural activity extraction are critical components

of real-time neural decoding. In this paper, we propose a novel real-time neuron

detection and activity extraction system using a dataflow framework to provide

real-time performance and adaptability to new algorithms and hardware platforms.

The proposed system was evaluated on simulated calcium imaging data, calcium

imaging data with manual annotation, and calcium imaging data of the anterior lateral

motor cortex. We found that the proposed system accurately detected neurons

and extracted neural activities in real time without any requirement for expensive,

cumbersome, or special-purpose computing hardware. We expect that the system

will enable cost-effective, real-time calcium imaging-based neural decoding, leading to

precise neuromodulation.

Keywords: real-time image processing, real-time neuron detection, dataflow, calcium imaging, data streammining

1. INTRODUCTION

Real-time neural decoding predicts behavioral variables based on neural activity data, where the
prediction is performed at a pace that keeps upwith the speed of the activity that is beingmonitored.
Neuromodulation devices are becoming one of the most powerful tools for the treatment of
brain disorders, enhancing neurocognitive performance, and demonstrating causality (Bergmann
et al., 2016; Knotkova and Rasche, 2016). A precise neuromodulation system integrates neural
activitymonitoring, real-time neural decoding, and neuromodulation. In precise neuromodulation,
a decoding device predicts a behavioral variable based on neural data streams in real time. Based
on the decoding results, neuromodulation parameters such as timing, frequency, duration, and
amplitude are changed. Precise neuromodulation systems with closed-loop real-time feedback are
superior to the fixed (open-loop) neuromodulation paradigm (deBettencourt et al., 2015; Brocker
et al., 2017; Ezzyat et al., 2017).

A recent direct brain stimulation study demonstrated significant advantages of precise
neuromodulation over open-loop neuromodulation (Ezzyat et al., 2017). This study applied
direct brain stimulation with decoding capability to patients with epilepsy to improve their
memory. The study found that stimulation increased memory function only if delivered when
the decoding device indicated low encoding efficiency, while stimulation decreased memory
function if delivered when the decoding device indicated high encoding efficiency. An open-loop
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neuromodulation system with a fixed stimulation paradigm may
not always facilitate improvement of memory function.

Miniature calcium imaging (e.g., see Ghosh et al., 2011; Kerr
and Nimmerjahn, 2012; Scott et al., 2013) is a neuroimaging tool
that can observe all cells in the field of view in behaving animals,
has high spatial and temporal resolution (single-cell spatial
resolution and sub-second temporal resolution), and enables
chronic imaging. In this paper, we focus on two-photon calcium
imaging. A closed-loop real-time neural decoding system based
on miniature calcium imaging will lead to a powerful, precise
neuromodulation system. The first step in the development of
such a neural decoding system is to have an accurate and fast
Real-time Neuron Detection and Activity Extraction (RNDAE)
system. In our context, an RNDAE system takes as input a
video stream S that is generated by a miniature calcium imaging
device, which is mounted on the head of a behaving animal. The
output produced by the RNDAE system is a set of neuron masks
{n1, n2, . . . , nm} that is detected in S, where m is the number
of detected neurons, along with the neural signal si(k) that is
extracted for each neuron ni. The neural signal si(k) gives the
neural activity associated with neuron ni for each input video
frame k, as represented by the video stream S. See Table S2 for
the definitions of variables and symbols in this article.

The tremendous rate at which miniature calcium imaging
devices produce data imposes major challenges in the design
and implementation of an RNDAE system. For example, during
10 min of imaging, such a device generates 1 G of data at a
frame rate of 10 Hz. Additionally, intensive processing within
and across video frames in the input data stream is required for
accurate detection of neurons and extraction of the associated
neural signals. Furthermore, since algorithms and hardware
platforms relevant to neural signal processing are evolving
rapidly, the design of an RNDAE system should be architected
in a manner that supports flexible adaptation to different
component algorithms and retargeting to different processing
devices. These requirements for complex processing on high-
rate video data and flexible support for hardware/software design
modifications make the development of RNDAE systems a very
difficult task.

In this paper, we develop a novel RNDAE system, called the
NeuronDetection and Signal Extraction Platform (NDSEP), which
is designed to address the challenges described above. NDSEP
provides an experimental platform for neuron detection and
neural signal extraction that provides real-time performance and
adaptability to new algorithms and hardware platforms. NDSEP
also provides a valuable foundation for research and development
of precise neuromodulation systems. The architecture of
NDSEP is based on principles of signal processing-oriented
dataflow models of computation (e.g., see Lee and Parks, 1995;
Bhattacharyya et al., 2019).

In dataflow programming, computational tasks can be
executed whenever they have sufficient data. This property
provides great flexibility to compilers, software synthesis tools,
and system designers to coordinate task execution in ways
that are strategic with respect to the relevant implementation
constraints and objectives. The data-driven semantics of task
execution in dataflow is fundamentally different from procedural

programming languages, such as C and Java, where the
programmer specifies a sequential control flow between tasks in
addition to the tasks themselves. This sequential approach to
programming hides concurrency between tasks, whereas well-
designed dataflow representations expose concurrency explicitly.
A trade-off is that dataflow representations can be highly non-
intuitive to apply to arbitrary types of applications; however, they
have been shown to be well-suited to the broad area of signal and
information processing (e.g., see Bhattacharyya et al., 2019).

Motivated in part by its utility for efficient implementation
on parallel computing platforms, system design using
dataflow methods is widely used for complex signal and
information processing applications. The high-level signal flow
structure that is exposed by well-designed dataflow models is
valuable for design optimization in the context of important
metrics, including those related to processing speed, memory
management, and energy efficiency (Bhattacharyya et al., 2019).
Additionally, dataflow provides a precise, abstract representation
of computational modules and the interaction between modules
within a given signal processing application. The formal,
abstract representation provided by dataflow is of great utility
in migrating implementations across platforms and also for
efficiently expanding, upgrading, or otherwise modifying an
implementation that is targeted to a given platform. Throughout
the presentation of NDSEP in this paper, we therefore emphasize
the ways in which dataflow techniques are employed to help
address the complex and multi-faceted challenges, motivated
above, that are involved in RNDAE system development.

The major contribution of our paper is the rigorous
application of dataflow-based system design methods to real-
time neural decoding. There are many systems, such as CaImAn-
CNMF (Giovannucci et al., 2019) and STNeuroNet (Soltanian-
Zadeh et al., 2019), for neuron detection, which may achieve
higher accuracy than our current implementation. However,
these algorithms are not dataflow-based and therefore they
do not provide the advantages of expandability, cross-platform
portability, and high-level design optimization described above.
All of these features are useful for flexible experimentation with
and practical deployment of neural decoding methods. The main
contribution of this effort can therefore be viewed as the design
of an overall system, not just a single component.

2. BACKGROUND AND RELATED WORK

In this research, we apply advanced methods for dataflow-based
system design to address the challenges identified in section 1 for
RNDAE technology. In this section, we first review related work
on neuron detection and neural signal extraction, and then we
present background on dataflow methods for signal processing
system design.

2.1. Real-Time Neuron Detection
Neuron detection centers on identifying the source (neurons)
in the image field of view (FOV). A straightforward method
for neuron detection is to manually delineate neuron masks.
This manual labeling process is labor-intensive. For semi-
automated/automated neuron detection, a PCA/ICA based
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method (Mukamel et al., 2009) is proposed. This algorithm
first runs PCA to reduce data dimensionality, and then
uses ICA to segment data into statistically independent
spatial and temporal signals. Constrained nonnegative matrix
factorization (CNMF)-based methods for neuron detection are
described in Pnevmatikakis et al. (2016) and Zhou et al.
(2018). Deep learning-based neuron detection methods are
proposed in Apthorpe et al. (2016). Although these semi-
automated/automated neuron detection methods are powerful,
they are not suitable for real-time applications because of long
running time. That is to say, the methods mentioned above are
not in real time, which is in contrast with our method, which is
in real time and will be described later.

Motion correction is a crucial step for accurate neural
detection. For real-time applications, motion correction must
be integrated as part of the neural detection and neural
signal extraction system, as the input arrives directly without
any preprocessing. The motion correction problem can be
solved by image registration (Resendez et al., 2016). However,
these registration algorithms require a running time on the
order of seconds to minutes per frame (Vercauteren et al.,
2009). Real-time applications require optimized and efficient
motion correction.

2.2. Dataflow-Based System Design
Dataflow provides a valuable foundation for the design and
implementation of novel signal and information processing
systems under complex constraints (e.g., see Bhattacharyya
et al., 2019). When dataflow is used as an abstraction for
signal processing system design, applications are represented
as directed graphs, called dataflow graphs (Lee and Parks,
1995). Vertices in dataflow graphs, called actors, represent
computational tasks, such as digital filters, matrix operations, or
image transformations, and each edge represents a first-in, first-
out (FIFO) buffer that stores data as it passes from the output of
one actor to the input of another. Each unit of data within such a
buffer is referred to as a token.

Dataflow actors abstract the detailed implementation of the
corresponding computational tasks while imposing important
constraints on how the actors interface with the surrounding
graph, regardless of the implementation. These dataflow interface
constraints include two major aspects. First, a dataflow actor can
execute (fire) only when certain well-defined conditions on the
buffers associated with its input and output edges are satisfied.
These conditions are typically formulated in terms of the token
populations on the buffers—that is, some minimum amount of
data is required on each input buffer (to provide the input for
the next firing), and some minimum amount of empty space is
required on each output buffer (to store the output generated
by the firing). When the firing conditions described above are
satisfied, the actor (or its next firing) is said to be enabled.

Second, when an actor is fired, it must actually produce and
consume on each output and input port, respectively, a number
of tokens that is consistent with the assumptions that were used
to determine that the firing was enabled.

FIGURE 1 | An example of a simple dataflow graph.

A distinguishing feature of dataflow is that the “program”
(dataflow graph) does not specify the order in which actors
will execute, nor (in the case of a hardware platform with
multiple processors) the processing resource on which each actor
is mapped. Instead, the mapping of actors to processors and
execution ordering of the actors are left up to the system designer
or design tool. The mapping, together with the ordering of actors
that share the same processor, is referred to as the schedule for the
dataflow graph. A general rule of dataflow schedule construction
is that an actor can only be fired (executed next in the evolution
of a schedule) when it is enabled, as described above.

The schedule typically has a great impact on most or all
key implementation metrics, including throughput, latency, and
memory requirements. The decoupling of a dataflow graph
G from the schedule, together with the high-level signal flow
structure exposed by G, provides great flexibility to designers and
design tool developers in constructing schedules. This flexibility
is important for optimizing a schedule with respect to the specific
constraints, objectives, and processing devices that are relevant to
the given application. In this work, we seek to enable and exploit
this flexibility by applying dataflow-based concepts consistently
throughout the RNDAE system design process.

Formally, a dataflow graph is represented as a directed graph
G = (X,E), where X is the set of actors and E is the set of
edges. For each edge in e ∈ E, we denote the source and sink
vertices of e as src(e) and snk(e), respectively. Each edge e has a
nonzero-integer delay associated with it, which gives the number
of initial tokens that are stored in the corresponding FIFO before
the dataflow graph begins execution. A self-loop edge is an edge
es whose source and sink actors are identical (src(es) = snk(es)).

Figure 1 shows a simple dataflow graph with three actors
(X = a, b, c), and two edges e1 = (a, b) and e2 = (b, c). The
“D” on edge (b, c) represents a unit delay. If the delay on an edge
exceeds 1, then we typically annotate the edge with “N D”, where
N is the delay of the edge. If the delay is zero, then we omit
the “D” symbol, and do not provide any annotation on the edge
associated with delay. For example, the absence of a “D” symbol
on (a, b) in Figure 1 indicates that this edge has no delay.

Self-loop edges are often omitted from drawings of dataflow
graphs. However, their presence must be taken into account by
some forms of analysis and optimization. For example, self-loop
edges in general limit the amount of data parallelism that can be
exploited when scheduling a given actor (e.g., see Lin et al., 2018).

For further background on dataflow fundamentals for signal
processing systems, we refer the reader to Lee and Parks (1995)
and Bhattacharyya et al. (2019). For background on more general
foundations of dataflow, we refer the reader to Dennis (1974) and
Gilles (1974).

Frontiers in Computational Neuroscience | www.frontiersin.org 3 June 2020 | Volume 14 | Article 43

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lee et al. Real-Time Calcium Signal Processing

3. PROPOSED METHOD

Our NDSEP system is developed and tested for use on video
streams that are acquired from mice using miniature calcium
imaging devices. We especially focus on two-photon calcium
imaging. The NDSEP system is therefore suitable for use in
monitoring neural activity in real time—for example, to help
inform the scientist performing an experiment about how to
adapt experimental options so that subsequently acquired data
is most relevant to the experiment objectives.

The system design of NDSEP incorporates two distinct modes
of operation, which we refer to as the initializationmode and real-
time mode. The purpose of the initialization mode is to optimize
system- and actor-level parameters in relation to the image
characteristics associated with a given experiment. Calcium
imaging data for a given experiment have certain distinctive
characteristics that are influenced by the experimental setup,
including the imaging devices, neuron types, and specific animal
subjects involved. To maximize neuron detection and signal
extraction accuracy, it is important to tune, in relation to these
distinctive characteristics, certain parameters associated with the
neural signal processing algorithms that are employed. Image
characteristics that are relevant in this tuning process include the
size of the neurons being monitored and the brightness of the
firing neurons relative to the background.

For concreteness and for insight into specific optimizations
that we applied to facilitate real-time performance, we describe
in this section selected details on actor implementations in
the current version of NDSEP. These details include, for
example, specific OpenCV functions that are applied within the
actors and associated parameter settings for these functions.
However, we would like to emphasize that the NDSEP framework
is independent of any specific approach for implementing
algorithms or any specific algorithms for image analysis. For
example, one could replace the calls to OpenCV functions with
calls to a different library that provides similar capabilities or
with customized code that is developed by the actor designer. As
another example, one could replace the Neuron Detection actor,
which implements the SimpleBlobDetector algorithm,
with another actor that implements the Holistically nested
Edge Detection (Hed) or MaskRCNN algorithm. The modular,
model-based design of NDSEP facilitates use cases such as
these for experimentation with alternative algorithms and actor
implementations. Such experimentation is useful for gaining
insight into trade-offs between neural decoding accuracy and
real-time performance, which are critical to the overall utility of
a neural decoding system.

In section 4, we evaluate NDSEP using datasets involving both
simulated data and real-world data. The real-world dataset is

acquired from mouse models. Two-photon calcium imaging was
used to image the calcium fluorescence of Anterior Lateral Motor
(ALM) cortex. Thus, in the remainder of the paper, we refer to the

real data as the ALMdataset. More details about the ALMdata we

use is given in section 4.
The remainder of this section is organized as follows. First,

we provide background on a specific form of dataflow modeling
called parameterized synchronous dataflow (PSDF), which is

well-suited to the computational structure of NDSEP. Next, we
present the key actors (dataflow-based software components)
that are involved in NDSEP. We then present the overall system
design for NDSEP, including relevant details of the initialization
mode and real-time mode.

3.1. PSDF Modeling
A variety of specialized dataflow modeling techniques have been
developed for different classes of signal processing applications
(e.g., see Bhattacharyya et al., 2019). For design of NDSEP,
we apply the PSDF model due to its utility in representing
signal processing applications in which dynamic modifications
to system parameters play an important role. PSDF enables
the joint, dataflow-based modeling of (1) subsystems whose
parameters can be modified dynamically (adapting subsystems)
along with (2) subsystems whose results are used to determine
new values of relevant parameters in the adapting subsystems
(controlling subsystems) (Bhattacharya and Bhattacharyya, 2001).

A number of different variants of dataflow have been
developed with an emphasis on supporting dynamic parameter
reconfiguration (e.g., see Desnos and Palumbo, 2019). Among
these, we apply PSDF because PSDF is well-supported in
the software tool, called the lightweight dataflow environment
(LIDE) Lin et al., 2017, that we use in this work for dataflow graph
implementation. Adapting NDSEP to other forms of dynamic-
parameter-integrated dataflow models is an interesting direction
for future work in exploring implementation trade-offs.

In the PSDF modeling approach that we use in NDSEP, the
system-level dataflow graph is composed of two communicating
subgraphs called the subinit graph and body graph. These graphs
are used, respectively, to model the controlling subsystems
and adapting subsystems described above. In NDSEP, the body
graph represents the core signal processing functionality for
neuron detection and activity extraction, while the subinit
graph represents functionality for dynamically computing
new values for selected parameters in the body graph.
In particular, each output port p of the subinit graph is
associated at design time with one or more ordered pairs
((A1(p), P1(p)), (A2(p), P2(p)), . . . (An(p)(p), Pnp(p)(p)), where n(p)
is the number of such ordered pairs associated with p, each Ai(p)
is an actor in the body graph, and each Pi(p) is a parameter of
actor Ai(p). When the PSDF graph executes, each iteration of the
subinit graph is followed by the transmission of values from each
output port p to update each parameter Pi(p) of each actor Ai(p).

More details on the PSDF-based applicationmodel for NDSEP
are discussed in section 3.3.

3.2. Signal Processing Modules in NDSEP
In this section, we discuss the design of the signal processing
actors that are employed in the body graph of NDSEP.

A common approach used in the implementation of the actors
in NDSEP is that actors produce and consume pointers to images
rather than directly producing and consuming image pixels on
their incident dataflow edges. That is, in cases where images
are communicated across a dataflow edge e, we transfer only a
pointer to each communicated image through the FIFO buffer
associated with e rather than writing and reading the entire
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image to and from the buffer. The same approach is used when
communicating matrices across actors. This approach allows us
to adhere to the dataflow principles described in section 2.2
without requiring large overhead for FIFO buffers that carry
streams of images or matrices.

The system-level dataflow graph for NDSEP, including all of
the actors discussed in this section, is developed using the LIDE
tool mentioned in section 3.1. For background on LIDE, we refer
the reader to Lin et al. (2017).

3.2.1. Motion Correction
Motion correction is the first step of image processing in
NDSEP. In real calcium imaging data taken from moving mice,
significant motion can result due to the drift of the implanted
imaging device. This kind of shaking in general may result in
motion translation as well as slight rotation, thereby distorting
the acquired video stream. The goal of motion correction in
NDSEP is to remove such motion translation and rotation from
image frames.

Through profiling of execution time across different actors
in the NDSEP system, we determined early on in the design
process that motion correction contributes significantly to overall
system execution time. More details on system-level profiling
are provided in section 4. Because of the critical role of motion
correction in determining overall system efficiency, we applied
a significant portion of our design effort to optimizing the
accuracy/speed trade-off for this part of NDSEP.

For motion correction, NDSEP utilizes the Enhanced
Correlation Coefficient (ECC) algorithm (Evangelidis and
Psarakis, 2008) for motion detection, which is a core part
of motion correction. We selected ECC because it provides
parameter settings that give significant flexibility in exploring
trade-offs between accuracy and processing speed. Such
exploration is useful in the design of RNDAE systems, where the
objective is to provide acceptable accuracy in real time rather
than maximum accuracy at any cost. ECC is also invariant to
photometric distortions in brightness and contrast.

We employ the ECC function provided by the OpenCV
library (Demiröz, 2019), and call this function within the LIDE-
based actor implementation for the Motion Correction actor.

In addition to using the ECC algorithm, as described
above, we apply two major techniques to improve the real-
time performance of the Motion Correction actor. First, before
comparing frames for motion detection, we downsample the
frames by a factor of 1.67 in each dimension so that the number
of pixels is reduced to one-quarter of the original pixel count. The
downsampled image is currently applied only to the detection
process so that any distortion introduced by it is localized to
the detection step. Applying downsampling strategically in other
parts of NDSEP is a useful direction for future work.

Second, while our motion correction approach takes both
translation and rotation into account, we apply rotation
selectively, only in cases where translation-based motion
correction fails. This optimization is motivated by empirical
observations that, in our experimental context, rotation is
encountered relatively infrequently in frames that are captured
by the neuron imaging device. For example, in the ALM dataset,

the rotation frequency detected by NDSEP is 1.62% and the
mean and maximum rotation angles are 0.0232 and 0.0733
degrees, respectively. We choose rigid motion correction because
of algorithm efficiency for real-time applications. When a single
frame is acquired quickly (<50 ms), the influence of motion
across the frame is relatively uniform, and a rigid correction
can give good results (Thevenaz et al., 1998; Stringer and
Pachitariu, 2019). Translation is more common. Furthermore,
detection and correction of rotation are more computationally
expensive compared to translation. For example, we found that
the “Euclidean” mode for the OpenCV ECC function, which
detects both translation and rotation, takes on average about
three times longer to compute compared to the “Translation
Only” mode.

Figure 2 illustrates a flowchart of the optimized motion
correction approach in NDSEP, which is based on differences
in frequency of occurrence and computational complexity
associated with translation and rotation. As illustrated in
Figure 2, we first apply motion detection with the Translation
Only mode. If motion is detected from this operation, then
the current frame Fc is shifted to compensate for the detected
translation, and the correlation between the shifted frame Fs and
the reference frame Fr is evaluated. On the other hand, if no
motion is detected, the correlation is carried out between Fc and
Fr . If the computed correlation C1 meets or exceeds a threshold
τ1, then Fr is replaced with Fs or Fc, respectively, Fs is produced
on the output edge of the actor, and the current actor firing
is complete.

On the other hand, if the correlation C1 is less than τ1, then
motion detection for both translation and rotation is applied
using the more costly Euclidean mode of OpenCV ECC. If
motion is detected from the Euclidean mode, then a shifted
version F′s of Fr is derived based on the detection result. Then the
correlation C2 between Fr and F′s is carried out, where Fr = F′s
if motion was detected from the Euclidean mode, and Fr =

Fc otherwise.
Again, a thresholding check, using another threshold τ2, is

used to determine how to interpret the correlation result. If C2 ≥

τ2 (similar to the case of C1 exceeding the threshold), then Fr is
replaced with F′s or Fc, respectively; F

′
s is produced on the output

edge of the actor, and the actor firing is complete. Otherwise, a
diagnostic message is sent to a log file associated with the overall
experiment, and Fr is produced on the output edge to complete
the firing.

The diagnostic message generated in this last case identifies
the input frame index and indicates that motion correction has
failed at this index. Such information, which is accumulated in
an experiment log file by all relevant actors, can be useful to
the system designer for continually improving the robustness of
individual actors and the overall system.

The thresholds τ1 and τ2 defined above, which determine
whether to accept the motion correction result or not, are
computed adaptively to track any relevant changes in image
characteristics. This is due to dynamic variation in the
characteristics of calcium imaging frames. For example, some of
the datasets are noisy or have contaminated backgrounds. This
lowers the average correlation value. For the ALM dataset that we
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FIGURE 2 | Flowchart for Motion Correction actor operation in NDSEP.

employed in section 4.3, the noise/contamination level is stable
over short time periods. During short time periods, the impact
of noise/contamination is less significant than the impact of
alignment on correlation value. Therefore, in NDSEP, correlation
values are only compared with close neighbors. For this purpose,
NDSEP stores the 100 most recent correlation values in a queue,
which we refer to as the correlation history queue (CoHisQ). Every
time CoHisQ changes, the mean value CoHisQ and standard
deviation σCoHisQ across all elements in the queue are calculated.
Each threshold τ ∈ {τ1, τ2} is computed from CoHisQ and
σCoHisQ using:

τ = CoHisQ− p(τ )× σCoHisQ, (1)

where p(τ ) is an empirically defined parameter for each of the two
thresholds. In our experiments, we employ p(τ1) = 2 and p(τ2) =
10. The threshold values in τ range from approximately [0.3,
0.95] in our experiments resulting in motion correction success.

The threshold computation approach and its associated
parameters provide an example of an RNDAE-system design
issue for which there aremany possible solutions. Themodularity
and extensibility of NDSEP, based on its dataflow-based
foundations, facilitate experimentation across different solutions
for such design issues.

3.2.2. Preprocessing
The Preprocessing actor is designed to remove image distortion
caused by the imaging device and imaging environment. To
remove distortion caused by the imaging device, the actor
incorporates a Gaussian filter and median filter. Furthermore,
background subtraction is used to remove background effects,
and image equalization is performed. As described in Figure 3,
the output of the preprocessing actor does not affect the neural
signal as it only helps to get the positions of neurons. This
process helps to eliminate the bright background that results

from the firing of neurons in deeper areas of the brain. These
deeply located neurons are not of interest in the targeted class
of experiments, so it is useful to subtract their potentially
strong effect on the image background. To enhance the image’s
contrast, we normalized the image intensities by using (I −

Imin) × 255/(Imax − Imin), where I indicates the current pixel’s
intensity and Imax and Imin represent the maximum intensity
and minimum intensity of the image, respectively. As part of
the Preprocessing actor, we employed the GaussianBlur and
MedianBlur functions from OpenCV. For the GaussianBlur
and MedianBlur functions, we employed a filter size of 3 × 3 in
order to minimize the possible distortion of the small neurons.
The filter size can be reconfigured based on the distortion
level and characteristics of the data. Presently, we only consider
the possible distortion and removal that might occur to small
neuron sizes.

3.2.3. Neuron Detection
The Neuron Detection actor takes an image frame as input,
detects the presence of neurons in the image frame, and outputs
the position and size of each detected neuron. The output
is produced in the form of an nd × 3 matrix δ, where nd
is the number of detected neurons. Each row in the matrix
corresponds to a detected neuron. We refer to δ as a neuron
detection matrix. For each row index i, nd[i][1], and nd[i][2],
respectively, give the x coordinate and y coordinate for the
center of the ith detected neuron, and nd[i][3] gives the
neuron’s radius.

For its core computational task, the Neuron Detection
actor applies the SimpleBlobDetector function from
OpenCV (Demiröz, 2019). The function detects closed contours
(“blobs”), which are assumed to outline the detected neurons.
Among the contours, the function can filter out the blobs
by intensity, size, and shape. The function finds blobs using
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FIGURE 3 | System-level dataflow graph for NDSEP.

the parameter thresholdStep, which denotes the minimum
intensity difference between the inside and outside of a blob.
By using the parameter, it filters out the blobs that have low
intensity difference compared to their backgrounds—that is, it
removes fewer active blobs. Using the parameters Amin and Amax,
which are related to the size of blobs to detect, the function
computes a set of detected blobs, along with their centers and
radii. The parameters Amin and Amax specify the minimum and
maximum sizes (in terms of the number of pixels contained)
of the blobs to detect. Using parameters for circularity, inertia,
and convexity, the function filters out non-neuron-like shapes.
The radius of a blob is computed to be the distance between
the center of the blob and the furthest point from the center. In
this context, a blob can be viewed as a set of connected pixels
in an input image that have some minimum intensity (exceed a
threshold on the pixel value) and satisfy size constraints that are
carefully configured to help ensure that the corresponding image
regions represent neurons within the imaged brain region. Since
the SimpleBlobDetector function is not for segmentation
but for detection, it returns the position of each blob’s center
and its radius. By using SimpleBlobDetector instead of a
segmentation function, we can gain comparable detection results
with faster speed.

To this end, the SimpleBlobDetector function is
configured to filter blobs by size based on two size-related
parameters, which we denote by Amin and Amax (Amin < Amax).

The values of Amin and Amax are determined as part of the
initialization mode for the NDSEP system. The initialization
mode includes an automated training process that configures
parameters such as Amin and Amax. Another parameter of
the SimpleBlobDetector that is configured during the
initialization process is the thresholdStep parameter, which
controls the step size for determining the set of pixel-
intensity thresholds that are used during the blob detection

process (Demiröz, 2019). More details on the initialization mode
are discussed in section 3.3.

The minThreshold parameter for the
simpleBlobDetector function is set to zero in all of
our experiments.

After blob detection within a given firing of the Neuron
Detection actor, a set of neurons η = µ1,µ2, . . . ,µk is identified
in the input image along with their positions and radii. During
real-time operation of the actor, the positions and radii of these
neurons are produced as output in the form of a neuron detection
matrix, as described above.

During its training process, however, further processing using
the set η is performed before producing output. The Neuron
Detection actor is equipped with a parameter that is used to
select whether it operates in training mode or real-time mode. In
NDSEP, Neuron Detection operates in its training mode during
a well-defined system initialization phase (discussed further in
section 3.3) and then operates for the remainder of the given
experiment in its real-time mode.

In the remainder of this section on the Neuron Detection
actor, we discuss the further processing that is performed during
the training process, after η has been determined.

First, if the current firing is not the first firing within the
experiment, the neuron positions in η are compared with those in
δp, which is the detection matrix derived from the previous actor
firing. The previous matrix δp is maintained as a state variable
of the Neuron Detection actor. This state variable is maintained
and used only in the trainingmode. By a state variable, wemean a
data object that is local to the actor and that persists across firings
of the actor. Actor state can be modeled in signal processing
dataflow graphs with self-loop edges (e.g., see Zhou et al., 2014).

If the position of a neuron within η is found to be sufficiently
close to a neuron position in δp, then that neuron is removed
from η. In our current design, “sufficiently close” in this context
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means that the difference in position can be d pixels in both
the x and y dimensions. The parameter d can be determined
by considering how close it should be to be considered as a
neuron that has slight motion. That is to say, the user can define
a distance criterion such that, if the distance is closer than d
pixels, the system can regard the neurons as a single neuron,
but if two close-together neurons are not closer than d pixels,
then the neurons will be considered two different, overlapping
neurons. After removing all neurons from η that are sufficiently
close to corresponding neurons in δp, the remaining neurons in
η are interpreted to be newly discovered neurons in the training
process. Thus, all of the remaining neurons in η are appended to
those in δp. The resulting δp may be unchanged from the previous
firing (if there were no newly discovered neurons), or it may
contain one or more new neurons. The resulting δp is produced
as the output of the training mode firing, and it is also retained as
the updated value of the corresponding state variable in the actor.

3.2.4. Signal Extraction
Each firing of the Signal Extraction actor takes as input a motion-
corrected image frame Fmc and a neuron detection matrix δ

that gives the positions and radii of the neurons that have been
detected in Fmc. The output of the firing is a vector β that gives
the relative intensity of each detected neuron.

Each ith element of β corresponds to a distinct neuron and
is calculated as β[i] = (F(i)(Fmc) − F0)/F0), where F(i)(Fmc) is
the average intensity (average pixel value) across all pixels in the
circle centered at (δ[i][1], δ[i][2]) and having radius δ[i][3] in the
Fmcth image frame. To calculate F0, we followed (Romano et al.,
2017), using the average ROI intensities across a window of time
that immediately precedes a particular experimental event.

Throughout a given experiment, the Signal Extraction actor
produces a sequence of vectors β1,β2, . . . ,βL, where L is the
total number of image frames in the input video sequence
for the experiment (excluding the frames used for system
initialization/training). Each βi is a ν-element vector, where
ν is the total number of neurons that have been detected
throughout the training process for the Neuron Detection actor.
The sequence β1[i],β2[i], . . . ,βr[i] thus provides a sampled
representation of the relative pixel intensity for each ith detected
neuron (1 ≤ i ≤ ν).

3.3. System Design
Figure 3 shows how the different actors described in section 3.2
are integrated into the dataflow graph for the NDSEP system. The
dataflow graph is based on the PSDF model of computation (see
section 3.1). As discussed earlier in this section, the system has
two distinct modes of operation—the initialization mode (also
known as the training mode) and the real-time mode.

The initialization mode is used to configure selected actor
parameters in the body graph using a set of training frames. The
training frames are captured from a calcium imaging device that
is implanted within a given animal subject. The resulting set of
optimized parameters is then applied to perform accurate real-
time processing during neuron image acquisition and analysis
experiments involving the same device and animal subject.
This real-time processing corresponds to the real-time mode of

NDSEP. The set of frames that is processed when in the real-time
mode for a given experiment is referred to as the set of analysis
frames. For more details, see sections 3.2.3, 3.3.2.

3.3.1. Auxiliary Actors
All of the core signal processing actors in Figure 3 have been
discussed in section 3.2. Four additional actors—namely, the
actors labeled ImgSrc, Fork1, Fork2, and SetParams—are also
used, as shown in Figure 3.

Each firing of the ImgSrc actor reads the next image from
the input video sequence from disk into memory, and outputs a
pointer to the memory block that contains the image. This disk-
based interface is used in our current NDSEP prototype, since
our focus is on functional validation and on optimizing trade-
offs between accuracy and real-time performance. For integration
into a complete experimental system, the ImgSrc actor can readily
be replaced by an actor that provides direct software interfacing
with the image acquisition device.

The actors labeled Fork1 and Fork2 are fork actors, also
referred to as broadcast actors. Each firing of a fork actor
consumes one token on its input and produces a copy of the
token on each of its outputs. Since images and matrices are
communicated by reference (through pointers) in NDSEP (see
section 3.2), the fork actors require minimal execution time
compared to the core signal processing modules in the system.

The fourth auxiliary actor, SetParams, is discussed
in section 3.3.2.

3.3.2. Adapting the Neuron Detection Actor
The SetParams actor is used during the initialization process
to adaptively optimize parameters of the Neuron Detection
actor. The objective is to calibrate the selected parameters
to the given calcium imaging device and animal subject so
that neuron detection accuracy is enhanced compared to that
with the use of generic parameter settings. The parameters are
adapted progressively as the training frames are processed in the
initialization mode. Specific parameters that are configured by
the SetParams actor are the Amin, Amax, and thresholdStep
parameters for neuron detection (see section 3.2.3). Before
running the initialization mode, we manually “pre-initialize”
these parameters by considering the size of the input image and
rough size of the neurons. The initialization mode then uses the
pre-initialized parameter values as a starting point and optimizes
the three values through an iterative process (see section 3.2.3).

Many different approaches for adapting neuron detection
processes can be envisioned for use in NDSEP. Presently, we
use a relatively simple adaptation approach that progressively
loosens the filtering constraints of the blob detector used in the
Neuron Detection actor. The constraints are loosened until a pre-
determined target number Tn of neurons is detected. Presently,
we use the empirically determined value Tn = 5. Incorporating
more sophisticated parameter adaptation processes into NDSEP
is a useful direction for future work.

We conducted some simple experiments to help validate our
current adaptation approach. With the simulated data, when we
tried an approach that progressively tightens the constraints, we
observedmore false positives than our proposed approach, which
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progressively loosens the constraints. For example, with the most
noisy set of simulated data, which is described in 4.1, we observed
11%more false positives with progressive tightening compared to
our proposed approach. In this dataset, the progressive tightening
approach also led to a few false negatives, whereas there were no
false negatives resulting from our proposed approach.

3.3.3. Real-Time Mode
For the real-time mode of NDSEP, the iteration count for the
body graph is set to the total number of analysis frames. Thus,
the subinit graph is effectively disabled through the duration
of running in real-time mode. This is because the body graph
continues executing for the specified number of iterations before
control returns to the subinit graph, at which point the neural
decoding process terminates.

In real-time mode, each analysis frame is processed by
correcting motion, detecting neurons, and then extracting
relative pixel intensities for each neuron. The relative pixel
intensities are used, as described in section 3.2.4, to populate the
vector elements for the next time step in the extracted signals for
the neurons.

The output of the real-time mode is the sequence of vectors
β1,β2, . . . ,βL, where L is the number of analysis frames. This
sequence encapsulates a sampled version of the signal extracted
for each neuron. The sequence can be saved for subsequent off-
line analysis or connected to another computational subsystem
for further real-time processing, as would be the case if NDSEP
were embedded within a precise neuromodulation system.

4. EXPERIMENTS

In this section, we present results obtained through experiments
using the proposed platform, NDSEP. We first present
experiments involving simulated data and then experiments
involving real data. The experiments involving real data include
results on neural imaging data that has already been processed
with motion correction and also results on “raw imaging data”
(without motion correction already applied).

4.1. Simulated Data
In this experiment, simulated calcium imaging datasets were used
to assess the proposed platform because the simulated data had
ground-truth. The simulation described interactions among a
set of leaky integrate-and-fire neurons with additive noise. The
neuron model (Gütig and Sompolinsky, 2006) is as follows:

dV

dt
=

Vrest − V

λ
+ θ × λ × (−0.5)× ǫ, (2)

where V is the membrane potential, Vrest is the rest potential, ǫ is
a Gaussian random variable with mean 0 and standard deviation
1, λ is the membrane time constant, and θ is a parameter to
control the noise term. Spikes received through the synapses
cause changes inV . A neuron fires ifV is greater than a threshold.
After firing, a neuron cannot generate a second spike for a brief
time (refractoriness). Such a neuron model can represent many
kinds of postsynaptic potentials or currents described in the
literature (Brette et al., 2007).

Our simulation included 100 neurons. We divided these
100 neurons into two groups: group A and B. Neurons in
group A have no parent nodes, while neurons in group B have
one or two neurons in group A as parent nodes. If a parent
node fires, the membrane potential of the target node will
increase by w = 0.2. This simulation represented a scenario
in which neurons in group A were responsive to external
stimulus, and firing of neurons in group A facilitated firing of
neurons in group B. We generated simulated spike trains with
1,800 time points.

One hundred neuron masks from the Neurofinder 00
dataset (Peron et al., 2016) were chosen as ground-truth neuron
masks. For a given frame t, if neuron i fired, then the intensities
of pixels inside neuron mask i were set to be 128. After this,
we performed exponential smoothing to simulate calcium signal
decay. jGCaMP7f, which is a calcium sensor, has a decay half-
life of around 265 ms (Dana et al., 2019). To simulate imaging
jGCaMP7F using a two-photon microscope at 30 Hz, the decay
half-life in our simulation was set to 8 frames. To simulate
motion, we introduced a global shifting in the x and y axes.
The random translation motion in x or y followed a uniform
distribution in [−10, 10]. Also, to simulate rotation in frames,
datasets were generated with different random rotation ranges
and occurrence probabilities. We used Prot to denote the rotation
occurrence probability, and αrot to denote the rotation range.
For example, if αrot = 5.16 and Prot = 10, then rotation within
[−5.16o, 5.16o] is randomly applied to the simulated data, with a
rotation occurrence probability of 10%.

In addition to the random translation motion, three kinds
of drift are simulated. A slow and constant drift is simulated
according to the trajectory shown in Figure 4B. Motions are
simulated around the ground truth position within 10 pixels,
following the same range that we used for random translation
motion. Slow and constant drift was incorporated by moving
the frame 1 pixel at each time step in the same direction until
it hits the boundary, which is taken to be 10-pixels in the x or
y direction away from the ground truth. Then the direction of
the drift changes according to the trajectory. We simulate small
and large drift by controlling the range of random translation
motion. Motion in x or y follows a uniform distribution in
[−3, 3] or in ([−10,−7]

⋃
[7, 10]) to simulate small drift and

large drift, respectively.
Then we added temporally autocorrelated zero mean noise

with standard deviation σ = 0.4 (Svetunkov, 2019) as well as
shot noise with zero mean and σ = 1.0 (Pilowsky, 2019) to
some of the simulated datasets, called noisy simulated datasets
(NoiseSim). All noisy simulated datasets had Prot = 25 and
αrot = 6.3153, along with the same global translation motion
described above, as shown in Figure 4.

We applied the proposed system to the simulated data.
The system was evaluated in terms of neuron mask detection
accuracy, signal-to-noise ratio, and running time. For neuron
mask detection accuracy, because ground-truth neuron masks
were available, we compared each detected neuron mask with
the corresponding ground-truth neuron mask, and calculated
the recall (the fraction of matched pixels divided by the number
of pixels in the ground truth) and precision (the fraction of
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FIGURE 4 | Simulation of motion and noise. (A) Shows simulated noise. Here, “s” denotes the relative shot noise level, while “c” denotes the relative colored (red)

noise level. For example, s05c15 denotes the noise case in the lower right corner. (B) Shows a trajectory simulating slow and constant drift. Each frame moves 1 pixel

along the path. For example, assume the first frame has x,y-position (0,0), then the second one is at (1,0), the third one is at (2,0), etc.

matched pixels divided by the number of pixels in the detected
neuron mask).

For signal-to-noise ratio, for each detected neuron φ, we first
correlated the detected 1F/F of φ with the ground-truth spike
trains. Given an image frame I and some region r (a connected
subset of pixels) in the frame, 1F/F is a measure of the relative
pixel intensity in r relative to a baseline. The metric is similar to
that used for elements of vector β defined in section 3.2.4. Here,
F represents the baseline pixel intensity, and 1F = R− F, where
R is the average pixel intensity for all pixels in r. When 1F/F
is used in the context of a neuron, the region r consists of all
pixels contained in the neuron. We then calculated the average
correlation coefficient Rs between the neuron time course and

the ground-truth spike trains across all neurons. Next, for each
neuron φ, we randomly selected a region of the image frame
with a size close to the size of φ. For each randomly selected
region r, we correlated 1F/F of r with the ground-truth spike
train of φ. This yielded a correlation coefficient ρ(φ). Then we
calculated the average correlation coefficient across all φ—that
is, the average value of ρ(φ). To avoid selection bias in choosing
random regions, we repeated the above process 1,000 times and
calculated the average value Rn. The signal-to-noise ratio was
then computed as 10 log10(Rs/Rn).

Themotion-corrected images were compared with the ground
truth images. The ideal case here is that the Motion Correction
actor detects the ground-truth x and y motion along with

Frontiers in Computational Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 43

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lee et al. Real-Time Calcium Signal Processing

TABLE 1 | Motion correction accuracy with different Prot values without noise.

Prot(%) 0 5 10 15 20 25 30 40 50

mean(Mx ) 0.8002 1.1696 0.9322 0.9911 0.6672 1.1643 1.0612 1.0956 1.0225

max(Mx ) 1.6443 1.9522 1.8845 1.7710 1.9838 1.7457 1.9203 1.9470 1.9464

mean(My ) 0.8145 0.7509 0.7655 0.7720 0.7710 0.7903 0.7476 0.7395 0.7146

max(My ) 1.1627 1.2483 1.3923 2.6277 1.4583 1.4413 1.3937 1.4621 1.4736

mean(Mrot )(×10−4) 0.0657 0.2590 0.2666 0.3568 0.5596 0.5988 0.9873 1.2820 2.0379

max(Mrot ) 0.0041 0.0056 0.0042 0.0095 0.0091 0.0067 0.0068 0.0038 0.0040

Rfail (%) 0.5 0.44 0.33 0.38 0.33 0.38 0.22 0.33 0.06

TABLE 2 | Motion correction accuracy with different αrot values without noise.

sin(α) 0.06 0.09 0.11 0.13 0.15 0.17

α 3.4398 5.1636 6.3153 7.4696 8.6269 9.7861

mean(Mx ) 1.0956 1.0257 0.9840 0.9125 1.1493 0.5187

max(Mx ) 1.9470 1.8579 1.8476 2.7967 2.4186 1.1522

mean(My ) 0.7395 1.8579 0.7586 0.7543 0.7357 0.8116

max(My ) 0.7395 1.8579 1.3687 1.3776 1.3771 1.1597

mean(Mrot )(×10−4) 1.2820 1.4704 0.8297 0.6719 0.7182 0.6089

max(Mrot ) 0.0038 0.0045 0.0035 0.0030 0.0041 0.0039

Rfail (%) 0.33 0.27 0.33 1.56 3.80 7.16

TABLE 3 | Motion correction accuracy on simulated noisy datasets (Prot = 25, αrot = 6.3153) with different noise levels.

Noisy case s01c05 s01c10 s01c15 s03c05 s03c10 s03c15 s05c05 s05c10 s05c15

mean(Mx ) 0.7605 1.0310 1.2810 0.5778 1.4274 1.1609 1.1774 1.1628 1.2028

max(Mx ) 1.7837 2.2656 2.8494 2.3209 2.9944 2.5531 2.7935 2.3158 2.1030

mean(My ) 0.9026 0.8362 0.9485 0.8211 0.9484 0.9668 0.8385 0.9608 0.8041

max(My ) 1.6227 1.8998 2.2747 1.3876 1.6665 2.1496 2.2238 2.1455 1.6457

mean(Mrot )(×10−4) 0.6755 0.9516 1.1771 0.7090 1.1146 2.3755 1.5048 1.2410 1.8007

max(Mrot ) 0.0049 0.0042 0.0050 0.0060 0.0081 0.0082 0.0071 0.0080 0.0079

Rfail (%) 0.56 0.56 0.83 0.89 1.50 0.50 0.67 0.89 0.33

the rotation angle. Three matrices are used to evaluate the
performance of motion correction. For each dataset, Mx, My,
andMrot denote x-displacement, y-displacement, and angle error,
respectively. Ratefail denotes the failure rate of motion correction.
When motion correction fails, the frame is not motion-corrected
(see Section 3.2.1).

Table 1 shows our measured results for motion correction
with αrot = 3.43 and different values of Prot . Table 2 shows
results with Prot = 40 and different values of αrot . In Table 1,
we see that as Prot increases, the error also increases. However,
the mean errors of x-displacement and y-displacement are very
small, about 1 pixel in each dimension. The mean rotation
error mean(αrot) is close to zero. Although some rotations are
not detected (the rotation detection rate is not 100%), such
cases are rare. As Table 2 shows, only when αrot reaches 7.46

o

does the motion correction failure rate begin to rise in some
sparsely occurring cases (1.56% failure rate). However, from
our observations, such a large value of the rotation angle is
rare in practice. Table 3 shows the performance of NDSEP in

noisy situations. As the noise level increases, the x, y, and angle
detection error increases. Even in the s05c15 case, which includes
frames that contain large amounts of noise, motion correction
still performs effectively. The mean error of x, y-displacement
remains consistently around 1 pixel, while the mean rotation
error is also comparable to the no-noise case. Compared with the
average neuron size in simulated data, which has a 6.8387 pixel
width and a 6.7634 pixel height, the 1 pixel x, y-displacement
means NDSEP motion correction is effective for simulated data.

To further evaluate the motion correction process in NDSEP,
slow and constant drift is added to the no-noise case s00c00 and
to noisy cases s01c05 and s05c15. Rfail(%) is 5, 2.11, and 4.33,
respectively, for these three cases; mean(Mx) is 0.6518, 0.8707,
and 0.7366, respectively, and mean(My) is 1.4400, 1.4121, and
1.1849, respectively. The results shown above are comparable
with the randommotion drift cases in Tables 1, 2, indicating that
NDSEP-Motion Correction is able to correct slow and constant
drift. Similarly, small and large drift are applied to the no-noise
case s00c00 and noisy cases s03c10 and s05c15. For small drift in
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FIGURE 5 | Neuron detection results from the simulated data. (A) Shows detected neurons (red-perimeter circles) overlaid on the mean map of all frames in the

simulation-derived dataset; (B) Shows ground truth neurons with blue perimeters and detected neurons with red perimeters; (C) Shows representative neural signals

(blue) extracted from the simulated data and ground truth spikes (red).

cases s00c00, s03c10, and s05c15: Rfail(%) is 0 for all three cases,
mean(Mx) is 2.28, 0.85, and 0.82, andmean(My) is 0.41, 0.84, and
0.70, respectively. For large drift: Rfail(%) is 4.5, 0.83, and 26.2,
mean(Mx) is 0.61, 0.89, and 1.17, and mean(My) is 1.45, 1.73,
and 1.06, respectively. For large motions with intensive noise,
the failure rate of 26.2% is higher than in other cases, while in
terms of successful correction output, mean(Mx) and mean(My)
remain comparable to the small drift cases. We anticipate that
image frames with such intensive noise and motion do not often
occur in practice. In the clear small motion case, 2.28 is a little bit
higher than the others, but it is still smaller than the half size of
the neurons, which is about 7 pixels, in the simulated dataset.

From the results described above, we conclude that the
NDSEP Motion Correction can accurately detect motion

translation and rotation—with or without the presence of noise—
in most cases.

For the simulated data, all 97 of the active neurons were
detected by NDSEP. Three neurons should not be detected,
since all three of these were inactive for the duration of the
image sequence. In Figures 5A,B, the ground truth neurons are
depicted as bright blobs, which are overlaid on the mean map of
all 1,800 frames in the simulation-derived dataset in the case of
s03c05. Since different neurons have different firing rates, they
generally appear with different levels of brightness in the mean
map. Each circle with a red perimeter in Figure 5 represents a
detected neuron.

Figure 5C shows signals that have been extracted by NDSEP
for five randomly chosen neurons. The figure also shows the
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FIGURE 6 | Results of experiments with the two Neurofinder datasets: (A) shows results from Dataset 01, and (B) shows results from Dataset 03. The ground truth

regions are bounded with red perimeters, and the results from NDSEP are bounded with green perimeters.

corresponding ground truth signals. The signals shown in
red correspond to spike events. These signals have a value
of 1 when the corresponding neuron fires and 0 when the
neuron is not firing. Blue signals indicate 1F/F values for
the detected neurons. From the results in Figure 5, we see
that NDSEP accurately detected the spike events. For these
results, we computed Rs = 0.354, Rn = 0.000011, and
10 log10(Rs/Rn) = 45.08.

4.2. Neurofinder Data
We also performed experiments using the Neurofinder collection
of datasets (Peron et al., 2016). These datasets represent publicly
available, real calcium imaging data that has already been
preprocessed with motion correction. The Neurofinder data
provide ground truth for the position of each neuron. There
are five datasets in the Neurofinder database. The first one
(Dataset 00) contains segmented neurons using fluorescently
labeled anatomical markers. It is possible that neurons are not
firing in Dataset 00 but are still labeled. This is inappropriate for
neuron detection based on neural activity. Datasets 02 and 04
have around 8–41% potentially mislabeled neurons (Soltanian-
Zadeh et al., 2019). Among the five datasets, 00, 02, and
04 are not suitable for evaluating the neuron detection
performance of NDSEP. Therefore, we used Datasets 01 and
03 for our experiments. See Table S1 for details about the
Neurofinder data.

Figure 6 shows the results of our experiments with the two
Neurofinder datasets. The results show that NDSEP is effective
at detecting relatively active neurons. The extracted signals for
ten randomly selected neurons from each dataset are plotted
in Figure 7. Most of the signals in Figure 7B exhibit the signal
characteristics that are described in Resendez et al. (2016).
Technically, these experiments pertain to the combination of
the Preprocessing and Neuron Detection (PND) actors of
NDSEP since the experiments do not involve motion correction

(the Neurofinder input data are already motion-corrected) or
signal extraction. We refer to this actor combination concisely
as NDSEP-PND.

Next, we report the precision, recall, and F1 scores achieved
by NDSEP-PND across each of the two Neurofinder datasets.
The precision is the fraction of true neurons (true positives)
detected among detected neurons. The recall is the fraction
of actual neurons that are detected. The F1 score is defined
as the harmonic mean of precision and recall: F1sore =

2 × (u × v)/(u + v), where u is the precision and v is the
recall. For Dataset 01, the precision, recall, and F1 scores
are 0.6431, 0.5275, and 0.5848, respectively. For Dataset 03,
the precision, recall, and F1 scores are 0.7166, 0.7259, and
0.7212, respectively.

The results on the Neurofinder datasets demonstrate that
NDSEP-PND has an accuracy that is comparable with the
top five neuron detection algorithms from the comparative
experimental study reported on in Klibisz et al. (2017). These top
five previously developed algorithms are HNCcorr Spaen et al.
(2017), Sourcery, UNet2DS, Suite2p (Pachitariu et al., 2017) +
Donuts (Pachitariu et al., 2013), andHNCcorr (Spaen et al., 2017)
+ Conv2din. Of the six algorithms (the five previously developed
ones together with NDSEP-PND), the result of NDSEP-PND
has the fifth-highest accuracy (in terms of recall and precision)
for Dataset 01, and for Dataset 03, NDSEP-PND also has the
fifth-highest accuracy. At the same time, NDSEP-PND achieves
real-time performance, while the other five methods are not real-
time systems. This is a critical advantage of NDSEP-PND in the
context of our work. Also, in relation to the other state-of-the-
art algorithms in the Peron et al. (2016) challenges, Kirschbaum
et al. (2019) (recall= 0.56, precision= 0.85, F1= 0.67 for dataset
01), and Soltanian-Zadeh et al. (2019) (recall= 0.65, precision=

0.57, and F1= 0.61 for dataset 01, and recall= 0.56, precision=

0.54, F1= 0.55 for dataset 03), NDSEP-PND outputs comparable
results for both datasets.
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FIGURE 7 | Results using the Neurofinder data for extracted signals from randomly selected neurons: (A,C) show the locations of the randomly selected neurons

from Dataset 01 and Dataset 03, respectively; (B,D) show the signals that were extracted by NDSEP from each neuron. Ten neurons were randomly selected from

each of the two datasets.

4.3. Anterior Lateral Motor Cortex Data
As a representative real-world application, an Anterior Lateral
Motor Cortex (ALM) dataset Li et al. (2015) is used to evaluate
NDSEP. This dataset includes 11,189 frames of calcium imaging
that record the anterior motor cortex in mice while the mice are
performing a tactile delay-response task. The motion correction
failure rate Ratefail of NDSEP on the ALM dataset is 0.

Figure 8 shows the results of applying NDSEP to the ALM
dataset. Figure 8A shows the detected neuron masks overlaid
on the mean signal map. We randomly picked 10 neurons
(Figure 8B) and plotted 1F/F (Figure 8C). 1F/F captures
the characteristics of the neural activity. A neuron is detected
only after it fires at least once. For example, 1F/F values of
neurons 8, 9, and 10 were 0 until their first spiking activity
began. In this experiment, NDSEP neuron detection detects 50
neurons. Compared with the ALM ground truth mask, which
has 69 neurons, the recall and precision of NDSEP-based neuron
detection are 72.46 and 69.44%, respectively. Also, the F1 score
is 70.92%.

4.4. Execution Time Measurements
Table 4 shows measured execution times for all of the core
signal processing actors in NDSEP as well as the ImgSrc actor.

The total running time is measured by using time calculation
functions. The times shown in Table 4 are the single frame
execution times, which are calculated by: Single_Frame_Time =
Total_Processing_Time/#Frames_in_Dataset. The mean and
standard deviation of the execution time is calculated by
repeating the associated experiment 10 times under the same
conditions. All execution time measurements are shown in
milliseconds (ms). Only the SetParams and fork actors are not
considered in these execution time experiments. SetParams is
used only in the initialization mode of the application and not
in real-time mode. Thus, the execution time of the SetParams
actor is not relevant to real-time performance. The fork actor is
excluded because it is of minimal complexity and has a negligible
impact on overall performance.

All of the execution time measurements were taken

on a MacBook Pro laptop computer. The computer

was equipped with a 2.5 GHz Intel Core i7 CPU, the
Mac OS High Sierra 10.13.1 operating system, and
16 GB memory.

The experiments on execution time were performed on
all of the four datasets employed in section 4.1 through
section 4.3. Since image registration has already been applied
in the two Neurofinder datasets, we disabled the Motion
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FIGURE 8 | Results for ALM data: (A) shows neuron masks in regions with green perimeters, with ground truth in red, overlaid on the mean map of all frames; (B)

shows randomly selected neurons among the correctly detected result; (C) shows the signals that were extracted from selected neurons in (B).

Correction actor in the experiments with these two datasets.
For the simulated dataset, the two Neurofinder datasets, and
the ALM dataset, average execution times were taken across
1,800, 2,245, and 11,189 frames, respectively. The results in
Table 4 show average execution times per frame for each actor/
dataset combination.

Generally, the Motion Correction actor dominated the overall
execution time for the datasets in which the actor was used.
The signal extraction actor exhibited the largest variation in
execution time. We anticipate that this is because of the strong
dependence of this actor’s execution time on the number of
detected neurons. Also, not only the number of detected neurons
but also how active the neurons are affect the detection actor’s
execution time. As shown in Table 4, the total execution time,
summed across all actors, was less than 22 ms per frame for all
datasets that we experimented with, except for the Neurofinder
03 dataset, which has over 600 neurons detected. Considering
the image acquisition rate, for all four datasets, NDSEP is
shown to provide adequate performance for real-time operation
without the need for expensive, cumbersome, or special-purpose
computing hardware.

4.5. Comparison With Other Platforms
Using the simulated dataset and ALM dataset, we compared
NDSEP-based motion correction with CaImAn-NoRMCorre
(Non-Rigid Motion Correction) and also with ImageJ-SIFT
(Scale Invariant Feature Transform). In addition, a neuron
detection comparison was made among NDSEP-based neuron-
detection, CaImAn-CNMF (CaImAn-Constrained Nonnegative
Matrix Factorization), and CellSort (also known as PCA/ICA).
For details on CaImAn-NoRmCorre, SIFT, CaImAn-CNMF, and
CellSort, we refer the reader to Giovannucci et al. (2019), Lowe
(2004), and Mukamel et al. (2009). Table 6 shows parameters
used in the comparison approaches.

4.5.1. Motion Correction Comparison
The Motion Correction comparison is made on the simulated
dataset. In CaImAn-NoRMCorre, we experimented with both the
rigidmode and non-rigidmode. AlthoughCaImAn-NoRMCorre
is not natively designed to correct rotations, rotations can be
recognized when the grid size is small (the resolution is high).
However, excessively small grid sizes make matches hard to find
and greatly increase computational cost. In our experiments, we
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TABLE 4 | Measured execution times for different actors in NDSEP.

Data ImgSrc

(ms)

Motion

correction (ms)

Pre-processing

(ms)

Detection

(ms)

Signal

extraction (ms)

Total execution

time (ms)

Simulated

(400 × 400)

97 neurons .png

by NDSEP

(Image acquisition rate: 10 Hz)

1.18

(std:0.04)

12.98

(std: 0.84)

0.66

(std: 0.02) 2.72

(std: 0.09)

4.49

(std: 0.14)

22.04

(std:0.87)

(45.37 Hz)

Simulated

(400 × 400)

97-neuron .png

by SIFT

– 131.11

(std: 0.9729)

– – – –

Simulated

(400 × 400)

97-neuron .png

by NoRMCorre-Rigid

– 21.66

(std: 0.31)

– – – –

Simulated

(400 × 400)

97-neuron .png

by NoRMCorre-Nonrigid

– 261.12

(std: 12.75)

– – – –

Simulated

(400 × 400)

97-neuron .png

by CNMF

– – – 27.9382

(std: 0.1476)

– –

Neurofinder 01

(512 × 512)

345-neuron .tiff

by NDSEP

(Image acquisition rate: 7.5Hz)

2.15

(std:0.03)

– 1.11

(std: 0.01)

4.56

(std: 0.02)

14.31

(std: 0.13)

22.13

(std:0.16)

(45.19 Hz)

Neurofinder 03

(498 × 490)

613-neuron .tiff

by NDSEP

(Image acquisition rate: 7.5 Hz)

2.14

(std:0.11)

– 1.19

(std: 0.07)

2.76

(std: 0.68)

33.32

(std: 1.05)

49.42

(std:1.54)

(20.24 Hz)

ALM

(512 × 512)

69-neuron .tif

by NDSEP

(Image acquisition rate: 15 Hz)

3.95

(std:0.04)

11.53

(std: 0.09)

0.71

(std: 0.01)

1.35

(std: 0.01)

3.13

(std: 0.01)

20.67

(std:0.15)

(48.38 Hz)

used an empirically determined grid size of [32, 32], which we
found to provide an efficient balance between the aforementioned
trade-offs. We also applied the cubic shifting method and a small
overlapping region with a size of [16, 16]. All other parameters
are set at the values recommended in Giovannucci et al. (2019).
As with CaImAn-NoRMCorre, we tuned parameters in SIFT to
maximize accuracy. Most of the parameter values that we used
are those recommended in Lowe (2004). We set the maximal
alignment error to two pixels to increase the accuracy, instead
of 10% of the image size as recommended in Lowe (2004).

CaImAn-NoRMCorre is not able to align most of the
rotations, as shown in Figure 9A, especially in the rigid
mode. The high spike values in Figure 9B correspond to
the non-corrected motions. The non-rigid mode has lower
spikes, which correspond to rotations, than the rigid mode.
However, the non-rigid mode exhibits higher error when
correcting translation-only frames. SIFT achieves a relatively
high accuracy for both translations and rotations, but Figure 9B
shows that the root mean square error (RMSE) value increases

as the number of frames increases. This means that the
error accumulates and the accuracy drops as the system
continues processing. This feature makes SIFT inefficient for
our real-time motion correction context. Unlike CaImAn-
NoRMCorre, NDSEP efficiently corrects nearly all simulated
motion translations, shown in Figure 9C, and rotations while
discarding the unusual uncorrected frames.

4.5.2. Neuron Detection Comparison
In our comparison of neuron detection performance,
experiments are performed on two datasets: simulated data
and ALM data. On simulated data, two approaches, NDSEP-
neuron detection and CaImAn-CNMF, are compared. On ALM
data, three approaches, NDSEP-neuron detection, CaImAn-
CNMF, and CellSort, are evaluated. To eliminate the influence
of different motion correction approaches, the input datasets are
first motion-corrected. In particular, the simulated data input is
the motion-correction ground truth used to calculate the RMSE
value in Figure 9B. The ALM input data is motion-corrected

Frontiers in Computational Neuroscience | www.frontiersin.org 16 June 2020 | Volume 14 | Article 43

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lee et al. Real-Time Calcium Signal Processing

FIGURE 9 | Motion correction comparison results on simulated dataset

Prot = 25 and αrot = 6.3153 without noise. (A) Shows the uint8 [0, 255]

meanmaps. The display range is [0, 10], where values greater than 10 are

displayed in white. The input data is the meanmap of simulated data with

motion but without noise. The ground truth is the meanmap of the no-motion

simulated data. The remaining four images are the output meanmaps of

NDSEP, SIFT, the rigid mode of CaImAn-NoRMCorre, and the nonrigid mode

of CaImAn-NoRMCorre. (B) Shows the RMSE calculated by performing

frame-by-frame comparison between the output of the four motion correction

methods and the ground truth. (C) Shows the x movement, which is actual

movement applied to simulated data, as a red line vs. movement detected by

NDSEP motion correction as a blue line, including a program-detected failure

in frame 544. Please note motions larger than the 10-pixel upper bound occur

because of the rotations applied around the center of the image.

by CaImAn-NoRMCorre with the rigid mode following
the parameters used to register the simulated data. When

comparing different neuron detection approaches, we compare
only the spatial component—that is, only the locations of the
detected neurons.

In CaImAn-CNMF, the number of neuronsNdet to be detected
is predefined. In our experiments, for simulated data, we set
Ndet = 97 because there are a total of 97 neurons in the
ground truth mask. Ndet is set to 80, a little higher than the
number of neurons in the ALM ground truth. This setting is
used to increase the recall rate. The parameter τ of the Gaussian
kernel is set to half the size of a single neuron. The resulting
values for the simulated and ALM datasets are τ = 3.4 and
τ = 8.0, respectively. The optional parameter P used for
normalization by noise and user feed component centroids is
disabled for simulated data, since the temporally autocorrelated
noise we have cannot be removed in this way. Other parameters
are tuned according to Giovannucci et al. (2019). In CellSort,
which is only tested on the ALM dataset, the value of mu is
set to 0.5, which enables the use of both temporal and spatial
information for segmentation. Other CellSort parameters are set
as recommended in Mukamel et al. (2009).

Table 5 shows that both CaImAn-CNMF and NDSEP detect
all of the 97 neurons when the input frames are free from noise.
However, for noisy input, the CaImAn-CNMF detection rate
CaImAn− CNMFdet drops as the noise intensity increases, while
NDSEP consistently provides 100% accuracy for both noise-
free and noisy input. Thus, our experiments demonstrate that
CaImAn-CNMF neuron detection is vulnerable to noise, while
NDSEP is much more robust. Furthermore, as shown in Table 4,
NDSEP requires significantly less processing time compared to
CaImAn-NoRMCorre, SIFT, and CaImAn-CNMF.

On the ALM dataset, CaImAn-CNMF correctly detects 53
among 69 neurons; the resulting recall is 76.81%, while the
precision is 72.60%. CellSort segments 79 neurons, of which
57 are correct (true positives), and the recall and precision
using CellSort are 82.61 and 72.15%, respectively. For NDSEP,
the corresponding results (shown in section 4.3) are: recall =

72.46% and precision = 69.44%. From these results, we see
that the accuracy of NDSEP neuron detection is comparable
to other state-of-the-art approaches such as CaImAn-CNMF
and CellSort.

5. DISCUSSION

In this paper, we proposed a real-time neuron detection and
neural activity extraction system called the Neuron Detection
and Signal Extraction Platform (NDSEP). NDSEP uses a
novel integration of dataflow-based design architecture and
streamlined algorithms and software modules for real-time
neural signal processing. The dataflow architecture of NDSEP
provides sufficient flexibility to expand the system, experiment
with design trade-offs, and manage complex constraints of real-
time neuron detection and activity extraction (RNDAE) systems.
Such constraints include those involving memory requirements
and cost-effective deployment.

In an experiment based on simulated calcium imaging data,
NDSEP effectively performed motion correction with mean
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TABLE 5 | Neuron detection rate with different noise levels.

Noise level No noise s01c05 s01c10 s01c15 s03c05 s03c10 s03c15 s05c05 s05c10 s05c15

CNMFdet (%) 100 97.9 89.7 74.2 92.8 89.7 74.2 85.6 74.2 68.0

NDSEPdet (%) 100 100 100 100 100 100 100 100 100 100

TABLE 6 | Parameters of other approaches.

Parameter Description Value

CaImAn-NoRMCorre on

Simulated data rigid mode

bin_width Width of each bin 50

max_shift Maximum rigid shift in each direction [30, 30]

init_batch Length of initial batch 10

CaImAn-NoRMCorre on

Simulated data nonrigid mode

grid_size Size of non-overlapping regions [16, 16]

overlap_pre Size of overlapping region [16, 16]

shifts_method Method to apply shifts cubic

init_batch Length of initial batch 50

CellSort on ALM data

mu Parameter (between 0 and 1) specifying

weight of temporal information in

spatio-temporal ICA

0.5

maxrounds Maximum number of rounds of iterations 1,000

CaImAn-CNMF on ALM data

K Number of components to be found 80

tau Size of Gaussian kernel (half size of

neuron)

8

merge_thr Merging threshold 0.2

min_SNR Minimum SNR threshold 1

CaImAn-CNMF on Simulated data

K Number of components to be found 97

tau Size of Gaussian kernel (half size of

neuron)

3.4

errors of x and y displacement of <1 pixel and mean rotation
error close to zero. NDSEP detected all active neurons and
achieved a very high signal-to-noise ratio. For the Neurofinder
database and for a real-world dataset, ALM, NDSEP achieved
comparable results for detection, and the detected neurons
demonstrated typical calcium transient patterns. In all of these
experiments, the execution times were shorter than 25 ms, and
NDSEP achieved real-time performance.

As presented in section 3, the key subsystems in NDSEP
for neural signal processing are system parameter optimization
(represented by the SetParams actor), motion correction, neuron
detection, and neural signal extraction. We have developed and
integrated initial versions of these subsystems through careful
design, experimentation, and optimization to achieve real-time
performance with reasonable system accuracy. However, many
alternative combinations of algorithms, algorithmic parameter
settings, and design optimization techniques can be applied to
achieve the same general functionality as the current version of
NDSEP, which involves themapping of neural image streams into
sets of neurons and their associated signals. These combinations

represent a complex, largely unexplored design space, which
involves trade-offs among real-time performance, neuron
detection and signal extraction accuracy, and computational
resource costs.

In addition to providing a complete system prototype for
RNDAE, NDSEP provides a useful framework for investigating
this design space and for developing further innovations in
algorithms and systems for RNDAE. Such innovations could,
for example, help to further increase the accuracy of neural
signal extraction while maintaining real-time performance.
Alternatively, they could help to reduce system costs without
significantly sacrificing accuracy, thereby contributing to more
cost-effective technologies for scientists, clinicians, or patient-
users. The model-based design architecture of NDSEP, based
on our application of dataflow design methods, helps to
precisely formulate the aforementioned design space in terms
of component subsystems (actors for RNDAE) and precise
interfacing requirements between them. The modularity and
abstract design of the NDSEP architecture greatly facilitate
experimentation with alternative combinations of component
algorithms, algorithm configurations, and hardware/software
realizations of the algorithms.

Four general directions for future work emerge naturally from
the properties described above of the NDSEP architecture and
its utility in defining and exploring important design spaces
for RNDAE system design. The first direction is exploration
into new algorithms and implementations for the four key
component subsystems. Examples of concrete topics in this
direction include applying downsampling strategically in parts
of NDSEP outside of motion correction, where it is already
applied (see section 3.2.1). Another example is incorporating
more sophisticated processes for parameter adaptation and
optimization in the initialization mode of NDSEP, as motivated
in section 3.3.2.

A second direction for future work is in applying the
NDSEP platform to develop novel systems for precise
neuromodulation. The current system will be part of a precise
all optical closed-loop neuromodulation system that combines
calcium image processing (the current system), prediction
(predicting behavioral variables based on neural features), and
neuromodulation (optogenetics). In our recent prior work,
our team has developed pilot versions of prediction (Lee et al.,
2017) and network-based feature extraction (Chen and Lin,
2018) for calcium imaging data. The primary design goal of
NDSEP is real-time data processing. Existing optogenetics
intervention permits millisecond-precision manipulation of
genetically targeted neural populations (Häusser, 2014). In
our future work, we will improve these pilot versions and
integrate them with NDSEP. We expect that our future all-
optical closed-loop neuromodulation system can achieve
real-time performance above 10 Hz, providing neuroscientists
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an open-source, real-time neural decoding system that facilitates
precise neuromodulation.

A third direction for future work is studying design
optimization methods and trade-offs in NDSEP in the
context of overall cost and performance in the enclosing
neuromodulation systems.

A fourth direction for future work is support for higher image
acquisition rates. Results are unpredictable if the speed of the
system is slower than the acquisition rate. The designer must
therefore optimize and test the system carefully to ensure that
constraints imposed by the acquisition rate are satisfied. The
dataflow-based system architecture facilitates these optimization
and testing objectives. Our current system is designed for two-
photon calcium imaging. The typical acquisition rate is 10–30Hz.
Based on Table 4, the current implementation can handle such
an acquisition rate. In the future, if we want to use NDSEP for
high-speed calcium imaging with a 180–490 Hz sampling rate,
hardware acceleration within the framework of dataflow-based
design may be used.

On top of the four main directions described above,
since NDSEP focuses on real-time computation using efficient
detection algorithms, it may have difficulty detecting overlapping
neurons. In addition to this, NDSEP can be extended to be
enabled for one-photon calcium imaging with more noise. More
comparisons to the state-of-the-art methods like OnACID should
be made. Also, NDSEP does not include an actor for neuropil
fluorescence contamination. We will address these limitations in
our future work.

The NDSEP system developed in this study is an efficient,
extensible system based on dataflow design for real-time neuron
detection and neural activity extraction. We expect that the
platform will enable real-time calcium imaging-based neural
decoding, leading to precise neuromodulation.
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